JPS6322539Y2 - - Google Patents

Info

Publication number
JPS6322539Y2
JPS6322539Y2 JP19742781U JP19742781U JPS6322539Y2 JP S6322539 Y2 JPS6322539 Y2 JP S6322539Y2 JP 19742781 U JP19742781 U JP 19742781U JP 19742781 U JP19742781 U JP 19742781U JP S6322539 Y2 JPS6322539 Y2 JP S6322539Y2
Authority
JP
Japan
Prior art keywords
continuity
circuit
insulation
test
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19742781U
Other languages
Japanese (ja)
Other versions
JPS58103382U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP19742781U priority Critical patent/JPS58103382U/en
Publication of JPS58103382U publication Critical patent/JPS58103382U/en
Application granted granted Critical
Publication of JPS6322539Y2 publication Critical patent/JPS6322539Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 この考案は、絶縁電線やケーブルなどの断線お
よび絶縁不良を1台の装置によつて同時に検出す
るようにした絶縁・導通試験装置に関するもので
ある。
[Detailed description of the invention] [Field of industrial application] This invention relates to an insulation/continuity testing device that simultaneously detects disconnections and insulation defects in insulated wires and cables using a single device. be.

〔従来の技術〕[Conventional technology]

従来から一般に、絶縁電線やケーブルなどの断
線は導通試験器によつて、またそれらの絶縁不良
は通常直流高電圧の絶縁試験器によつて、それぞ
れ接続替えをしながら行なつている。また、たと
えば各種の家庭電気器具などに用いられる、ゴム
またはビニル絶縁電線の端末にプラグを取り付
け、所定の長さに仕上げたプラグ付コードのよう
に、多量に生産されるものについては、その試験
能率を上げるために、第1図に示すようなコード
試験器が用いられている。
Conventionally, disconnections in insulated wires and cables have been tested using a continuity tester, and poor insulation has been tested using a DC high-voltage insulation tester, with each connection being changed. In addition, for cords with plugs that are produced in large quantities, such as cords with plugs attached to the ends of rubber or vinyl insulated wires used in various household appliances, etc., tests are conducted on cords that are produced in large quantities. To increase efficiency, a cord tester as shown in FIG. 1 is used.

この装置は、高周波発生回路1および導通不良
検出回路2から構成された導通試験器と、直流
の、たとえば500Vまたは1000Vの直流高電圧発
生回路3および絶縁不良検出回路4から構成され
た絶縁試験器と、自動的に、たとえば1秒ごとに
接点A,Bに交互に切換え接続する切換器5とか
ら構成されており、モールド型差込みプラグ6の
栓刃7,7′の先端に試験端子8,8′を接続し、
プラグ栓刃7,7′の根元のスポツト溶接部9,
9′から、たとえば2mの長さのコード10の先
端(その先端で導線11は互いに引き離されてい
る)までの導通・絶縁の両試験を行なうものであ
る。
This device consists of a continuity tester consisting of a high frequency generation circuit 1 and a continuity failure detection circuit 2, and an insulation tester consisting of a DC high voltage generation circuit 3 of, for example, 500V or 1000V, and an insulation failure detection circuit 4. and a switch 5 that automatically switches and connects contacts A and B alternately every second, for example, and a test terminal 8, Connect 8′,
Spot welds 9 at the base of plug blades 7, 7',
Both continuity and insulation tests are carried out from 9' to the tip of a cord 10 having a length of, for example, 2 m (at which the conductive wires 11 are separated from each other).

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

しかしながら、上記した従来装置は、前述した
ように測定原理の異なる2つの試験器を単に切り
換えるだけのものであり、絶縁試験および導通試
験にそれぞれ一定時間(たとえば各1秒)要する
し、また絶縁抵抗値などを正しく読み取る場合な
どにおいてはさらに時間がかかるといつた問題点
がある。
However, as mentioned above, the conventional device described above simply switches between two testers with different measurement principles, and requires a certain amount of time (for example, 1 second each) for the insulation test and the continuity test, and also The problem is that it takes more time to read values correctly.

また、プラグ付コードの導通試験においては、
断線が生じていてもその断線個所が接触状態にな
つていると、各試験器はそれを検知し得ないた
め、プラグ栓刃7,7′を試験端子8,8′に差し
込んで固定した後、コード10を上下方向(矢印
A′,B′方向)に屈曲させながら試験することが
必要である。しかしながら、この屈曲動作を加え
ての導通試験においても、今仮に、コード10を
プラグ出口12においてB′方向に屈曲させた時
に溶接部9′が外れたとし、この時、切換器5の
接点がB側にあつたとすれば、高周波発生回路1
および導通不良検出回路2からなる導通試験器は
導通不良を検知できない。また反対に、コード1
0をA′方向に屈曲させ、溶接部9′の断線個所が
プラグ栓刃7と接触状態に戻つた時に、切換器5
の接点がA側に切り換わつたとすれば、コード1
0内に絶縁不良が生じていたとしても、直流高電
圧発生回路3および絶縁不良検出回路4からなる
絶縁試験器はそれを検知できない。すなわち、切
換器5の切換え周期とプラグ出口12での屈曲周
期とが逆に同期した場合には、正しい良否判定を
行なうことができず、不良品を見過ごすといつた
問題点がある。
In addition, in continuity tests for cords with plugs,
Even if a disconnection occurs, if the disconnection point is in contact, each tester will not be able to detect it, so after inserting and fixing the plug blades 7, 7' into the test terminals 8, 8'. , code 10 in the vertical direction (arrow
It is necessary to test while bending in the A', B' directions). However, even in the continuity test with this bending action, suppose that when the cord 10 is bent in the B' direction at the plug outlet 12, the welded part 9' comes off, and at this time, the contact of the switch 5 is If it is on the B side, high frequency generation circuit 1
The continuity tester consisting of the circuit 2 and the continuity failure detection circuit 2 cannot detect continuity failure. On the other hand, code 1
0 in the A' direction, and when the disconnected part of the welded part 9' returns to contact with the plug blade 7, the switch 5
If the contact switches to the A side, code 1
Even if an insulation failure occurs within the insulation tester 0, the insulation tester comprising the DC high voltage generation circuit 3 and the insulation failure detection circuit 4 cannot detect it. That is, if the switching period of the switching device 5 and the bending period at the plug outlet 12 are reversely synchronized, a correct pass/fail judgment cannot be made and there is a problem that defective products may be overlooked.

この考案は以上の現況に鑑みてなされたもので
あり、従来の電線の絶縁・導通試験装置の上記問
題点を解決しようとしてなされたするものであ
る。
This invention was made in view of the above-mentioned current situation, and was made in an attempt to solve the above-mentioned problems of conventional electric wire insulation/continuity testing devices.

〔問題点を解決するための手段〕[Means for solving problems]

この考案は、上記問題点を解決するための手段
として、電線の導通・絶縁試験装置をつぎのよう
に構成した。すなわち、この考案に係る電線の導
通・絶縁試験装置は、被検絶縁電線の相対向する
導体間に高周波パルス電圧を印加し、その導通不
良による導体間静電容量の変化を前記高周波パル
ス幅の変化として検出する導通試験回路部と、前
記電線の絶縁体に直流高電圧を印加し、その漏洩
電流によつて絶縁不良を検出する絶縁試験回路部
とを、その入力側においてコンデンサを介して結
合するとともに、その出力側に前記電線の導通な
らびに絶縁の良否判定を同時に表示する回路を設
けたことを要旨として構成されている。
In this invention, as a means to solve the above-mentioned problems, an electric wire continuity/insulation testing device is constructed as follows. That is, the electrical wire continuity/insulation test device according to this invention applies a high-frequency pulse voltage between opposing conductors of the insulated wire to be tested, and measures the change in capacitance between the conductors due to the poor continuity by changing the high-frequency pulse width. A continuity test circuit section that detects changes and an insulation test circuit section that applies a DC high voltage to the insulator of the wire and detects insulation defects based on the leakage current are coupled via a capacitor on the input side. At the same time, the main feature is that a circuit is provided on the output side to simultaneously display the conductivity and insulation quality of the electric wire.

〔作用〕[Effect]

上記のように構成された電線の導通・絶縁試験
装置においては、導通試験回路部と絶縁試験回路
部とがそれぞれの入力側においてコンデンサを介
して結合されているので、被検絶縁電線の相対向
する導体間に高周波パルス電圧を印加しながら、
被検絶縁電線の絶縁体に直流高電圧を印加して
も、直流高電圧はコンデンサを充電するだけであ
つて、導通試験回路部の作動には何ら影響を与え
ない。なお、この場合、被検絶縁電線の絶縁体へ
の印加電圧の波形は、被検絶縁電線の絶縁体に印
加される直流高電圧と高周波パルス電圧とが重畳
したものとなる。そして、導通試験回路部によ
り、導体間静電容量にコンデンサの静電容量を合
成したものの変化、したがつて導通不良による導
体間静電容量の変化が高周波パルス幅の変化とし
て検出される。また、絶縁試験回路部により、被
検絶縁電線の絶縁体に上記の重畳された直流高電
圧が印加された際の漏洩電流によつて絶縁体の絶
縁不良が検出される。被検絶縁電線の導通ならび
に絶縁のそれぞれの良否判定は、導通試験回路部
と絶縁試験回路部とのそれぞれの出力側に設けた
回路によつて同時に表示される。このようにし
て、導通・絶縁の両試験が同時にかつ迅速に行な
われ、またプラグ付コードの屈曲試験も通電中に
1サイクル行なえばよい。
In the electrical wire continuity/insulation test device configured as described above, the continuity test circuit section and the insulation test circuit section are coupled via capacitors on the respective input sides, so that the relative orientation of the insulated wire under test is While applying a high frequency pulse voltage between the conductors,
Even if a high DC voltage is applied to the insulator of the insulated wire to be tested, the high DC voltage only charges the capacitor and has no effect on the operation of the continuity test circuit. In this case, the waveform of the voltage applied to the insulator of the insulated wire to be tested is a superposition of the DC high voltage and high frequency pulse voltage applied to the insulator of the insulated wire to be tested. Then, the continuity test circuit section detects a change in the sum of the interconductor capacitance and the capacitance of the capacitor, and thus a change in the interconductor capacitance due to poor continuity as a change in the high frequency pulse width. Furthermore, the insulation test circuit section detects an insulation defect in the insulator based on leakage current when the above-mentioned superimposed DC high voltage is applied to the insulator of the insulated wire to be tested. Judgments of continuity and insulation of the insulated wire to be tested are simultaneously displayed by circuits provided on the output sides of the continuity test circuit section and the insulation test circuit section. In this way, both continuity and insulation tests can be carried out simultaneously and quickly, and the bending test of the plugged cord can also be carried out for one cycle while energized.

〔実施例〕〔Example〕

以下、この考案の好適な実施例について図面を
参照しながら説明する。
Hereinafter, preferred embodiments of this invention will be described with reference to the drawings.

第2図はこの考案の1実施例である導通・絶縁
試験装置の概略構成を示すブロツク図、第3図は
その装置の入力部の作動を説明するための回路
図、第4図はその装置の操作パネルの正面図であ
る。第2図および第3図において同一符号を付し
たものはそれぞれ同一部材を示す。
Fig. 2 is a block diagram showing the schematic configuration of a continuity/insulation testing device that is an embodiment of this invention, Fig. 3 is a circuit diagram for explaining the operation of the input section of the device, and Fig. 4 is the device. FIG. 3 is a front view of the operation panel of FIG. In FIGS. 2 and 3, the same reference numerals indicate the same members.

まず、導通試験回路部(高周波回路部)の構
成、ならびにそれによる導通試験について説明す
る。第3図に示すように、被検絶縁電線10を、
たとえば断面積が0.75mm2の2芯ビニルコードで長
さが2mのプラグ付コードとし、その被検絶縁電
線10の一対の栓刃7,7′を試験端子21A,
21Bに接続する。被検絶縁電線10の導線1
1,11の線間静電容量を(Cx)とし、回路結
合コンデンサ22の静電容量を(Co)とすれば、
単安定回路24の時定数(τ)に対する合成静電
容量(Ca)は、ca=Cx・Co/Cx+Coである。この被検 絶縁電線10が、今仮にプラグ6内の溶接部9,
9′のいずれかで断線したとすると、上記線間静
電容量(Cx)がプラグ内静電容量(Cx′)だけと
なり(Cx′<Cx)であるので、上記合成静電容量
は、Ca′=Cx′・Co/Cx′+Coに減少する。この変化は
、断 線個所が溶接部9,9′以外の個所であつてもほ
ぼ同じである。この静電容量の変化量(ΔCa=
Ca−Ca′)が、回路結合コンデンサ22と並列の
抵抗(Ro)との積(ΔCa・Ro)となつて、たと
えばC−MOSによるOR回路24A、NAND回
路24Bによつて構成された単安定回路(単安定
マルチバイブレータ)24の時定数(τ)を減少
させ、その出力パルス(Po)のパルス幅(tw)
を狭める。第2図に示すように、この単安定回路
24には、高周波発振回路23から、たとえば
100KHzの方形波パルス(Pt)がトリガとして常
時入力されており、単安定回路24はその周期
(T)ごとにパルス幅(tw)の出力パルス(Po)
を発振するのであり、上記発振周波数が、この例
のように従来装置の10KHzに対し100KHzと約10
倍高く、その静電容量変化の検出感度も高く、上
記コード長(L)が0.3m位のものでもその断線
を検出できる。上記出力パルス(Po)は積分回
路25に入力されるが、それについての説明は後
述する。そして、上記試験端子21A,21Bに
は、第3図に示すように、絶縁不良検出回路26
の直流高電圧発生回路27の、たとえばDC500V
の(+)側が常に印加されているが、回路結合コ
ンデンサ22を充電するだけであつて、上記した
単安定回路24を初めとした高周波回路部の作動
には影響を与えない。この回路結合コンデンサ2
2によつて、導通不良ならびに絶縁不良のそれぞ
れの検出を行なう、独立した機能を持つた2つの
回路を結合した点がこの装置の特徴の1つであ
る。なお、逆耐圧ダイオード28は念のため挿入
しているが、無くても差し支えない。また、ダイ
オード29は、被検絶縁電線10の絶縁体を流れ
る漏洩電流(iR)を通すものであり、かつ逆流
阻止の用をなすものである。
First, the configuration of the continuity test circuit section (high frequency circuit section) and the continuity test performed using it will be explained. As shown in FIG. 3, the insulated wire 10 to be tested is
For example, a two-core vinyl cord with a cross-sectional area of 0.75 mm 2 and a length of 2 m with a plug is used, and the pair of plug blades 7 and 7' of the insulated wire 10 to be tested are connected to the test terminal 21A,
Connect to 21B. Conductor 1 of the insulated wire 10 to be tested
If the line capacitance of lines 1 and 11 is (Cx), and the capacitance of the circuit coupling capacitor 22 is (Co),
The composite capacitance (Ca) with respect to the time constant (τ) of the monostable circuit 24 is ca=Cx·Co/Cx+Co. This insulated wire 10 to be tested is now temporarily located at the welded part 9 in the plug 6.
9', the above line capacitance (Cx) is only the plug internal capacitance (Cx') (Cx'<Cx), so the above combined capacitance is Ca ′=Cx′・Co/Cx′+Co. This change is almost the same even if the wire breakage is at a location other than the welded portions 9, 9'. The amount of change in this capacitance (ΔCa=
Ca−Ca′) is the product (ΔCa・Ro) of the circuit coupling capacitor 22 and the parallel resistance (Ro), and a monostable circuit configured by, for example, a C-MOS OR circuit 24A and a NAND circuit 24B Decrease the time constant (τ) of the circuit (monostable multivibrator) 24 and increase the pulse width (tw) of its output pulse (Po)
Narrow down. As shown in FIG. 2, the monostable circuit 24 receives a signal from the high frequency oscillation circuit 23,
A 100KHz square wave pulse (Pt) is constantly input as a trigger, and the monostable circuit 24 outputs an output pulse (Po) with a pulse width (tw) every period (T).
As in this example, the oscillation frequency is 100KHz, which is about 10KHz, compared to 10KHz of the conventional device.
The detection sensitivity for capacitance changes is also high, and disconnection can be detected even when the cord length (L) is about 0.3 m. The output pulse (Po) is input to the integrating circuit 25, which will be explained later. As shown in FIG. 3, the test terminals 21A and 21B have insulation failure detection circuits 26.
DC high voltage generation circuit 27, for example, DC500V
The (+) side of the voltage is always applied, but it only charges the circuit coupling capacitor 22 and does not affect the operation of the high frequency circuit section including the monostable circuit 24 mentioned above. This circuit coupling capacitor 2
One of the features of this device is that it combines two circuits with independent functions for detecting continuity defects and insulation defects. Note that although the reverse voltage diode 28 is inserted just in case, it may be omitted. Further, the diode 29 allows the leakage current (iR) flowing through the insulator of the insulated wire 10 to be tested to pass therethrough, and also serves to prevent backflow.

また、第2図に示すように、高周波回路部の積
分回路25は、その入力であるパルス(Po)の
パルス波形の電圧を積分し、パルス幅(tw)に
よつて変化するデユーテイ比(tw/T)に比例
する電圧(Va′)を比較回路30に出力する。こ
の比較回路30はIC比較増幅器であり、その基
準側端子には、被検絶縁電線10の種類・長さな
どによつて決まる導通正常時の上記合成静電容量
(Ca)に対応する基準電圧(Va)があらかじめ
設定されている。このため、比較回路30の出力
は(ΔVa=Va−Va′)となり、これが導通良否
判定信号回路32に入力されると、導通正常の場
合、この導通良否判定信号回路32のリレーは
ONし良否判定表示回路33に「良」の信号を送
り、導通不良の場合にはリレーがOFFのままで
「不良」の信号を送る。良否判定表示回路33に
は、動作遅延型光電スイツチが設けてあり、試験
端子21A,21Bに被検絶縁電線10のプラグ
6が挿入されてからある一定時間経過後、たとえ
ば1秒経過後にそのスイツチが作動して、第4図
に示す導通不良表示灯48または合格表示灯50
を点灯させ、不良の場合はさらにブザー47から
警報を発する。これら導通良否判定信号回路32
および良否判定表示回路33のシーケンスリレー
回路は、その図示を省略する。
Further, as shown in FIG. 2, the integrating circuit 25 in the high-frequency circuit section integrates the voltage of the pulse waveform of the pulse (Po) that is its input, and the duty ratio (tw) that changes depending on the pulse width (tw). /T) is output to the comparator circuit 30. This comparison circuit 30 is an IC comparison amplifier, and its reference side terminal has a reference voltage corresponding to the above-mentioned composite capacitance (Ca) when continuity is normal, which is determined by the type and length of the insulated wire 10 to be tested. (Va) is preset. Therefore, the output of the comparison circuit 30 is (ΔVa = Va - Va'), and when this is input to the continuity judgment signal circuit 32, if the continuity is normal, the relay of the continuity judgment signal circuit 32 is
The relay is turned on and sends a "good" signal to the pass/fail judgment display circuit 33, and in the case of poor continuity, the relay remains OFF and sends a "bad" signal. The pass/fail judgment display circuit 33 is provided with an operation delay type photoelectric switch, and the switch is activated after a certain period of time has elapsed, for example, one second after the plug 6 of the insulated wire 10 to be tested is inserted into the test terminals 21A and 21B. is activated, and the poor continuity indicator light 48 or the pass indicator light 50 shown in Fig. 4 is activated.
lights up, and if there is a defect, a buzzer 47 further issues an alarm. These continuity judgment signal circuits 32
The sequence relay circuit of the pass/fail judgment display circuit 33 is omitted from illustration.

つぎに、絶縁試験回路部(直流高電圧回路部)
の構成、ならびにそれによる絶縁試験について説
明する。前述したように試験端子21A,21B
に被検絶縁電線10のプラグ6が接続されると、
直流高電圧発生回路27のDC500Vが被検絶縁電
線10の絶縁体に印加され、この印加電圧(Eg)
の波形は、直流500Vに方形波100KHzが重畳した
ものである。絶縁抵抗検出回路34はIC増幅器
で構成され、絶縁体を流れる漏洩電流を電圧
(Vg)に変換して比較回路35に出力する。この
比較回路35も上記した比較回路30と同様に
IC比較増幅器であり、その基準側端子には絶縁
抵抗の基準値をあらかじめ設定する基準抵抗設定
部36の出力電圧(Vgo)が入力されている。こ
のため、比較回路35は、(Vg−Vgo=ΔVg)を
絶縁良否判定信号回路37に出力し、この絶縁良
否判定信号回路37は、上記導通良否判定信号回
路32と同様にリレー信号によつて良否判定表示
回路33に絶縁の良否を伝達する。そして、絶縁
不良の場合には、第4図の絶縁不良表示灯49が
点灯し、かつブザー47が警報を発し、絶縁良好
の場合には合格表示灯50(導通・絶縁共通のも
の)が点灯する。これらの作動は上記導通試験の
場合と同様に行なわれるので、プラグ6が試験端
子21A,21Bに挿入された後、たとえば1秒
後に試験は完了する。
Next, the insulation test circuit section (DC high voltage circuit section)
This section explains the configuration of the system and its insulation test. As mentioned above, the test terminals 21A and 21B
When the plug 6 of the insulated wire 10 to be tested is connected to
DC500V from the DC high voltage generation circuit 27 is applied to the insulator of the insulated wire 10 to be tested, and this applied voltage (Eg)
The waveform is a 100KHz square wave superimposed on 500V DC. The insulation resistance detection circuit 34 is composed of an IC amplifier, converts the leakage current flowing through the insulator into a voltage (Vg), and outputs the voltage (Vg) to the comparison circuit 35. This comparison circuit 35 is also similar to the comparison circuit 30 described above.
This is an IC comparison amplifier, and the output voltage (Vgo) of a reference resistance setting section 36 that presets a reference value of insulation resistance is input to its reference side terminal. Therefore, the comparator circuit 35 outputs (Vg - Vgo = ΔVg) to the insulation quality determination signal circuit 37, and this insulation quality determination signal circuit 37 uses a relay signal similarly to the continuity quality determination signal circuit 32. The quality of the insulation is transmitted to the quality determination display circuit 33. In the case of poor insulation, the poor insulation indicator light 49 in Fig. 4 lights up and the buzzer 47 issues an alarm, and in the case of good insulation, the pass indicator light 50 (common for continuity and insulation) lights up. do. These operations are performed in the same manner as in the continuity test described above, so the test is completed, for example, one second after the plug 6 is inserted into the test terminals 21A, 21B.

つぎに、第4図によりこの装置の操作パネル2
0について説明する。電源表示灯41は、電源ス
イツチ46のONにて点灯し、試験準備を示し、
絶縁抵抗指示計42は、被検被検絶縁電線の絶縁
抵抗値(MΩ)を安定して指示する。絶縁抵抗基
準値調整器43は、上記基準抵抗設定部36の設
定用である。もう1つの指示計45は、導通試験
部側の比較回路30(第2図参照)の出力電圧
〔ΔVa)に対応する電流を指示するものであり、
基準電圧設定部31の設定器44の設定は、この
指示計45の指示を見ながら行なう。すなわち、
導通正常な被検絶縁電線を使つてまず指示を所定
値に合わせ、つぎに未知の被検是円電線の導通試
験を行なうのである。上記した導通不良表示灯4
8は赤、絶縁不良表示灯49は橙、合格表示灯5
0は緑色とそれぞれ色別してある。(+),(−)
の端子51は、第3図の試験端子21A,21B
(図示を省略するが、被検絶縁電線のプラグが差
し込めるコネクタでありかつプラグの挿入により
それを光学的に検知する発光・受光素子を備えた
もの)に試験電圧を送り出す端子である。
Next, as shown in Fig. 4, the operation panel 2 of this device is
0 will be explained. The power indicator light 41 lights up when the power switch 46 is turned on to indicate test preparation.
The insulation resistance indicator 42 stably indicates the insulation resistance value (MΩ) of the insulated wire to be tested. The insulation resistance reference value adjuster 43 is used for setting the reference resistance setting section 36 . The other indicator 45 indicates the current corresponding to the output voltage [ΔVa] of the comparison circuit 30 (see FIG. 2) on the continuity test section side,
Settings on the setter 44 of the reference voltage setting section 31 are performed while observing the instructions on the indicator 45. That is,
Using an insulated wire to be tested with normal continuity, the instructions are first set to a predetermined value, and then a continuity test is performed on the unknown circular wire to be tested. Continuity failure indicator light 4 mentioned above
8 is red, poor insulation indicator light 49 is orange, pass indicator light 5
0 is color coded with green. (+), (-)
The terminal 51 is the test terminal 21A, 21B in FIG.
(Although not shown, this is a connector into which the plug of the insulated wire to be tested can be inserted, and is equipped with a light-emitting/light-receiving element that optically detects the insertion of the plug).

以上がこの考案の1実施例装置の構成と作動の
説明であるが、この考案の範囲は上記説明ならび
に図面の内容によつて限定されるものではなく、
要旨を逸脱しない範囲で種々の変形例を包含し得
る。たとえば、単安定回路としては各種の構成の
ものを用いることができ、また絶縁不良検出回路
についてもDC500Vに限らず直流であれば如何な
る電圧のものでも作れる。
The above is a description of the configuration and operation of the device according to one embodiment of this invention, but the scope of this invention is not limited by the above description and the contents of the drawings.
Various modifications may be included without departing from the gist. For example, monostable circuits with various configurations can be used, and insulation failure detection circuits are not limited to DC500V, but can be made with any DC voltage.

〔考案の効果〕[Effect of idea]

この考案は以上のように構成されかつ作用する
ので、従来の、電線の導通・絶縁試験装置におけ
る問題点を解決するものである。すなわち、可動
機構が不要であり、簡単な構造で、小型化するこ
とができる。そして、導通・絶縁の両試験を同時
にかつ迅速に行なうことができ、検査作業の能率
向上に大きく寄与する。しかも、プラグ付コード
の屈曲試験も通電中に1サイクル行なうだけで済
み、それによつて確実に導通不良品を検出でき、
試験における信頼性を高めることができる。
Since this invention is constructed and operates as described above, it solves the problems in conventional electric wire continuity/insulation testing devices. That is, there is no need for a movable mechanism, and the structure can be reduced in size with a simple structure. Both continuity and insulation tests can be performed simultaneously and quickly, greatly contributing to improving the efficiency of inspection work. Moreover, the bending test of the cord with a plug only needs to be carried out for one cycle while the power is on, which makes it possible to reliably detect conductive defects.
Reliability in testing can be increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のプラグ付絶縁コードの導通・絶
縁試験装置の構成ブロツク図、第2図はこの考案
の1実施例である導通・絶縁試験装置の概略構成
を示すブロツク図、第3図はその装置の入力部の
作動を説明するための回路図、第4図はその装置
の操作パネルの1例を示す正面図である。 6……プラグ、7,7′……プラグの栓刃、9,
9′……プラグの栓刃と導線との溶接部、10…
…被検絶縁電線、11……電線、21A,21B
……試験端子、22……回路結合コンデンサ、2
3……高周波発振回路、24……単安定回路、2
5……積分回路、26……絶縁不良検出回路、2
7……直流高電圧発生回路、30……比較回路、
31……基準電圧発生部、32……導通良否判定
信号回路、33……良否判定表示回路、34……
絶縁抵抗検出回路、35……比較回路、36……
基準抵抗設定部、37……絶縁良否判定信号回
路。
Fig. 1 is a block diagram of a conventional continuity/insulation testing device for insulated cords with plugs, Fig. 2 is a block diagram showing a schematic structure of a continuity/insulation testing device that is an embodiment of this invention, and Fig. 3 A circuit diagram for explaining the operation of the input section of the device, and FIG. 4 is a front view showing an example of the operation panel of the device. 6...Plug, 7, 7'...Plug blade, 9,
9'... Welded part between plug blade and conductor wire, 10...
...Test insulated wire, 11...Electric wire, 21A, 21B
...Test terminal, 22...Circuit coupling capacitor, 2
3... High frequency oscillation circuit, 24... Monostable circuit, 2
5...Integrator circuit, 26...Insulation defect detection circuit, 2
7...DC high voltage generation circuit, 30...Comparison circuit,
31... Reference voltage generation section, 32... Continuity quality determination signal circuit, 33... Quality determination display circuit, 34...
Insulation resistance detection circuit, 35... Comparison circuit, 36...
Reference resistance setting section, 37...Insulation quality determination signal circuit.

Claims (1)

【実用新案登録請求の範囲】 1 被検絶縁電線の相対向する導体間に高周波パ
ルス電圧を印加し、その導通不良による導体間
静電容量の変化を前記高周波のパルス幅の変化
として検出する導通試験回路部と、前記電線の
絶縁体に直流高電圧を印加し、その漏洩電流に
よつて絶縁不良を検出する絶縁試験回路部と
を、それぞれ入力側においてコンデンサを介し
て結合するとともに、その出力側に前記電線の
導通ならびに絶縁の良否判定を同時に表示する
回路を設けたことを特徴とする電線の導通・絶
縁試験装置。 2 導通不良を検出する導通試験回路部が、高周
波パルス発振回路と、この高周波パルス発振回
路のパルスをトリガとして入力し、被検絶縁電
線の導通不良による静電容量の変化に応じたパ
ルス幅のパルスを出力する単安定回路と、この
単安定回路からの出力パルス電圧を積分し、あ
らかじめ設定した基準電圧と比較する比較回路
と、この比較結果の信号を導通・絶縁共通の良
否判定表示回路に出力する導通良否判定信号回
路とによつてなる実用新案登録請求の範囲第1
項記載の電線の導通・絶縁試験装置。
[Claims for Utility Model Registration] 1. Continuity in which a high-frequency pulse voltage is applied between opposing conductors of an insulated wire to be tested, and changes in inter-conductor capacitance due to poor continuity are detected as changes in the high-frequency pulse width. The test circuit section and the insulation test circuit section, which applies a DC high voltage to the insulator of the electric wire and detects an insulation defect based on the leakage current, are connected via a capacitor on the input side, and the output An electric wire continuity/insulation testing device, characterized in that a circuit is provided on the side to simultaneously display continuity and insulation quality determination of the electric wire. 2 The continuity test circuit unit that detects continuity defects inputs a high-frequency pulse oscillation circuit and the pulse of this high-frequency pulse oscillation circuit as a trigger, and measures the pulse width according to the change in capacitance due to continuity defects in the insulated wire to be tested. A monostable circuit that outputs pulses, a comparison circuit that integrates the output pulse voltage from this monostable circuit and compares it with a preset reference voltage, and a signal from this comparison result to a common continuity/insulation pass/fail judgment display circuit. Claim 1 for Utility Model Registration Consisting of a Continuity Judgment Signal Circuit That Outputs
Continuity/insulation testing equipment for electric wires as described in Section 1.
JP19742781U 1981-12-30 1981-12-30 Electric wire continuity/insulation test equipment Granted JPS58103382U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19742781U JPS58103382U (en) 1981-12-30 1981-12-30 Electric wire continuity/insulation test equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19742781U JPS58103382U (en) 1981-12-30 1981-12-30 Electric wire continuity/insulation test equipment

Publications (2)

Publication Number Publication Date
JPS58103382U JPS58103382U (en) 1983-07-14
JPS6322539Y2 true JPS6322539Y2 (en) 1988-06-21

Family

ID=30110650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19742781U Granted JPS58103382U (en) 1981-12-30 1981-12-30 Electric wire continuity/insulation test equipment

Country Status (1)

Country Link
JP (1) JPS58103382U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007139488A (en) * 2005-11-16 2007-06-07 Omron Corp Break sign detection method, break sign detection apparatus, and power source incorporating the apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62280657A (en) * 1986-05-29 1987-12-05 Hitachi Cable Ltd In-line disconnection detector for flat cable

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007139488A (en) * 2005-11-16 2007-06-07 Omron Corp Break sign detection method, break sign detection apparatus, and power source incorporating the apparatus

Also Published As

Publication number Publication date
JPS58103382U (en) 1983-07-14

Similar Documents

Publication Publication Date Title
US5420512A (en) Electronic cable testing system
US8648606B2 (en) Ground monitor
KR970705032A (en) AC Power Outlet Grounding Characteristics and AC Power Outlet Ground Integrity and Wire Test Circuit Device
JP2016090495A (en) Withstand voltage test device, insulation resistance test device, and connection state verification circuit
JP5291860B2 (en) Insulation withstand voltage test equipment
JPS6322539Y2 (en)
JPH01153972A (en) Insulation test method and apparatus
JP2012149914A (en) Apparatus and method for inspecting degradation of printed wiring board
CN208421123U (en) A kind of high density electrical connector assembly short-circuit test device
JPH01502391A (en) Cable failure detection device
CN114487921A (en) Wiring terminal voltage detection device and wiring terminal fault detection method
US5059911A (en) Cable fault location detector
JP2762062B2 (en) Outlet wiring inspection device
JPH02206249A (en) Checking device for home bus cable
US4118664A (en) Electrical trouble finding apparatus
US4038598A (en) Probe contact and junction detector
CN219143068U (en) Secondary cable electrified core testing device
JPH05180892A (en) Continuity checking method and apparatus for plural conductors
JPS6317015Y2 (en)
KR200243769Y1 (en) Live resistance tester
JPS59171874A (en) Dielectric strength testing machine
JPH07113716A (en) Fluid leakage detecting device
KR100396846B1 (en) Method for finding connection troubles by measuring relative voltage between two points using multichannel scanner in examining defect of vehicle
RU2201598C2 (en) Procedure testing internal electric networks of electrodes of electronic devices
CN114002536A (en) PRCD detection device and detection method thereof