JPS6322520Y2 - - Google Patents

Info

Publication number
JPS6322520Y2
JPS6322520Y2 JP1981134274U JP13427481U JPS6322520Y2 JP S6322520 Y2 JPS6322520 Y2 JP S6322520Y2 JP 1981134274 U JP1981134274 U JP 1981134274U JP 13427481 U JP13427481 U JP 13427481U JP S6322520 Y2 JPS6322520 Y2 JP S6322520Y2
Authority
JP
Japan
Prior art keywords
electrode
hydrogen peroxide
silver
enzyme
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1981134274U
Other languages
Japanese (ja)
Other versions
JPS5839559U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP13427481U priority Critical patent/JPS5839559U/en
Publication of JPS5839559U publication Critical patent/JPS5839559U/en
Application granted granted Critical
Publication of JPS6322520Y2 publication Critical patent/JPS6322520Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

この考案は、固定化酵素膜を用いる酵素電極の
一種である過酸化水素電極(過酸化水素検出用隔
膜被覆電極)と温度補償電極とを一体化した酵素
電極用過酸化水素電極に関するものである。 一般に、酵素電極は、酵素と電極とを一体化し
たものであり、電極反応の選択性、迅速性、正確
性等が優れていることから、臨床化学分析や環境
分析等の分野で広く利用されている。酵素電極を
構成する電極の一種である過酸化水素電極は、酵
素の触媒作用により生成した過酸化水素を白金等
を用いたアノードで酸化し、この時に生じる酸化
電流値から特定成分を定量する目的で使用されて
いる。また、この種の酵素電極を使用して特定成
分の定量を行う場合、酵素反応および電極反応に
及ぼす反応液の温度ドリフトの影響を最少限にと
どめる目的で、反応液の温度を検出し測定回路へ
フイードバツクするための温度補償電極が使用さ
れる。 従来、前述したような温度補償機能を有する酵
素電極として、例えば第1図に示すように、過酸
化水素電極と温度補償電極をそれぞれ別のセル室
に装着して、反応電流と温度とを測定するよう構
成したものが知られている。すなわち、第1図に
示す酵素電極は、一対のセル室12,14を備え
たセル10の一側面に、各セル室12,14に対
応して過酸化水素電極16と温度補償電極18を
それぞれ装着したものである。なお、セル10に
設けられるセル室12,14は相互に連通し、内
部にPH7の燐酸塩緩衝液を充填し、一方セル10
の一側面にシリコンダイアフラム20を被覆して
各セル室12,14の一部を前記シリコンダイア
フラム20を介してセル10の外部と接するよう
構成する。 しかしながら、前述した従来のセル構造におい
ては、過酸化水素電極16はセル室12の反応電
流を検出し、また温度補償電極18はセル室14
の温度を検出しているため、シリコンダイアフラ
ム20等による緩衝液の撹拌が不充分な場合は、
正確な反応温度を検出できない難点がある。 また、反応温度を高くすると、第2図に示すよ
うに、電極の残余電流のドリフトが大きくなるこ
とから、反応温度の正確な検出とそのドリフト補
償は、測定精度を向上させるためにも必要であ
る。 さらに、従来のセル構造は、2本の電極を単一
のセルに装着するものであるため、2本の電極を
装着するためのセルの穴加工および電極の装着作
業が面倒となるばかりでなく、取扱操作も煩雑と
なる欠点がある。 そこで、本考案者等は、前述した従来の酵素電
極用過酸化水素電極の問題点を克服すべく種々検
討並びに試作を重ねた結果、過酸化水素電極を構
成する銀電極の一部に温度補償電極を一体的に埋
込み成形することにより、銀電極の熱伝導性を利
用して反応電流測定時の反応温度を極めて正確に
測定することができるばかりでなく、測定系の簡
略化を図り、前記問題点を全て解消し得ることを
突き止めた。 従つて、本考案の目的は、反応温度の正確な測
定を行い得る構造が簡単にして製造も容易であ
り、しかも測定精度の向上を図ることができる温
度補償電極を内蔵した酵素電極用過酸化水素電極
を提供するにある。 前記の目的を達成するため、本考案において
は、中心部に穴加工を施した対極としての円筒形
銀電極を備え、この銀電極の中心穴に作用極とし
ての白金電極を挿通配置すると共に、前記銀電極
の裏面側一部に穴加工してここにサーミスタ等の
温度補償電極を装入し、これら白金電極と温度補
償電極を銀電極に対し樹脂を注形し絶縁固定して
電極ユニツトを構成し、該電極ユニツトの外表面
を固定化酵素膜で密着被覆することを特徴とす
る。 次に、本考案に係る温度補償電極を内蔵した酵
素電極用過酸化水素電極の実施例につき添付図面
を参照しながら以下詳細に説明する。 第3図は、本考案に係る酵素電極用過酸化水素
電極の電極ユニツトを示すもので、参照符号30
は対極としての銀電極、32はアノード(作用
極)としての白金電極を示し、銀電極30内に温
度補償電極34を埋込み、これら白金電極32と
温度補償電極34とを絶縁層36を介して銀電極
30に固定したものである。なお、銀電極30、
白金電極32および温度補償電極34からはそれ
ぞれリード線38,40および42が導出され
る。 このような構成からなる過酸化水素電極を製作
するに際しては、まず銀棒を機械加工して第3図
に示す円筒形状の銀電極30を形成する。次いで
銀電極30の中心部に穴加工を行い、ここにアノ
ードとなる白金電極32を挿通すると共に白金電
極32の周囲に絶縁層36としてエポキシ樹脂を
注形して固定する。さらに、銀電極30の一部に
穴加工を行い、ここに温度補償電極34としての
サーミスタを埋め込み、全体を絶縁層36として
のエポキシ樹脂で固定することによつて、第3図
に示すような原理構成からなる温度補償電極内蔵
形過酸化水素電極のユニツトを得ることができ
る。 第4図は本考案に係る過酸化水素電極の具体的
な構成を示す断面図である。この実施例において
は、第3図に示す電極ユニツトに電線46が接続
され、二次注形樹脂44によつて一体化された
後、ケース48内に収納される。なお、50はO
−リングである。この第4図に示した過酸化水素
電極は次のようにして製作される。まず、銀線を
成形したリード線38と銀粉末とを一体に焼結成
形し、銀電極30を形成する。次に、銀電極30
を穴明け加工する。一方、銀リード線40と白金
電極32とをはんだ付けする。銀電極構成体と白
金電極構成体とをエポキシ樹脂36によつて一次
注形する。その後、リード線38,40,42と
電線46とをはんだ付けする。このように構成さ
れたユニツトとケース48とO−リング50とを
エポキシ樹脂44にて二次注形する。最後に図示
の如く、端面を機械加工して球面に形成する。 このように構成された過酸化水素電極は、第4
図に示す電極の表面を固定化酵素(グルコースオ
キシダーゼ)膜で密着被覆し、PH7の燐酸塩緩衝
液で満たされた測定セル部(図示せず)に固定す
る。この場合、白金電極32には銀電極30に対
し常に+0.6〜0.8Vの範囲の電位差を有するよう
電圧を印加する。なお、前記緩衝液中には空気中
の酸素が溶存しているものとする。このような条
件下において、過酸化水素電極を使用し、例えば
血液中のグルコース濃度を測定するものとすれ
ば、グルコースは固定化酵素の作用下に次のよう
な反応を生じる。 前記反応式(1)から明らかなように、グルコース
濃度を測定する場合、緩衝液中の酸素濃度は化学
量論的に減少する。一方、グルコースの分解で生
成した過酸化水素は、白金電極で酸化され、銀電
極で還元されて、それぞれ次式に示すような反応
電流が生じる。 前記式(2)に示される反応電流を実測することに
より、グルコース濃度を換算することができる。 前述した測定方法に基づいて、本考案に係る過
酸化水素電極を使用してグルコース濃度を定量し
た場合の実験例を挙げ、本考案電極の特性につい
て説明する。 実験例 グルコース濃度150mg/dlと500mg/dlのグルコ
ース溶液を使用し、これらのグルコース溶液20μ
を測定セルに注入したところ、それぞれ8.5nA
と27.5nAの反応電流が検出された。この場合、
グルコース濃度と電流値との間に良好な直線関係
が認められ、未知濃度のグルコースの分析が可能
であることが確認された。 次に、固定化酵素膜を被覆した本考案に係る過
酸化水素電極を、恒温水槽を使用してそれぞれ20
℃、25℃、30℃の液温に設定されたグルコース溶
液(グルコース濃度15mg/dl)に浸漬し、生成す
る過酸化水素に基づく酸化電流値をポーラログラ
フ法と温度補償回路内蔵の電流−電圧変換測定機
により測定した。この場合、電極の出力は、ポー
ラログラフ法によれば電流値(nA)で得られ、
電流−電圧変換測定機によれば電圧値(mV)で
得られる。前記測定値は、第1表に示す通りであ
る。
This invention relates to a hydrogen peroxide electrode for enzyme electrodes that integrates a hydrogen peroxide electrode (diaphragm-covered electrode for hydrogen peroxide detection), which is a type of enzyme electrode using an immobilized enzyme membrane, and a temperature compensation electrode. . In general, enzyme electrodes are a combination of an enzyme and an electrode, and are widely used in fields such as clinical chemistry analysis and environmental analysis because of their excellent selectivity, rapidity, and accuracy of electrode reactions. ing. A hydrogen peroxide electrode, which is a type of electrode that makes up an enzyme electrode, oxidizes hydrogen peroxide produced by the catalytic action of an enzyme using an anode made of platinum or the like, and the purpose is to quantify specific components from the oxidation current value generated at this time. used in In addition, when quantifying a specific component using this type of enzyme electrode, in order to minimize the influence of temperature drift of the reaction solution on the enzyme reaction and electrode reaction, the temperature of the reaction solution is detected and the measurement circuit Temperature compensated electrodes are used for feedback. Conventionally, as an enzyme electrode having a temperature compensation function as described above, for example, as shown in Fig. 1, a hydrogen peroxide electrode and a temperature compensation electrode were installed in separate cell chambers to measure reaction current and temperature. There are known devices configured to do this. That is, the enzyme electrode shown in FIG. 1 has a hydrogen peroxide electrode 16 and a temperature compensation electrode 18 on one side of a cell 10 having a pair of cell chambers 12 and 14, corresponding to each cell chamber 12 and 14, respectively. It was installed. Note that the cell chambers 12 and 14 provided in the cell 10 communicate with each other and are filled with a phosphate buffer solution with a pH of 7;
A silicon diaphragm 20 is coated on one side of the cell so that a portion of each cell chamber 12, 14 is in contact with the outside of the cell 10 via the silicon diaphragm 20. However, in the conventional cell structure described above, the hydrogen peroxide electrode 16 detects the reaction current in the cell chamber 12, and the temperature compensation electrode 18 detects the reaction current in the cell chamber 12.
Since the temperature of the buffer is detected, if the buffer solution is not sufficiently stirred by the silicon diaphragm 20, etc.
There is a drawback that accurate reaction temperature cannot be detected. Furthermore, as the reaction temperature is raised, the drift of the residual current of the electrode increases as shown in Figure 2, so accurate detection of the reaction temperature and compensation for its drift are necessary to improve measurement accuracy. be. Furthermore, in the conventional cell structure, two electrodes are attached to a single cell, which not only makes it troublesome to drill holes in the cell and attach the electrodes. However, there is a drawback that the handling operation is complicated. In order to overcome the problems of the conventional hydrogen peroxide electrode for enzyme electrodes mentioned above, the inventors of the present invention have conducted various studies and made prototypes, and as a result, they have developed a temperature-compensated part of the silver electrode that makes up the hydrogen peroxide electrode. By integrally embedding the electrode, it is not only possible to measure the reaction temperature extremely accurately when measuring the reaction current by utilizing the thermal conductivity of the silver electrode, but also to simplify the measurement system, I discovered that all the problems could be solved. Therefore, the purpose of the present invention is to provide a peroxidation electrode for enzymes that has a simple structure and is easy to manufacture, and that has a built-in temperature compensation electrode that can improve measurement accuracy. To provide hydrogen electrodes. In order to achieve the above object, the present invention includes a cylindrical silver electrode as a counter electrode with a hole in the center, a platinum electrode as a working electrode is inserted through the center hole of this silver electrode, and A hole is drilled in a part of the back side of the silver electrode and a temperature compensating electrode such as a thermistor is inserted therein, and these platinum electrodes and temperature compensating electrodes are insulated and fixed by pouring resin onto the silver electrode to form an electrode unit. The electrode unit is characterized in that the outer surface of the electrode unit is tightly coated with an immobilized enzyme membrane. Next, an embodiment of a hydrogen peroxide electrode for an enzyme electrode incorporating a temperature compensation electrode according to the present invention will be described in detail with reference to the accompanying drawings. FIG. 3 shows an electrode unit of a hydrogen peroxide electrode for an enzyme electrode according to the present invention, with reference numeral 30.
32 represents a silver electrode as a counter electrode, and 32 represents a platinum electrode as an anode (working electrode). A temperature compensation electrode 34 is embedded in the silver electrode 30, and these platinum electrode 32 and temperature compensation electrode 34 are connected via an insulating layer 36. It is fixed to a silver electrode 30. Note that the silver electrode 30,
Lead wires 38, 40 and 42 are led out from the platinum electrode 32 and the temperature compensation electrode 34, respectively. When manufacturing a hydrogen peroxide electrode having such a configuration, first, a silver rod is machined to form a cylindrical silver electrode 30 shown in FIG. 3. Next, a hole is formed in the center of the silver electrode 30, into which a platinum electrode 32 which will become an anode is inserted, and an epoxy resin is cast around the platinum electrode 32 as an insulating layer 36 and fixed. Furthermore, by drilling a hole in a part of the silver electrode 30, embedding a thermistor as a temperature compensating electrode 34 therein, and fixing the whole with epoxy resin as an insulating layer 36, a hole is formed as shown in FIG. It is possible to obtain a hydrogen peroxide electrode unit with a built-in temperature-compensating electrode having the basic structure. FIG. 4 is a sectional view showing a specific structure of the hydrogen peroxide electrode according to the present invention. In this embodiment, an electric wire 46 is connected to the electrode unit shown in FIG. In addition, 50 is O
-It is a ring. The hydrogen peroxide electrode shown in FIG. 4 is manufactured as follows. First, the lead wire 38, which is a molded silver wire, and silver powder are sintered together to form the silver electrode 30. Next, the silver electrode 30
Drill the hole. Meanwhile, the silver lead wire 40 and the platinum electrode 32 are soldered. The silver electrode structure and the platinum electrode structure are primarily cast using epoxy resin 36. Thereafter, the lead wires 38, 40, 42 and the electric wire 46 are soldered. The unit thus constructed, the case 48, and the O-ring 50 are second-molded using epoxy resin 44. Finally, as shown in the figure, the end face is machined to form a spherical surface. The hydrogen peroxide electrode configured in this way has a fourth
The surface of the electrode shown in the figure is tightly coated with an immobilized enzyme (glucose oxidase) membrane and fixed in a measurement cell part (not shown) filled with a phosphate buffer solution of pH 7. In this case, a voltage is applied to the platinum electrode 32 so as to always have a potential difference in the range of +0.6 to 0.8 V with respect to the silver electrode 30. It is assumed that oxygen in the air is dissolved in the buffer solution. Under such conditions, if a hydrogen peroxide electrode is used to measure, for example, glucose concentration in blood, glucose undergoes the following reaction under the action of an immobilized enzyme. As is clear from the reaction formula (1), when measuring the glucose concentration, the oxygen concentration in the buffer solution decreases stoichiometrically. On the other hand, hydrogen peroxide produced by the decomposition of glucose is oxidized at the platinum electrode and reduced at the silver electrode, producing reaction currents as shown in the following equations. By actually measuring the reaction current shown in the above formula (2), the glucose concentration can be converted. The characteristics of the electrode of the present invention will be explained by giving an experimental example in which glucose concentration was determined using the hydrogen peroxide electrode of the present invention based on the measurement method described above. Experimental example Glucose solutions with glucose concentrations of 150 mg/dl and 500 mg/dl are used, and 20μ of these glucose solutions are used.
When injected into the measurement cell, each 8.5nA
and a reaction current of 27.5nA was detected. in this case,
A good linear relationship was observed between glucose concentration and current value, confirming that it is possible to analyze glucose at unknown concentrations. Next, each hydrogen peroxide electrode according to the present invention coated with an immobilized enzyme membrane was placed in a constant temperature water bath for 20 min.
℃, 25℃, and 30℃ in a glucose solution (glucose concentration 15 mg/dl), and calculate the oxidation current value based on the generated hydrogen peroxide using the polarographic method and current-voltage conversion with a built-in temperature compensation circuit. Measured using a measuring device. In this case, the output of the electrode is obtained as a current value (nA) according to the polarographic method,
According to a current-voltage conversion measuring device, it can be obtained as a voltage value (mV). The measured values are shown in Table 1.

【表】 第1表から明らかなように、ポーラログラフ法
では、反応液の温度が上昇するに従つて電流値は
著しく増大するが、温度補償回路が内蔵された電
流−電圧変換測定機での測定によれば、温度上昇
に伴う電流値は僅かな増大を示すのみである。ま
た、本考案電極をグルコース溶液に浸漬後、一定
出力値が得られるまでに要する時間は20秒以下で
あつた。 この実験例から明らかなように、本考案に係る
温度補償電極を内蔵した酵素電極用過酸化水素電
極は、反応液の温度を正確かつ迅速に検出し得る
特性を有していることが確認された。 前述したように、本考案によれば、過酸化水素
電極と温度補償電極とを一体化構造としたため、
測定系が簡易化されると共に取扱操作も簡便とな
る。また、温度補償電極は、反応電流を測定して
いる熱伝導性の良好な銀電極表面近傍に埋込んで
いるため、温度ドリフトに対する熱応答を向上さ
せることができる。 また、本考案によれば、前記構成からなる電極
ユニツトは、所要のケース内において外部導出電
線と接続すると共に該ケース内に樹脂を注形して
固定化し、堅固な構成からなる温度補償電極を内
蔵した酵素電極用過酸化水素電極を容易に得るこ
とができる。なお、本考案に係る酵素電極用過酸
化水素電極は、臨床化学分析や環境分析に広く利
用し得ることは勿論のこと、有機分析や化学プロ
セス制御の分野にもその利用を拡大することがで
きる。 以上、本考案の好適な実施例について説明した
が、本考案の精神を逸脱しない範囲内において
種々の改良変更をなし得ることは勿論である。
[Table] As is clear from Table 1, in the polarographic method, the current value increases significantly as the temperature of the reaction solution increases; According to , the current value shows only a slight increase as the temperature rises. Furthermore, after immersing the electrode of the present invention in a glucose solution, the time required to obtain a constant output value was 20 seconds or less. As is clear from this experimental example, it has been confirmed that the hydrogen peroxide electrode for enzyme electrodes with a built-in temperature compensation electrode according to the present invention has the property of accurately and quickly detecting the temperature of the reaction solution. Ta. As mentioned above, according to the present invention, since the hydrogen peroxide electrode and the temperature compensation electrode are integrated,
The measurement system is simplified and handling operations are also simplified. Furthermore, since the temperature compensation electrode is embedded near the surface of the silver electrode with good thermal conductivity, which measures the reaction current, it is possible to improve the thermal response to temperature drift. Further, according to the present invention, the electrode unit having the above-mentioned structure is connected to an external lead-out wire within a required case, and is fixed by casting resin into the case, thereby providing a temperature-compensated electrode having a rigid structure. A built-in hydrogen peroxide electrode for enzyme electrodes can be easily obtained. Note that the hydrogen peroxide electrode for enzyme electrodes according to the present invention can of course be widely used in clinical chemistry analysis and environmental analysis, and its use can also be expanded to the fields of organic analysis and chemical process control. . Although the preferred embodiments of the present invention have been described above, it goes without saying that various improvements and changes can be made without departing from the spirit of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の温度補償電極を備えた過酸化水
素電極のセル構造を示す断面説明図、第2図は過
酸化水素電極の残余電流のドリフト値と反応温度
との関係を示す特性線図、第3図は本考案に係る
酵素電極用過酸化水素電極の原理構成を示す断面
説明図、第4図はその一実施例を示す断面説明図
である。 30……銀電極、32……白金電極、34……
温度補償電極、36……絶縁層、38,40,4
2……リード線、44……二次注形樹脂、46…
…電線、48……ケース、50……O−リング。
Figure 1 is a cross-sectional explanatory diagram showing the cell structure of a hydrogen peroxide electrode equipped with a conventional temperature compensation electrode, and Figure 2 is a characteristic diagram showing the relationship between the drift value of the residual current of the hydrogen peroxide electrode and the reaction temperature. 3 is an explanatory cross-sectional view showing the principle structure of a hydrogen peroxide electrode for an enzyme electrode according to the present invention, and FIG. 4 is an explanatory cross-sectional view showing an embodiment thereof. 30...Silver electrode, 32...Platinum electrode, 34...
Temperature compensation electrode, 36...Insulating layer, 38, 40, 4
2...Lead wire, 44...Secondary casting resin, 46...
...Wire, 48...Case, 50...O-ring.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 中心部に穴加工を施した対極としての円筒形銀
電極を備え、この銀電極の中心穴に作用極として
の白金電極を挿通配置すると共に、前記銀電極の
裏面側一部に穴加工してここにサーミスタ等の温
度補償電極を装入し、これら白金電極と温度補償
電極を銀電極に対し樹脂を注形し絶縁固定して電
極ユニツトを構成し、該電極ユニツトの外表面を
固定化酵素膜で密着被覆してなる酵素電極用過酸
化水素電極。
A cylindrical silver electrode as a counter electrode is provided with a hole in the center thereof, a platinum electrode as a working electrode is inserted through the center hole of the silver electrode, and a hole is formed in a part of the back side of the silver electrode. A temperature compensating electrode such as a thermistor is inserted here, and these platinum electrodes and temperature compensating electrodes are insulated and fixed by casting resin onto the silver electrode to form an electrode unit, and the outer surface of the electrode unit is covered with an immobilized enzyme. A hydrogen peroxide electrode for enzyme electrodes that is closely coated with a membrane.
JP13427481U 1981-09-11 1981-09-11 Hydrogen peroxide electrode for enzyme electrode Granted JPS5839559U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13427481U JPS5839559U (en) 1981-09-11 1981-09-11 Hydrogen peroxide electrode for enzyme electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13427481U JPS5839559U (en) 1981-09-11 1981-09-11 Hydrogen peroxide electrode for enzyme electrode

Publications (2)

Publication Number Publication Date
JPS5839559U JPS5839559U (en) 1983-03-15
JPS6322520Y2 true JPS6322520Y2 (en) 1988-06-21

Family

ID=29927703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13427481U Granted JPS5839559U (en) 1981-09-11 1981-09-11 Hydrogen peroxide electrode for enzyme electrode

Country Status (1)

Country Link
JP (1) JPS5839559U (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0643983B2 (en) * 1985-06-21 1994-06-08 松下電器産業株式会社 Biosensor
JPH0814562B2 (en) * 1988-12-09 1996-02-14 松下電器産業株式会社 Biosensor
CN107155338B (en) * 2014-10-27 2019-11-01 爱知机械工业株式会社 Cluster engine and the internal combustion engine for having the cluster engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS494390U (en) * 1972-04-12 1974-01-16
JPS4953890A (en) * 1972-09-22 1974-05-25

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS494390U (en) * 1972-04-12 1974-01-16
JPS4953890A (en) * 1972-09-22 1974-05-25

Also Published As

Publication number Publication date
JPS5839559U (en) 1983-03-15

Similar Documents

Publication Publication Date Title
Miyahara et al. Integrated enzyme FETs for simultaneous detections of urea and glucose
US4020830A (en) Selective chemical sensitive FET transducers
US4759828A (en) Glucose electrode and method of determining glucose
US20170160228A1 (en) Potentiometric sensor
Sibbald Chemical-sensitive field-effect transistors
JPH0774793B2 (en) Measuring circuit for biosensor using ion-sensitive field effect transistor
CN104422720B (en) Measuring device
EP0203864B1 (en) Ion sensor and method of manufacturing same
Suzuki et al. An integrated module for sensing pO2, pCO2, and pH
US4950379A (en) Polarographic cell
JPS6322520Y2 (en)
Suzuki et al. Miniature Clark-type oxygen electrode with a three-electrode configuration
Hirst et al. Electrodes in clinical chemistry
CN115494130A (en) Toothbrush electrochemical sensor construction method
JPS6375655A (en) Enzyme electrode apparatus
CN112083052B (en) Potentiometer probe
Kim et al. Manipulation of microenvironment with a built-in electrochemical actuator in proximity of a dissolved oxygen microsensor
Wu et al. The glucose sensor integratable in the microchannel
GB2097539A (en) Compound measuring electrode
US20210208099A1 (en) Potentiometric measuring chain and method for determining the ph value
JPS61176846A (en) Ion sensor body
CN217156396U (en) Tectorial membrane multi-chamber water quality analysis sensor
KR20020069796A (en) Micro reference electrode using metal oxides and manufacturing method thereof
JPS5917143A (en) Oxygen sensor
JPH04363651A (en) Integrated ion sensor