JPS63224719A - Control method for stack gas desulfurization apparatus - Google Patents

Control method for stack gas desulfurization apparatus

Info

Publication number
JPS63224719A
JPS63224719A JP62057653A JP5765387A JPS63224719A JP S63224719 A JPS63224719 A JP S63224719A JP 62057653 A JP62057653 A JP 62057653A JP 5765387 A JP5765387 A JP 5765387A JP S63224719 A JPS63224719 A JP S63224719A
Authority
JP
Japan
Prior art keywords
component
fossil fuel
gas desulfurization
flue gas
component analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62057653A
Other languages
Japanese (ja)
Other versions
JPH0771617B2 (en
Inventor
Tadayoshi Tamaru
田丸 忠義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP62057653A priority Critical patent/JPH0771617B2/en
Publication of JPS63224719A publication Critical patent/JPS63224719A/en
Publication of JPH0771617B2 publication Critical patent/JPH0771617B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the cost, by controlling the operating number of circulating pumps for an absorption tower according to the quantity of S-component, the discharging amount of water according to the quantity of Cl-component, and the supplying amount of a F-component eliminating agent according to the quantity of F-component based on the result of component analysis for a fossil fuel. CONSTITUTION:The component of the fossil fuel, such as coal, are analyzed in advance, and the analyzed component data is inputted and stored in a control device 9. And, the driven number of slurry circulating pumps 25a-25c of an absorption tower 12 is controlled by a control signal 10a according to the quantity of S-component of fossil fuel in the control device 9, and a water supplying valve 13 of a deducting tower 11 and a water discharging valve 17 are controlled by a control signal 10b according to the quantity of Cl-component of fossil fuel, and a flow rate control valve 19 supplying Ca(OH)2 to an F- component eliminating tank 18 is controlled by the control signal 10c according to the quantity of F-component of fossil fuel.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、石炭などを燃焼した排煙(排ガス)中の硫黄
酸化物等を吸収除去する湿式排煙脱硫装置の制御方法に
関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for controlling a wet flue gas desulfurization device that absorbs and removes sulfur oxides, etc. in flue gas (exhaust gas) from burning coal or the like. .

[従来の技術] 石炭焚ボイラ等においては、燃焼排ガスによる公害防止
のために、硫黄酸化物(SOx )を除去するための脱
硫装置が設けられており、該脱硫装置には、脱硫を行う
吸収塔の上流側に湿式の脱しん塔が備えられて排ガスの
脱しんが行われている。
[Prior Art] Coal-fired boilers, etc. are equipped with a desulfurization device to remove sulfur oxides (SOx) in order to prevent pollution caused by combustion exhaust gas. A wet desulfurization tower is installed upstream of the tower to remove exhaust gas.

しかし、上記公害の要因となる排ガス中の有害成分の量
は、炭種や産出地等によって大きく変化する。
However, the amount of harmful components in exhaust gas that cause the above-mentioned pollution varies greatly depending on the type of coal, the place of production, etc.

このため、従来装置においては、脱硫装置における吸収
塔でのスラリー循環ポンプの運転台数を、硫黄8分が最
も多い石炭を燃焼した場合の石灰スラリーの供給量のと
きの最大運転台数に設定して循環を行うようにしており
、又脱じん塔への給水及びそこからの排水の量を、腐食
などの問題を生じる塩素02分の最も多い石炭を燃焼し
たときの排水中の塩素02分が所定値以下に希釈される
ように最大量に設定し、更に排水中のフッ素F分を除去
するために、フッ素F分の最も多い石炭を燃焼したとき
の排水中のフッ素性を除去できる多口のF分除去剤(C
a(OH)2)をF分除去タンクに供給するようにして
いる。
For this reason, in conventional equipment, the number of operating slurry circulation pumps in the absorption tower of the desulfurization equipment is set to the maximum number of operating units when the amount of lime slurry is supplied when coal with the highest 8% sulfur content is burned. In addition, the amount of water supplied to the dust removal tower and the amount of wastewater discharged from it is set to the predetermined value of 02% chlorine in the waste water when burning coal that has the highest 02% chlorine content, which causes problems such as corrosion. The maximum amount is set so that the amount is diluted to below the value, and in order to further remove the fluorine F content in the waste water, a large mouth F component remover (C
a(OH)2) is supplied to the F component removal tank.

[発明が解決しようとする問題点] しかし、上記従来装置においては、吸収塔及び脱しん塔
の運転制御を、有害な成分を最も多量に含んでいる石炭
の場合に合わせて高めに設定された設定値に基づいて行
うようにしているため、ポンプ等の運転費、水及びCa
 (OH) 2の消費量等の増加をまねき、運転コスト
が増大する問題を有していた。
[Problems to be Solved by the Invention] However, in the above-mentioned conventional apparatus, the operation control of the absorption tower and the desulfurization tower was set to a high level in accordance with the case of coal containing the largest amount of harmful components. Because it is based on set values, operating costs for pumps, water and Ca
This has led to an increase in the consumption of (OH) 2, etc., resulting in an increase in operating costs.

本発明は、上記従来の問題点に着目してなしたもので、
脱しん塔の排水量、F分除去タンクへのCa(OH)2
の供給量、及び吸収塔のスラリー循環ポンプの運転台数
を、化石燃料の成分に応じて許容最小限に押えることに
より運転費の低。
The present invention was made by focusing on the above-mentioned conventional problems.
Drainage volume of the desulfurization tower, Ca(OH)2 to the F removal tank
The operating cost is reduced by keeping the supply amount and the number of absorption tower slurry circulation pumps in operation to the minimum allowable according to the fossil fuel composition.

減を図ることを目的としている。The aim is to reduce

[問題点を解決するための手段] 本発明は、上記技術的課題を解決しようとしてなしたも
ので、化石燃料の燃焼排ガスを処理する湿式排煙脱硫装
置の制御方法において、化石燃料の成分分析を入荷時に
行い、その成分分析結果を記憶しておき、前記化石燃料
の使用時に、前記記憶しておいた成分分析結果の8分に
基づいて吸収塔循環ポンプの運転台数を、02分に基づ
いて排水量を、F分に基づいてF分除去剤の供給量を夫
々制御するようにしたことを特徴とする排煙脱硫装置の
制御方法、に係るものである。
[Means for Solving the Problems] The present invention was made to solve the above-mentioned technical problems, and includes a method for controlling a wet flue gas desulfurization equipment that processes fossil fuel combustion exhaust gas. is carried out at the time of arrival, the results of the component analysis are stored, and when the fossil fuel is used, the number of operating absorption tower circulation pumps is determined based on the 8 minutes of the stored component analysis results. This invention relates to a control method for a flue gas desulfurization apparatus, characterized in that the amount of waste water is controlled based on the F content, and the amount of F content removing agent supplied is controlled based on the F content.

[作   用] 従って、本発明では、予め化石燃料をサンプリングして
得た検出成分データを制御装置に記憶させておき、その
成分データに基づいて、脱硫装置の排水量、F分除去タ
ンクへのF分除去剤の供給量、吸収塔のスラリー循環ポ
ンプの運転台数等を設定する。
[Function] Therefore, in the present invention, detected component data obtained by sampling fossil fuels is stored in the control device in advance, and based on the component data, the amount of water discharged from the desulfurization equipment and the amount of F to the F removal tank are adjusted. The supply amount of the removal agent, the number of operating slurry circulation pumps for the absorption tower, etc. are set.

[実 施 例] 以下、本発明の実施例を図面を参照しつつ説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の方法を実施する装置の一例を示すもの
で、船1から荷揚げされた石炭2a+2b、2cを燃料
としてボイラ3に供給して燃焼させ、そのときの排ガス
4を、ガスエアーヒータ(熱交換器)5及び電気集じ′
ん器6を介して脱硫装置7に導くようにしている。
FIG. 1 shows an example of an apparatus for carrying out the method of the present invention. Coal 2a+2b, 2c unloaded from a ship 1 is supplied as fuel to a boiler 3 for combustion, and the exhaust gas 4 at that time is transferred to a gas air Heater (heat exchanger) 5 and electric collector'
The water is led to a desulfurization device 7 via a dehumidifier 6.

上記において、石炭は同一の炭種ても産出地によって、
又聞−の産出地においても産出場所によってその成分が
大きく変化するため、石炭を船1から荷揚げする度に微
量の石炭を成分検出計8によりサンプリングし、8分、
C2分、F分、)120分等を求める。
In the above, even if the coal is of the same type, it varies depending on the place of production.
Also, the composition of coal varies greatly depending on the production location, so every time coal is unloaded from ship 1, a trace amount of coal is sampled with component detection meter 8, and the coal is heated for 8 minutes.
Find C2 minutes, F minutes, )120 minutes, etc.

このとき、船Iで運搬されて来る石炭は、パケット及び
コンベヤ等による搬送時に何回となく攪拌を繰返されて
いるために略均−成分となっている。しかし、正確な成
分を求めるには、数回のサンプリングを行ってその平均
値を求めることが好ましい。又、このサンプリング作業
は、石炭が陸揚げされてから燃料となるまでに数日の時
間があるので、その間に容易に実施できる。
At this time, the coal transported by ship I has a substantially uniform composition because it has been repeatedly stirred many times during transport by packets, conveyors, etc. However, in order to obtain accurate components, it is preferable to perform sampling several times and obtain the average value. Further, since there is a time period of several days from when coal is unloaded to when it is used as fuel, this sampling work can be easily carried out during that time.

上記成分検出計8の検出成分データを制御装置9に入力
して記憶させ、更に複数の種類の石炭2a、2b、2c
が混合されて燃焼される場合には、その石炭の種類と混
合割合を制御装置9に入力し、該制御装置9による上記
石炭の成分値に基づいた制御信号IOにより前記脱硫装
置7を制御するよう構成する。
The detected component data of the component detector 8 is inputted to the control device 9 and stored, and furthermore, a plurality of types of coal 2a, 2b, 2c are detected.
When the coal is mixed and burned, the type and mixing ratio of the coal are input to the control device 9, and the desulfurization device 7 is controlled by the control signal IO based on the component value of the coal by the control device 9. Configure it like this.

前記脱硫装置7は、第2図に示す如く、排ガス4を順次
導くようにした脱しん塔11と吸収塔12を備えている
As shown in FIG. 2, the desulfurization apparatus 7 includes a desulfurization tower 11 and an absorption tower 12 to which the exhaust gas 4 is sequentially introduced.

前記脱しん塔11は、給水弁13により水14が供給さ
れており、且つ水循環ポンプ15及びスプレーノズル1
5°により上記水が循環されて排ガス4と接触すること
により脱じんを行うようになっており、且つ上記脱しん
塔ll内の水は、排水流量計16及び該排水流量計16
によって制御される排水弁17を介してF骨除去タンク
18に供給され、該F骨除去タンク18に流量調節弁1
9を介して供給されるCa(OH)220によってF分
をCaF221として分離された後、排水22されるよ
うになっている。
The desulfurization tower 11 is supplied with water 14 by a water supply valve 13, and also has a water circulation pump 15 and a spray nozzle 1.
The water is circulated by 5 degrees and dedusted by contacting with the exhaust gas 4, and the water in the dedusting tower 11 is circulated through a drainage flowmeter 16 and a drainage flowmeter 16.
is supplied to the F bone removal tank 18 via a drain valve 17 controlled by a flow control valve 1 to the F bone removal tank 18.
After the F component is separated as CaF 221 by Ca(OH) 220 supplied through 9, it is drained 22.

又、前記吸収塔12には石灰スラリー(吸収剤)23が
流量調節弁24を介して供給され、且つ複数のスラリー
循環ポンプ25a、 25b、 25c及びスプレーノ
ズル2Ga、2fib、26cにより上記スラリーが循
環されて排ガス4と接触することにより脱硫を行うよう
になっており、更に前記吸収塔12内のスラリーの一部
が図示しない石膏工程に送られるようになっている。
Further, lime slurry (absorbent) 23 is supplied to the absorption tower 12 via a flow rate control valve 24, and the slurry is circulated by a plurality of slurry circulation pumps 25a, 25b, 25c and spray nozzles 2Ga, 2fib, 26c. The slurry in the absorption tower 12 is desulfurized by contact with the exhaust gas 4, and a part of the slurry in the absorption tower 12 is sent to a gypsum process (not shown).

上記において、吸収塔12のスラリー循環ポンプ25a
、25b、25cの駆動台数が制御装置9における燃料
石炭の8分に応じた制御信号10aにより制御され、又
脱じん塔11の給水弁13及び排水弁17が燃料石炭の
Cl分に応じた制御信号10bによって制御され、更に
、F骨除去タンク18にCa (OH) 2を供給する
流量調節弁19が燃料石炭のF分に応じた制御信号10
cによって制御される。
In the above, the slurry circulation pump 25a of the absorption tower 12
. The flow control valve 19 that supplies Ca (OH) 2 to the F bone removal tank 18 is controlled by the signal 10b and is controlled by the control signal 10 according to the F content of the fuel coal.
Controlled by c.

これにより、石炭の種類、性状に応じて、スラリー循環
ポンプ25a、25b、25cの運転台数を最少の運転
台数とし、且つ脱じん塔11で使用する水の量を最少必
要量とし、更にF骨除去タンク18に供給するCa(O
H)2の量を最少必要量にすることができる。
As a result, the number of operating slurry circulation pumps 25a, 25b, and 25c is set to the minimum number, and the amount of water used in the dust removal tower 11 is set to the minimum required amount, depending on the type and properties of coal. Ca(O
H) The amount of 2 can be reduced to the minimum required amount.

尚、本発明は上記実施例にのみ限定されるものではなく
、本発明の要旨を逸脱しない範囲内において種々変更を
加え得る。例えば、F除去用消石灰(Ca(OH)2)
は、これ以外の苛性ソー。
Note that the present invention is not limited to the above embodiments, and various changes may be made without departing from the gist of the present invention. For example, slaked lime for F removal (Ca(OH)2)
No other caustic saws.

ダ(Na0H)や水酸化マグネシウム(Mg (01(
) 2 )などのF分除去剤でもよい。また8分に応じ
循環ポンプ運転台数を変更することの他に吸収剤供給量
を変更してもよい。また石炭以外の石油、オイル、コー
クス等の燃料の排ガスにも適用できる。更に、吸収塔が
脱しん塔を兼ねた脱硫装置にも適用できる。
(Na0H) and magnesium hydroxide (Mg (01(
) 2) and other F component removers may also be used. In addition to changing the number of operating circulation pumps depending on the 8 minutes, the amount of absorbent supplied may also be changed. It can also be applied to exhaust gas from fuels other than coal, such as petroleum, oil, and coke. Furthermore, it can also be applied to a desulfurization device in which the absorption tower also serves as a desulfurization tower.

[発明の効果] 上記したように、本発明の排煙脱硫装置の制御方法によ
れば、脱じん塔の排水量、F骨除去タンクへのF分除去
剤の供給量及び吸収塔におけるスラリー循環ポンプの運
転台数の夫々を、制御装置に記憶された化石燃料の成分
に応じて、許容最小限に押えることができ、よって運転
費の大幅低減を図ることかできる優れた効果を奏し得る
[Effects of the Invention] As described above, according to the control method for a flue gas desulfurization apparatus of the present invention, the amount of water discharged from the dust removal tower, the amount of F component removing agent supplied to the F bone removal tank, and the slurry circulation pump in the absorption tower can be controlled. The number of units in operation can be kept to the minimum allowable level in accordance with the fossil fuel composition stored in the control device, thereby providing an excellent effect of significantly reducing operating costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の基本原理を示す全体説明図、第2図は
第1図の排煙脱硫装置の詳細を示す説明図である。 1は船、2a、2b、2cは石炭、3はボイラ、4は排
ガス、7は脱硫装置、8は成分検出計、9は制御装置、
10a、 10b、 10cは制御信号、11は脱しん
塔、I2は吸収塔、13は給水弁、14は水、16は排
水流量計、17は排水弁、18はF骨除去タンク、19
は流量調節弁、2oはCa(OH)2.23は石灰スラ
リー、24は流量調節弁、25はスラリー循環ポンプ、
26はスプレーノズルを示す。
FIG. 1 is an overall explanatory diagram showing the basic principle of the present invention, and FIG. 2 is an explanatory diagram showing details of the flue gas desulfurization apparatus of FIG. 1. 1 is a ship, 2a, 2b, 2c are coals, 3 is a boiler, 4 is an exhaust gas, 7 is a desulfurization device, 8 is a component detector, 9 is a control device,
10a, 10b, 10c are control signals, 11 is a desulfurization tower, I2 is an absorption tower, 13 is a water supply valve, 14 is water, 16 is a drainage flow meter, 17 is a drainage valve, 18 is an F bone removal tank, 19
is a flow rate control valve, 2o is Ca(OH)2.23 is lime slurry, 24 is a flow rate control valve, 25 is a slurry circulation pump,
26 indicates a spray nozzle.

Claims (1)

【特許請求の範囲】 1)化石燃料の燃焼排ガスを処理する湿式排煙脱硫装置
の制御方法において、化石燃料の成分分析を入荷時に行
い、その成分分析結果を記憶しておき、前記化石燃料の
使用時に、前記記憶しておいた成分分析結果のS分に応
じて吸収塔循環ポンプの運転台数を変更することを特徴
とする排煙脱硫装置の制御方法。 2)化石燃料の燃焼排ガスを処理する湿式排煙脱硫装置
の制御方法において、化石燃料の成分分析を入荷時に行
い、その成分分析結果を記憶しておき、前記化石燃料の
使用時に、前記記憶しておいた成分分析結果のCl分に
応じて排煙脱硫装置からの排水量を制御することを特徴
とする排煙脱硫装置の制御方法。 3)化石燃料の燃焼排ガスを処理する湿式排煙脱硫装置
の制御方法において、化石燃料の成分分析を入荷時に行
い、その成分分析結果を記憶しておき、前記化石燃料の
使用時に、前記記憶しておいた成分分析結果のF分に応
じて排煙脱硫装置から排出される排水中のF分を除去す
るためのF分除去剤の供給量を制御することを特徴とす
る排煙脱硫装置の制御方法。
[Scope of Claims] 1) In a method for controlling a wet flue gas desulfurization equipment that processes fossil fuel combustion exhaust gas, a component analysis of the fossil fuel is performed at the time of arrival, the results of the component analysis are stored, and the fossil fuel is A method for controlling a flue gas desulfurization apparatus, characterized in that during use, the number of operating absorption tower circulation pumps is changed according to the S component of the stored component analysis results. 2) In a method for controlling a wet flue gas desulfurization equipment that processes fossil fuel combustion exhaust gas, a component analysis of the fossil fuel is performed at the time of arrival, the results of the component analysis are stored, and when the fossil fuel is used, 1. A method for controlling a flue gas desulfurization device, the method comprising: controlling the amount of water discharged from the flue gas desulfurization device according to the Cl content of the component analysis results. 3) In a method for controlling a wet flue gas desulfurization equipment that processes fossil fuel combustion exhaust gas, a component analysis of the fossil fuel is performed at the time of arrival, the results of the component analysis are stored, and when the fossil fuel is used, the component analysis is performed. A flue gas desulfurization device characterized by controlling the supply amount of an F component removing agent for removing the F component in wastewater discharged from the flue gas desulfurization device according to the F component of the component analysis result obtained by the flue gas desulfurization device. Control method.
JP62057653A 1987-03-12 1987-03-12 Control method of flue gas desulfurization equipment Expired - Lifetime JPH0771617B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62057653A JPH0771617B2 (en) 1987-03-12 1987-03-12 Control method of flue gas desulfurization equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62057653A JPH0771617B2 (en) 1987-03-12 1987-03-12 Control method of flue gas desulfurization equipment

Publications (2)

Publication Number Publication Date
JPS63224719A true JPS63224719A (en) 1988-09-19
JPH0771617B2 JPH0771617B2 (en) 1995-08-02

Family

ID=13061864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62057653A Expired - Lifetime JPH0771617B2 (en) 1987-03-12 1987-03-12 Control method of flue gas desulfurization equipment

Country Status (1)

Country Link
JP (1) JPH0771617B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03123623A (en) * 1989-10-05 1991-05-27 Hitachi Ltd Operation of coal boiler
JP2006314906A (en) * 2005-05-12 2006-11-24 Hitachi Ltd System and method of supplying exhaust gas treating agent

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60110321A (en) * 1983-11-18 1985-06-15 Mitsubishi Heavy Ind Ltd Control of exhaust gas desulfurizing plant

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60110321A (en) * 1983-11-18 1985-06-15 Mitsubishi Heavy Ind Ltd Control of exhaust gas desulfurizing plant

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03123623A (en) * 1989-10-05 1991-05-27 Hitachi Ltd Operation of coal boiler
JP2006314906A (en) * 2005-05-12 2006-11-24 Hitachi Ltd System and method of supplying exhaust gas treating agent
JP4701825B2 (en) * 2005-05-12 2011-06-15 株式会社日立製作所 Exhaust gas treatment agent supply system and supply method

Also Published As

Publication number Publication date
JPH0771617B2 (en) 1995-08-02

Similar Documents

Publication Publication Date Title
JP6852958B2 (en) Devices and methods for evaporating wastewater and reducing acidic gas emissions
JP7005166B2 (en) Equipment and methods for evaporating wastewater and reducing acid gas emissions
CN109432936A (en) Sintering flue gas processing method and processing system
JP2017006822A (en) Exhaust gas treatment device for coal-firing boiler and exhaust gas treatment method for coal-firing boiler
JPWO2004023040A1 (en) Smoke treatment system
CN102430331A (en) Method and device for removing mercury by waste water subjected to wet flue gas desulphurization in coal-fired power plant
WO2014103602A1 (en) Exhaust gas processing device and exhaust gas processing method
CN102794080A (en) Method and device for comprehensively treating pollutants jointly aiming at waste heat recovery of flue gas in coke oven
EP0066707B1 (en) Process for limiting chloride buildup in so2 scrubber slurry
US6569388B1 (en) Carbonation ash reactivation process and system for combined SOx and NOx removal
TWI531538B (en) Oxidation tank, seawater desulfurization system and power generation system
CN109647158B (en) Flue gas desulfurization and denitrification system of circulating fluidized bed boiler and treatment method thereof
US20030007918A1 (en) Carbonation ash reactivation process and system for combined Sox and Nox removal
JPS63224719A (en) Control method for stack gas desulfurization apparatus
CN110292847A (en) A kind of activated coke desulfurization denitrification integral processing system
CN104075335A (en) Process and device for realizing up-to-standard emission of boiler flue gas with coupling technology
WO2021124592A1 (en) Flue gas treatment device
JPH09243050A (en) Exhaust gas treatment method and apparatus
JPH02198613A (en) Method for wet-desulfurizing exhaust gas
CN102824826A (en) Comprehensive treatment method and device for coke oven flue gas pollutants
CN104028101B (en) Flue gas desulfurizing and hydrargyrum-removing integral system and technique
JPH08131764A (en) Wet type exhaust gas treatment method and apparatus
JP3035015B2 (en) Desulfurization method
JPH0568850A (en) Method for simultaneously denitrating and desulfurizing exhaust gas of combustor
JP3274663B2 (en) Combustion ash treatment method