JPS63224216A - Formation of deposition film - Google Patents

Formation of deposition film

Info

Publication number
JPS63224216A
JPS63224216A JP62056483A JP5648387A JPS63224216A JP S63224216 A JPS63224216 A JP S63224216A JP 62056483 A JP62056483 A JP 62056483A JP 5648387 A JP5648387 A JP 5648387A JP S63224216 A JPS63224216 A JP S63224216A
Authority
JP
Japan
Prior art keywords
film
precursor
substrate
space
active species
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62056483A
Other languages
Japanese (ja)
Inventor
Masafumi Sano
政史 佐野
Hisanori Tsuda
津田 尚徳
Masahiro Kanai
正博 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP62056483A priority Critical patent/JPS63224216A/en
Publication of JPS63224216A publication Critical patent/JPS63224216A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To contrive both improvement in deposition speed and uniformity of film thickness by a method wherein precursor is passed through activated space without contacting to an active species, it is introduced into film-forming space, and a deposition film is formed by the chemical reaction of the precursor and the active seed introduced into the film-forming space. CONSTITUTION:Glass is used for a substrate 103, the substrate 103 is placed on a supporting stand 102, a film-forming chamber 101 is evacuated and depressed by an exhaust system, and the substrate is heated up by a substrate heating heater 104. At this point, Si2F6 is introduced from a cylinder through a feeding tube 108. At this time, a furnace 109 is heated up to 700 deg.C in advance. The Si2F6 gas passed through the inflared-ray image furnace 109 is decomposed, and the precursor such as SiF2* is grown. The SiF2* is a radical having a long life, it can be passed through a fine precursor carrying tube 110 having the inside diameter of 4 mmphi. This precursor and H* are chemically reacted, and a deposition film is formed on the substrate 103. As a result, a deposition film of high quality having various kinds of film qualities ranging on a large area can be formed uniformly.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は堆積膜、とりわけ機能性膜、殊に半導体デバイ
ス、光起電力素上電子写真用の感光デバイス、画像入力
用のラインセンサー、撮像デバイスなどに用いる堆積膜
を形成するのに好適な方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to deposited films, particularly functional films, particularly semiconductor devices, photosensitive devices for electrophotography on photovoltaic elements, line sensors for image input, and imaging. The present invention relates to a method suitable for forming deposited films used in devices and the like.

〔従来技術〕[Prior art]

例えばアモルファスシリコン膜の形成には、真空蒸着法
、プラズマCVD法、 CVT)法2反応正スパッタリ
ング法、イオングレーティング法、光CVD法などが試
みらnており、一般的には、プラズマCVD法が広く用
いらn、企業化されている。
For example, attempts have been made to form an amorphous silicon film using the vacuum evaporation method, plasma CVD method, CVT) method, two-reaction forward sputtering method, ion grating method, photo-CVD method, etc. Generally, plasma CVD method is used. It is widely used and has been commercialized.

百年ら、アモルファスシリコンで構成される堆積膜は電
気的、光学的特性及び、繰返し使用での疲労特性あるい
は使用環境特性、更には均一性、再現性を含めて生産性
、量産性の点において更に総合的な特性の向上を図る余
地がある。
According to Hyakunen et al., deposited films composed of amorphous silicon have excellent electrical and optical properties, fatigue properties during repeated use, use environment properties, and productivity and mass production, including uniformity and reproducibility. There is room to improve overall characteristics.

従来から一般化されているプラズマCVD法によるアモ
ルファスシリコン堆積膜の形成に於ての反応グロセスは
、従来のCVD法に比較してかなシ複雑であり、その反
応機構も不明な点が少なくなかった。又、その堆積膜の
形成パラメーターも多く(例えば、基体温度、導入ガス
の流量と比、形成時の圧力、高周波電力、電極構造、反
応容器の構造、排気速度、プラズマ発生式など)これら
の多くのパラメータの組み合せKよるため、時にはプラ
ズマが不安定な状態になシ、形成され几堆積膜に著しい
悪影響を与えることが少なくなかつ友。
The reaction process in forming an amorphous silicon deposited film using the conventionally popular plasma CVD method is considerably more complex than that of the conventional CVD method, and there are many aspects of the reaction mechanism that are unclear. . In addition, there are many formation parameters for the deposited film (e.g., substrate temperature, flow rate and ratio of introduced gas, pressure during formation, high frequency power, electrode structure, reaction vessel structure, pumping speed, plasma generation formula, etc.). Because of the combination of parameters K, the plasma sometimes becomes unstable, which often has a significant adverse effect on the deposited film.

そのうえ、装置特有のノ譬ラメ−ターを装置ごとに選定
しなければならず、シ九がりて製造条件を一般化するこ
とがむずかしいというのが実状であった。
Furthermore, it is necessary to select a parameter specific to each device for each device, making it difficult to generalize manufacturing conditions.

一方、アモルファスシリコン膜として電気的、光学的特
性が各用途を十分に満足させ得るものを発現させるには
、現状ではプラズマCVD法によって形成することが最
良とされている。
On the other hand, in order to develop an amorphous silicon film with electrical and optical properties that fully satisfy various uses, it is currently considered best to form the film by plasma CVD.

百年ら、プラズマCVD法では、前記したように、堆f
R膜の形成パラメーターが複雑な几め、均一な成膜条件
を、〈シ返し作り出すことがむずかしく、特に、大面積
忙わ九って堆積膜を形成する場合には、形成さnる膜の
膜厚及び膜品質の均一性を十分に満足させて、膜形成を
再現性良くおこなうことが困難であっ念。また、量産化
を図る場合には、その量産の為の管理項目も複雑になり
、管理許容幅も狭くなシ、装置の調整も微妙であること
から、これらのことが、今後改善すべき問題点として指
摘されている。
In the plasma CVD method, Hyakunen et al.
Due to the complicated formation parameters of the R film, it is difficult to create uniform film formation conditions over and over again, especially when forming a deposited film over a large area. We regret that it is difficult to form a film with good reproducibility while fully satisfying the uniformity of film thickness and film quality. In addition, when aiming for mass production, the management items for mass production become complex, the tolerance range for management is narrow, and the adjustment of equipment is delicate, so these are issues that need to be improved in the future. This is pointed out as a point.

他方、通常のCVD法による従来の技術では、高温を必
要とし、実用可能な特性を有する堆積膜が得られていな
かつ九。
On the other hand, the conventional technique using the normal CVD method requires high temperatures and cannot produce a deposited film with practically usable characteristics.

上述の如く、アモルファスシリコン膜の形成に於て、そ
の実用可能な特性、均一性を維持させながら低コストな
装置で量産化できる形成方法を開発することが切望さn
ている。
As mentioned above, it is highly desirable to develop a method for forming an amorphous silicon film that can be mass-produced using low-cost equipment while maintaining its practical properties and uniformity.
ing.

これ等のことは、前述のアモルファスシリコン膜に限ら
ず、多結晶シリコン膜(微結晶相を呈するものを含む)
等地の非単結晶シリコン膜、単結晶シリコン膜や、非単
結晶質乃至単結晶質の他の機能性膜1例えばシリコン−
ダルマニウム合金膜、窒化シリコン膜、炭化シリコン膜
、酸化シリコン膜に於ても各々同様のことがいえる。
This applies not only to the amorphous silicon film mentioned above, but also to polycrystalline silicon films (including those exhibiting a microcrystalline phase).
Non-monocrystalline silicon films, single-crystalline silicon films, and other non-single-crystalline or single-crystalline functional films 1, such as silicon
The same can be said of the darmanium alloy film, silicon nitride film, silicon carbide film, and silicon oxide film.

〔発明の解決すべき問題点〕[Problems to be solved by the invention]

本発明は、上述したプラズマCVD法の欠点を除去する
と同時に、従来の形成方法だよらない新規な堆積膜形成
法を提供すべくなさnたものである。
The present invention has been made to eliminate the above-mentioned drawbacks of the plasma CVD method and at the same time to provide a new deposited film formation method that does not rely on conventional formation methods.

本発明は、また、形成される膜の特性を保持し、堆積速
度の向上を図りなから膜厚の均一な堆積膜を大面積に亘
って或いは、所望の任意局所部分に再現性良く高効率で
生産することができる堆積膜形成法を提供すべくなされ
たものである。
The present invention also maintains the characteristics of the formed film, improves the deposition rate, and deposits a film with a uniform thickness over a large area or on any desired local area with high efficiency and reproducibility. This was developed to provide a method for forming a deposited film that can be produced using

本発明は、更に膜形成条件の管理の簡素化、膜の量産化
を容易に達成させることができる堆積膜形成法を提供す
べくなされたものである。
The present invention has also been made to provide a deposited film forming method that can simplify the management of film forming conditions and easily achieve mass production of films.

〔問題点を解決する之めの手段〕[Means for solving problems]

本発明の堆積膜形成法は、基体上に堆積膜を形成するた
めの成膜空間(4)に、活性化空間ω)において生成さ
れる堆積膜形成用の原料となる前駆体と、活性化空間(
0において生成され、前記前駆体と相互作用をする活性
種とを導入することによって、前記基体上に堆積膜を形
成する堆積膜形成法において、前記活性種は活性化空間
C)で触媒効果を有、する遷移金属元素の単体又は合金
から成る発熱体により生成されて成膜空間囚に導入され
、前記前駆体は、前記活性化空間(Q中を前記活性種と
接触することなく通過せしめられて成膜空間(4)に導
入され、かくして成膜空間(4)に導入さした前記前駆
体及び活性種が化学反応することによって堆積膜が形成
されることを特徴とする。
In the deposited film forming method of the present invention, a precursor serving as a raw material for forming a deposited film generated in an activation space ω) is placed in a film forming space (4) for forming a deposited film on a substrate; space(
In the method for forming a deposited film in which a deposited film is formed on the substrate by introducing an active species that is generated at 0 and interacts with the precursor, the active species has a catalytic effect in the activation space C). The precursor is generated by a heating element made of a single transition metal element or an alloy thereof and introduced into the film forming space, and the precursor is allowed to pass through the activation space (Q) without coming into contact with the active species. The precursor and active species thus introduced into the film forming space (4) chemically react to form a deposited film.

本発明によれば、堆積膜を形成するtめの成膜空間(4
)において、プラズマを生起させる代シに、活性化空間
Φ)において生成さ扛る堆積膜形成用の原料となる前駆
体と、活性化空間(Qにおいて生成される前記前駆体と
相互作用をする活性種と全成膜空間(6)に導入し化学
反応させることによって堆積膜を形成するので、形成さ
nる堆積膜は膜形成中にエツチング作用、或いはその他
の例えば異常放電作用などKよる悪影響を受けることは
ない。
According to the present invention, the tth film forming space (4
), in order to generate plasma, a precursor that is a raw material for forming a deposited film that is generated in the activation space Φ) interacts with the precursor that is generated in the activation space (Q). Since a deposited film is formed by introducing active species into the entire film forming space (6) and causing a chemical reaction, the deposited film that is formed is free from etching effects or other adverse effects caused by K, such as abnormal discharge effects, during film formation. You will not receive any.

ま几、本発明では、活性化空間(C)で触媒効果を有す
る遷移金属元素の単体又は合金より成る発熱体を用いて
活性種を生成させる為、たとえばプラズマ放電によって
活性種を生成させる場合に比較して、異常放電等の影響
によるプラズマの安定性に左右さnることなく、又、A
r等の放電依持作用を有する希釈ガスを使用することな
く広い圧力範囲で安定して活性種を供給することが可能
であり、又、発熱体の形状及び発熱温度を任意に選択す
ることによって容易に活性種の生成量のコントロールが
可能である。
However, in the present invention, in order to generate active species using a heating element made of a single transition metal element or an alloy having a catalytic effect in the activation space (C), for example, when generating active species by plasma discharge, In comparison, A
It is possible to stably supply active species over a wide pressure range without using a diluent gas that has a discharge-dependent effect such as R, and by arbitrarily selecting the shape of the heating element and the heating temperature. The amount of active species produced can be easily controlled.

また、前記前駆体を前記活性種を生成する分解励起空間
(C)中を活性種と接触させることなく通過させ、前記
活性種とともに成膜空間(4)に導入させる念め前記前
駆体と前記活性種との流f′Lを均一にでき、かつ効率
良く基体近傍で化学反応させることができる為、再現性
のある堆積膜を形成することができる。
In addition, in order to allow the precursor to pass through the decomposition and excitation space (C) where the active species are generated without contacting the active species, and to introduce the precursor into the film forming space (4) together with the active species, the precursor and the Since the flow f'L with the active species can be made uniform and the chemical reaction can be efficiently carried out near the substrate, a deposited film with reproducibility can be formed.

ま友、本発明の方法によれば、活性種生成の為の活性化
空間(Qの形状を簡素化でき、また活性種生成の為のエ
ネルギー効率も高く、装置及び生産コストの低減を図る
ことができる。
Friend, according to the method of the present invention, the shape of the activation space (Q) for generating active species can be simplified, the energy efficiency for generating active species is high, and equipment and production costs can be reduced. Can be done.

尚、本発明での「前駆体」とは、形成される堆積膜の原
料には成シ得るものを云う。「活性種」とは、前記前駆
体と化学的相互作用を起して例えば前駆体にエネルギー
を与え交り、前駆体と化学的に反応したシして、前駆体
をより効率よく堆積膜が形成出来る状態にする役目を荷
うものを云う。
Note that the "precursor" in the present invention refers to a material that can be used as a raw material for a deposited film to be formed. "Active species" are those that chemically interact with the precursor, for example, give energy to the precursor, and chemically react with the precursor to more efficiently deposit the precursor. It refers to something that has the role of bringing things into a state where they can be formed.

従りて、活性種としては、形成さnる堆積膜を構成する
構成要素に成る構成要素を含んでいても良く、或いはそ
の様な構成要素を含んでいなくとも良い。
Therefore, the active species may include constituent elements constituting the deposited film to be formed, or may not include such constituent elements.

本発明で用いられる発熱体となる遷移金属としては、昇
華、飛散などにより堆積膜中へ混入しにくいものを選ぶ
ことが望ましく、また、これらを用いて活性化する際に
、こnらが混入しにぐい活性化条件を選ぶ必要がある。
It is desirable to select transition metals that serve as the heating elements used in the present invention to be those that are difficult to mix into the deposited film due to sublimation, scattering, etc. It is necessary to choose suitable activation conditions.

その様な材料としては、周期律表第4周期あるいは第5
周期、第6周期の元素の中の金属及び合金を挙げること
ができ、これらの中でも、■、v。
Such materials include those from period 4 or 5 of the periodic table.
Mention may be made of metals and alloys of the elements of the period and the sixth period, and among these, ■, v.

■、■、■族に属する遷移金属を好適に用いることがで
きる。
Transition metals belonging to groups (1), (2), and (2) can be suitably used.

具体的には例えば、” e Nd I Cr I Mo
 + W −Fo z Ni 、 Co 、 Rh t
 Pd 、 Mn s Ag * Zn 、 Cd。
Specifically, for example, "e Nd I Cr I Mo
+ W −Fo z Ni, Co, Rh t
Pd, MnsAg*Zn, Cd.

Pd−Ag 、 Ni−Cr 、 W−Re x W−
Moなどが挙げられる。
Pd-Ag, Ni-Cr, W-Rex W-
Examples include Mo.

又1本発明において、活性化空間(C)内に設けらnる
遷移金属から成る発熱体の発熱温度は、好適には150
℃〜3500℃、より好適には250℃〜2800℃、
最適には550℃〜2200℃とされるのが望ましbo 発熱体の形状としては、線状、フィラメント状、メツシ
ュ状、平板状、ハニカム状等いずnかを選ぶことによっ
て、活性種の生成断面積を変化できる。
In addition, in the present invention, the heat generation temperature of the heating element made of a transition metal provided in the activation space (C) is preferably 150
°C to 3500 °C, more preferably 250 °C to 2800 °C,
The optimum temperature is 550°C to 2200°C. By selecting the shape of the heating element, such as linear, filament, mesh, flat plate, or honeycomb, the active species can be The generation cross section can be changed.

本発明では、前記前駆体を活性化空間(Q内において、
前記発熱体からの熱エネルギーによって生成させること
ができる。その様な方法としては。
In the present invention, the precursor is activated in the activation space (inside Q,
It can be generated by thermal energy from the heating element. As such a method.

比較的低温で分解しやすい堆積膜形成用原料ガスを活性
化空間C)中の発熱体近傍に配設され之石英管等のがス
導入管に導入す1ば良い。
The raw material gas for forming the deposited film, which is easily decomposed at a relatively low temperature, may be introduced into a gas inlet pipe such as a quartz tube, which is disposed near the heating element in the activation space C).

本発明に於いて、成膜用に用いらnる堆積膜形成用原料
ガスとしては、ハロダン及び/又は水素をその分子内に
含むケイ素を主骨格とする化合物。
In the present invention, the raw material gas for forming a deposited film used for film formation is a compound having a main skeleton of silicon and containing halodane and/or hydrogen in its molecule.

炭素を主骨格とする化合物、ゲルマニウムを主骨格とす
る化合物が挙げられ、活性穐生成用の原料ガスとしては
、水素及び励起状態で水素ラジカルを発生する化合物と
してフッ化水素、塩化水素等が挙げられる。
Examples include compounds with carbon as the main skeleton and compounds with germanium as the main skeleton. Hydrogen and compounds that generate hydrogen radicals in an excited state include hydrogen fluoride, hydrogen chloride, etc. It will be done.

これらの化合物はそれぞれ単独で用いても、ま念適宜必
要に応じて併用しても差支えない。
These compounds may be used alone or in combination if necessary.

ケイ素を主骨格とする化合物としては、例えば鎖状又は
環状シラン化合物の水素原子の一部乃至全部をハロゲン
原子で置換し几化合物が用いらn、具体的には例えば、
81 Y   (uは1以上の整数、u  2u+2 YはF 、 CL 、 Br及び工よ)選択さnる少な
くとも1!11の元素である6)で示される鎖状ハロダ
ンイ、ヒケイ素、51vY2. (マは3以上の整数、
Yは前述の意味を有する。)で示さnる環状ハロゲン化
ケイ素、31uHxYy(u及びYは前述の意味を有す
る。
As the compound having silicon as the main skeleton, for example, a compound obtained by substituting some or all of the hydrogen atoms of a chain or cyclic silane compound with a halogen atom is used, specifically, for example,
81 Y (u is an integer greater than or equal to 1, u 2u+2 Y is F, CL, Br, and engineering) At least 1 to 11 elements are selected. (Ma is an integer greater than or equal to 3,
Y has the meaning given above. ) Cyclic silicon halide, 31uHxYy (u and Y have the above-mentioned meanings).

x+y=2u又は2u+2である。)で示される鎖状又
は環状化合物などが挙げらnる。
x+y=2u or 2u+2. ) and the like can be mentioned.

具体的には例えば別F4. (SiF2)5. (Si
F2)6゜(SiF2)4.312F6.813F8.
5l)IF3.5IH2F2゜5t2H2F4.312
H3F3.5IC24,(SIC22)5゜SiBr4
 1 (SiBr2)515i2Ct61512Br6
.5IHC13eSiHBr3.5IHI3.512C
L5F3などのがス状態の又は容易にガス化し得るもの
が挙げらnる。
Specifically, for example, another F4. (SiF2)5. (Si
F2) 6° (SiF2) 4.312F6.813F8.
5l) IF3.5IH2F2゜5t2H2F4.312
H3F3.5IC24, (SIC22)5゜SiBr4
1 (SiBr2)515i2Ct61512Br6
.. 5IHC13eSiHBr3.5IHI3.512C
Examples include those that are in a gas state or can be easily gasified, such as L5F3.

こnらのケイ素化合物は、1種用いても2種以上を併用
してもよい。
These silicon compounds may be used alone or in combination of two or more.

また、炭素を生骨格とする化合物としては、例えば鎖状
又は環状炭化水素化合物の水素原子の一部乃至全部全ハ
ロrン原子で置換した化合物が用いられ、具体的には、
例えばcuY2u+2 (uは1以上の整数、YはF 
、 CL 、 Br及び■よシ選択される少なくとも一
種の元素である。)で示される鎖状ハロダン化炭素、C
vY27(vは3以上の整数、Yは前述の意味を有する
。)で示される環状ハロダン化ケイ素、 CuHXY、
 (u及びYは前述の意味を有する。X+’!=2u又
は2u+2である。)で示される鎖状又は環状化合物な
どが挙げられる。
Further, as a compound having carbon as a bioskeleton, for example, a compound in which some or all of the hydrogen atoms of a chain or cyclic hydrocarbon compound are substituted with halo atoms is used, and specifically,
For example, cuY2u+2 (u is an integer greater than or equal to 1, Y is F
, CL, Br, and at least one element selected from (). ) chain halodanide carbon, C
Cyclic silicon halide represented by vY27 (v is an integer of 3 or more, Y has the above meaning), CuHXY,
(U and Y have the above-mentioned meanings. X+'!=2u or 2u+2).

具体的には例えば、CF4. (CF2)5. (CF
2)6゜(CF2)4. C2F6. C3F8. C
HF3. CH2F2. CCl4゜(CCt’2)5
 、 CBr4(CBr2)51 C2C1b 、 C
2Br61CHCL6. CHI、 、 C2CL、F
、  などのガス状態の又は容易にガス化し得るものが
挙げられる。
Specifically, for example, CF4. (CF2)5. (CF
2) 6° (CF2)4. C2F6. C3F8. C
HF3. CH2F2. CCl4゜(CCt'2)5
, CBr4(CBr2)51 C2C1b , C
2Br61CHCL6. CHI, , C2CL, F
, and those that are in a gaseous state or can be easily gasified.

これらの炭素化合物は、1種用いても2種以上を併用し
てもよい。
These carbon compounds may be used alone or in combination of two or more.

また、rルマニウムを主骨格とする化合物としては、例
えば鎖状又は環状水素化rルマニウム化合物の水素原子
の一部乃至全部をハロダン原子で置換した化合物が用い
られ、具体的には1例えば。
Further, as the compound having r-rumanium as a main skeleton, for example, a compound in which part or all of the hydrogen atoms of a chain or cyclic hydrogenated r-rumanium compound is replaced with a halodane atom is used, and specifically, for example, 1.

GeuY2u+2(uは1以上の整数、YはF 、 c
z 、 Br及び■よシ選択される少なくとも1種の元
素である。)で水源れる鎖状ハロゲン化ゲルマニウムG
evY2v(vは3以上の整数、Yは前述の意味を有す
る。)で示される環状ハロゲン化rルマニウム、G e
 uHxYy (u及びYは前述の意味を有する。x+
y=2u又は2u+2である。)で示される鎖状又は環
状化合物などが挙げられる。
GeuY2u+2 (u is an integer greater than or equal to 1, Y is F, c
At least one element selected from Z, Br, and ■. ) Chain germanium halide G
Cyclic halogenated r-rumanium represented by evY2v (v is an integer of 3 or more, Y has the above meaning), G e
uHxYy (u and Y have the above meanings.x+
y=2u or 2u+2. ), and the like.

具体的には例えばaeFa 、 (GeF2)5.(G
6F2)61(GeF2)4. Ge2F6. Ge3
F8. GeHF、 、 GeH2F2゜Ge2H2F
4. Ge2H5F3 r GeC441(GaCl2
)51GeBr4. (GeBr2)5 、 Ge2C
66,Ge2Br6 、 GsHCt5+GeHBr3
. GeHI、 、 Ge2CL3F3などのガス状態
の又は容易にガス化し得るものが挙げられる。
Specifically, for example, aeFa, (GeF2)5. (G
6F2)61(GeF2)4. Ge2F6. Ge3
F8. GeHF, , GeH2F2゜Ge2H2F
4. Ge2H5F3 r GeC441 (GaCl2
)51GeBr4. (GeBr2)5, Ge2C
66, Ge2Br6, GsHCt5+GeHBr3
.. Examples include those that are in a gaseous state or can be easily gasified, such as GeHI, Ge2CL3F3, etc.

本発明の方法により形成される堆積膜は、成膜中又は成
膜後に不純物元素でドーピングすることが可能である。
The deposited film formed by the method of the present invention can be doped with an impurity element during or after film formation.

使用する不純物元素としては、p型不純物として、周期
律表第■族Aの元素、例えばB 、 At、 Ga 、
 In 、 Tt等が好適なものとして挙げられ、i型
不純物としては周期律表第V族Aの元素1例えばP +
 As 、 Sb 、 Bi等が好適なものとして挙げ
られるが、特にAs 、 P 、 Sb等が最適である
。ドーピングされる不純物の量は、所望される電気的・
光学的特性に応じて適宜決定される。
The impurity elements to be used include, as p-type impurities, elements of group A of the periodic table, such as B, At, Ga,
Suitable examples include In, Tt, etc., and examples of i-type impurities include elements 1 of group V A of the periodic table, such as P +
Preferred examples include As, Sb, Bi, and the like, with As, P, and Sb being particularly optimal. The amount of doped impurities is determined to achieve the desired electrical
It is determined as appropriate depending on the optical characteristics.

かかる不純物元素を成分として含む物質(不純物導入用
物質)としては、常温常圧でガス状態であるか、あるい
は少なくとも堆積膜形成条件下で気体であり、適宜の気
化装置で容易に気化し得る化合物を選択するのが好まし
い。この様な化合物としては、PH,、P2H4,PF
3. PF5. PCB、 。
The substance containing such an impurity element as a component (substance for introducing impurities) is a compound that is in a gaseous state at room temperature and normal pressure, or at least in a gaseous state under deposited film forming conditions, and that can be easily vaporized with an appropriate vaporization device. It is preferable to select Such compounds include PH,, P2H4, PF
3. PF5. PCB, .

A@)t、 、 AsF3. AsF5. AaCL、
 、 SbH3,SbF5゜BFs 、 BC63* 
BBr31 B2H6+ B4H1o + BAH? 
A@)t, , AsF3. AsF5. AaCL,
, SbH3, SbF5゜BFs, BC63*
BBr31 B2H6+ B4H1o + BAH?
.

B5H111B6H101B6H12等を挙げることが
できる。
Examples include B5H111B6H101B6H12.

不純物元素を含む化合物は、1橿用いても2種以上併用
してもよい。
The compounds containing impurity elements may be used singly or in combination of two or more.

不純物元素を成分として含む化合物は、ガス状態で直接
、或いは成膜用の原料ガスと混合して分解空間或いは分
屏励起空間内に導入しても差支えない。
A compound containing an impurity element as a component may be introduced into the decomposition space or the divided excitation space directly in a gaseous state or mixed with a raw material gas for film formation.

本発明では、前記堆積膜形成用原料ガス、活性種生成用
原料ガス及び不純物元素を含む化合物の励起に際して不
活性ガス(He 、 Ar等)を使用することがないの
で、これらが堆積膜中に混入することはなく高品質の堆
積膜を得ることができる。
In the present invention, since an inert gas (He, Ar, etc.) is not used for excitation of the deposited film forming raw material gas, the active species generating raw material gas, and the compound containing impurity elements, these gases are not present in the deposited film. A high quality deposited film can be obtained without any contamination.

以下、本発明方法の一実施例を図面に基づいて詳細に説
明する。
Hereinafter, one embodiment of the method of the present invention will be described in detail based on the drawings.

第1図は本発明を実施するのに用いることのできる堆積
膜形成装置の概略的構成図である。
FIG. 1 is a schematic diagram of a deposited film forming apparatus that can be used to carry out the present invention.

第1図において、101は成膜室であり、支持台102
上に所望の基体103が載置されている。
In FIG. 1, 101 is a film forming chamber, and a support stand 102
A desired base 103 is placed thereon.

本発明の方法によれば基体103の温度を低くすること
が可能であるため、ポリエステル、ポリエチレン、ポリ
カーボネート、セルローズアセテート、ポリプロピレン
、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチレン
、ポリアミド等の合成樹脂のフィルム又はシート、ガラ
ス、等を用いることが可能である。もちろん、金属1合
金、シリコン、ケ°ルマニウム、 GaAaあるいはセ
ラミックス等も使用できることはgうまでもない。
According to the method of the present invention, it is possible to lower the temperature of the substrate 103, so a film of synthetic resin such as polyester, polyethylene, polycarbonate, cellulose acetate, polypropylene, polyvinyl chloride, polyvinylidene chloride, polystyrene, polyamide, etc. It is possible to use sheets, glass, etc. Of course, metal 1 alloys, silicon, kelmanium, GaAa, or ceramics can also be used.

104は基体加熱用ヒーターであυ、導線105を介し
て給電され1発熱する。該ヒーター104は成膜前に基
体103を加熱処理したり、成膜後に形成烙れた膜の特
性を一層向上させる為にアニール処理した夛、又、必要
に応じて成膜中に基体103を加熱する際に使用される
Reference numeral 104 denotes a heater for heating the substrate, which is supplied with power through a conductive wire 105 and generates heat. The heater 104 heat-treats the substrate 103 before film formation, performs annealing treatment after film formation to further improve the properties of the formed film, or heats the substrate 103 during film formation as necessary. Used for heating.

本発明方法を実施するにあたって、基体を加熱する場合
には、基体加熱温度は好ましくは30〜450℃、より
好ましくは50〜350℃であることが望ましい。10
6は温度をモニタする熱電対である。
When the substrate is heated in carrying out the method of the present invention, it is desirable that the substrate heating temperature is preferably 30 to 450°C, more preferably 50 to 350°C. 10
6 is a thermocouple for monitoring temperature.

107は不図示の排気系に接続されておりターゲ分子ポ
ンプ、メカニカルブースターポンプ、およびロータリー
ポンプ(不図示)により排気可能となっている。
107 is connected to an exhaust system (not shown), and can be evacuated by a target molecular pump, a mechanical booster pump, and a rotary pump (not shown).

108は原料ガス供給管であり、各種原料ガスおよび必
要に応じてキャリヤーガスが不図示の供給系から各マス
フローコントローラーにより所望の流量に制御されて供
給される。原料ガスは赤外線イメージ炉109で励起さ
れ前駆体を生成する。
Reference numeral 108 denotes a raw material gas supply pipe, through which various raw material gases and, if necessary, a carrier gas are supplied from a supply system (not shown) while being controlled to a desired flow rate by each mass flow controller. The raw material gas is excited in an infrared image furnace 109 to generate a precursor.

即ち、炉109内部の管が、原料ガスの活性化空間(B
)を成す。前駆体を含む原料ガスは活性種生成の為の活
性化空間(C)内を通過する前駆体輸送管110を通し
成膜空間(A)に活性種とともに導入される。
That is, the tube inside the furnace 109 is connected to the activation space (B
). The raw material gas containing the precursor is introduced into the film forming space (A) together with the active species through a precursor transport pipe 110 that passes through the activation space (C) for generating active species.

111は外管であって、前駆体輸送管110とともに二
重管構造となっている。
Reference numeral 111 denotes an outer tube, which has a double tube structure together with the precursor transport tube 110.

112は活性種生成用ガスおよび必要な場合は励起用及
び/又はキャリヤーガスの供給管であり不図示の供給系
よりマスフローコントローラーにより、それぞれ所望の
流量に調整式れた後外管111内に導入嘔れる。
Reference numeral 112 is a supply pipe for active species generation gas and, if necessary, excitation and/or carrier gas, which are introduced into the outer tube 111 from a supply system (not shown) after being adjusted to desired flow rates by a mass flow controller. I can vomit.

113は触媒効果金有する遷移金属元素の単体又は合金
よりなる発熱体であり、その触媒作用により活性種を生
成する。
Reference numeral 113 is a heating element made of a simple substance or an alloy of a transition metal element having a catalytic effect, and generates active species by its catalytic action.

114は発熱体113用の′電源である。114 is a power source for the heating element 113.

115は、反応室101内の真空度を表わす真空計であ
る。
115 is a vacuum gauge that indicates the degree of vacuum within the reaction chamber 101.

本発明によれば、例えば前記前駆体輸送管が活性種が生
成される外管111内の活性化空間(C)中を生成直後
の活性種と接触しないように通過し成膜空間(A)で初
めて、前駆体と活性種が接触して化学反応が進行する。
According to the present invention, for example, the precursor transport tube passes through the activation space (C) in the outer tube 111 where active species are generated without coming into contact with the active species immediately after generation, and the precursor transport tube passes through the film forming space (A) so as not to come into contact with the active species immediately after generation. For the first time, the precursor and active species come into contact and the chemical reaction proceeds.

原料ガスの活性化エネルギーとしては、第1図では熱エ
ネルギーを用いたが他にもDC、RFマイクロ波等の放
電エネルギー、光エネルギー、または熱エネルギーに転
用しうるエネルギービーム(レーザー光、X線、電子線
1分子線等)、あるいは化学反応のエネルギーなどを庚
うことができる。
Thermal energy is used in Figure 1 as the activation energy for the raw material gas, but other sources include discharge energy such as DC and RF microwaves, light energy, or energy beams that can be converted into thermal energy (laser light, X-rays, etc.). , electron beam, single molecule beam, etc.), or the energy of chemical reactions.

上記のような方法で形成きれた前駆体及び活性種は成膜
空間(A)で均一に会合し、かつ化学反応を起こし、成
膜空間(A)中にある基体103上に所望の堆積膜が形
成される。
The precursors and active species formed by the above method uniformly associate in the film forming space (A) and cause a chemical reaction, resulting in a desired deposited film on the substrate 103 in the film forming space (A). is formed.

〔実施例〕〔Example〕

以下に本発明の具体的実施例を示す。 Specific examples of the present invention are shown below.

〔実施例1〕 第1図に示した装置を用い以下の操作によシ息−8l@
を作製した。
[Example 1] Using the device shown in Fig. 1, the following operations were carried out to inhale -8l@
was created.

先ず基体103として、コーニング7059ガラスを用
い、支持台102上に載置し、排気装置(不図示)を用
いて成膜室101内を排気し、10−’Torrに減圧
した。基板加熱用ヒーター104によシコーニング70
59ガラス基版を250’Cに加熱した。
First, Corning 7059 glass was used as the substrate 103 and placed on the support stand 102, and the inside of the film forming chamber 101 was evacuated using an exhaust device (not shown) to reduce the pressure to 10-'Torr. Corning 70 by substrate heating heater 104
59 glass substrate was heated to 250'C.

そこで、供給管108を通じて不図示のゴンペから51
2F6を10 SCCM 4人した。その際炉109の
温度をあらかじめ700℃に加熱しておいた。
Therefore, from the gompe (not shown) through the supply pipe 108,
I made 2F6 10 SCCM 4 people. At that time, the temperature of the furnace 109 was preheated to 700°C.

他方、ガス供給管112からH2ガスを15 SCCM
で外管111内に導入した。
On the other hand, H2 gas is supplied from the gas supply pipe 112 at 15 SCCM.
was introduced into the outer tube 111.

一方、排気系107にある不図示のメカニカルブースタ
ーボフグの回転数を調整してパラトロン真空計114で
の圧力指示を0.25 Torrに保持した。次に触媒
効果を有する遷移金属元素より成る発熱体として用いた
Wフィラメント113 t−1800’CK加熱し、外
管111内に活性種としてのH4を発生させた。
On the other hand, the rotation speed of a mechanical booster puffer (not shown) in the exhaust system 107 was adjusted to maintain the pressure indicated by the Paratron vacuum gauge 114 at 0.25 Torr. Next, a W filament 113 t-1800'CK used as a heating element made of a transition metal element having a catalytic effect was heated to generate H4 as an active species in the outer tube 111.

なお、上述したガス流量及び圧力条件でWフィラメント
のかわりにμ波によるプラズマ発生炉を用いてプラズマ
放電の生起を試みたところ安定した放tは得らnなかり
た。
It should be noted that when attempts were made to generate plasma discharge using a plasma generation furnace using μ waves instead of the W filament under the above-mentioned gas flow rate and pressure conditions, stable discharge was not obtained.

一方、あらかじめ700℃に加熱した赤外線イメージ炉
109内を通過した81□F6ガスは分解さn、 Si
F2”のような前動体を生成する。SiF2”は寿命が
長いラジカルであシ内径が4■φという細い前駆体輸送
管110中を通過させることができた。この前駆体とH
oが化学反応をし、基体103上に堆積膜を形成した。
On the other hand, the 81□F6 gas that passed through the infrared image furnace 109, which was preheated to 700°C, was decomposed into n, Si
A precursor such as F2'' is generated.SiF2'' is a long-lived radical and could be passed through the thin precursor transport pipe 110 with an inner diameter of 4 mm. This precursor and H
o caused a chemical reaction and formed a deposited film on the substrate 103.

上記方法で得らf’L 7’c a−81:H(:F)
膜に、外管111の内径が38■φであるにもかかわら
ず、基体103上70mφの範囲内で膜厚分布が±10
%以下、暗電゛導率(σd)、48丁、活性化エネルギ
ー(El)、光学的パ/ドギャッf (Ego、t)等
の特性のバラツキが±5%以下であった。
f'L7'c a-81:H(:F) obtained by the above method
Although the inner diameter of the outer tube 111 is 38 mm, the film thickness distribution is ±10 mm within the range of 70 mm on the base 103.
%, the variation in properties such as dark conductivity (σd), activation energy (El), and optical pad/gap f (Ego, t) was ±5% or less.

〔実施例2〕 第1図に示した装置を用い以下の操作により*−8iの
一形態である微結晶相を含むSl(μX−81)膜を形
成した。
[Example 2] Using the apparatus shown in FIG. 1, an Sl (μX-81) film containing a microcrystalline phase, which is a form of *-8i, was formed by the following operations.

実施例1と同様な方法で、Si2F6がス88CCM、
H2ガス流量を80 SCCMとし成膜室101内の圧
力を0.15 Torrに調整した。Wフィラメントの
電源ノ9ワーをisow投入して成膜を行った。
In the same manner as in Example 1, Si2F6 was 88 CCM,
The H2 gas flow rate was adjusted to 80 SCCM, and the pressure inside the film forming chamber 101 was adjusted to 0.15 Torr. Film formation was performed by turning on the power source of W filament at 9 watts.

上記方法で得らnたS1膜はラマンスペクトルが465
cm−’からシフトしておシ、約80Xの微結晶相を含
むa−81:H(:F)膜であることがわかった。
The S1 film obtained by the above method has a Raman spectrum of 465
It was found that the film was an a-81:H(:F) film containing about 80× microcrystalline phase shifted from cm-'.

また、81□F6ガスを8 SCCM、 5IF4で1
%に希釈したPF5がスを20 SCCMを原料ガス供
給管108から供給し、一方H2ガスを130 SCC
Mをがス供給管112から外管111に供給した。次に
成膜室101内の圧力を0.15 Torrに調整した
。Wフィラメントの電源パワーを160W投入してnf
iのa−sx:n(:F)膜を成膜した。このn型a−
81:H(:F)膜はラマンスペクトル、透過製電子顕
微鏡(TEM)観察の結果80〜120Xの微結晶相を
含んでいた。堆積膜の特性はσ、 = 1.8 CS 
、10n’) 、 Ea=0.07eV、E  1.8
・Vであり、それぞれのバラツキは、opt 60■φの範囲内で±4%以内であった。
Also, 81□F6 gas at 8 SCCM, 5IF4 at 1
PF5 gas diluted to 20 SCCM is supplied from the raw material gas supply pipe 108, while H2 gas is supplied at 130 SCCM.
M was supplied to the outer tube 111 from the gas supply tube 112. Next, the pressure inside the film forming chamber 101 was adjusted to 0.15 Torr. Turn on the W filament power of 160W and nf
An a-sx:n (:F) film of i was formed. This n type a-
The 81:H (:F) film contained a microcrystalline phase of 80 to 120X as a result of Raman spectrum and transmission electron microscopy (TEM) observation. The characteristics of the deposited film are σ, = 1.8 CS
, 10n'), Ea=0.07eV, E 1.8
・V, and each variation was within ±4% within the range of opt 60■φ.

さらに、512F6がスを78CCM%81F4で1%
に希釈したBF、を20 SCCMを原料ガス供給管1
08から供給し、H2ガスを150 SCCMでガス供
給管から外管111に供給した。次に成膜室101内の
圧力を0.15 Torr K m整して、Wフィラメ
ントの電源パワーを160W投入してp型のa−31:
H(:F)膜を成膜した。このp型のa−6i :H(
:F)膜は微結晶相を含んでおり、堆積膜の特性は、C
6= 1.1.C8/crn)、E =0.06 eV
 、 E、。pt=2.1 eV テあp50mφの範
囲内でバラツキが±4%以内と均一性も良好でありた。
In addition, 512F6 is 78CCM%81F4 and 1%
BF diluted to 20 SCCM to raw gas supply pipe 1
H2 gas was supplied from the gas supply pipe to the outer pipe 111 at 150 SCCM. Next, the pressure in the film forming chamber 101 was adjusted to 0.15 Torr K m, and the power source power of the W filament was applied to 160 W to form the p-type a-31:
A H(:F) film was formed. This p-type a-6i :H(
:F) The film contains a microcrystalline phase, and the characteristics of the deposited film are C
6=1.1. C8/crn), E = 0.06 eV
,E. The uniformity was also good, with variation within ±4% within the range of pt=2.1 eV and 50 mφ.

〔実施例3〕 第1図に示した装置を用い以下の操作によシ多結晶シリ
コン(ポリSt )膜を形成し九。
[Example 3] Using the apparatus shown in FIG. 1, a polycrystalline silicon (polySt 2 ) film was formed by the following operations.

実施例1と同様な方法でS1□F6がスを6 SCCM
 。
In the same manner as in Example 1, S1 □ F6
.

H2ガス流量18080CMとし、成膜室101内の圧
力を0.05 Torrに調整した。
The H2 gas flow rate was 18080 CM, and the pressure inside the film forming chamber 101 was adjusted to 0.05 Torr.

次にWフィラメントの電源パワーを200W投大してシ
リコン膜を成膜を行った。
Next, the power supply power of the W filament was increased to 200 W to form a silicon film.

上記方法で得られたsi膜iiTEM観察の結果605
wφの範囲内でダレインサイズが3800X以上のポリ
81であった。
Si film IITEM observation results obtained by the above method 605
Poly 81 had a duraine size of 3800X or more within the range of wφ.

さらに基体103としてシリコンウェハを用い基体温度
250℃という低温でのエピタキシャル成長を試みた。
Furthermore, using a silicon wafer as the substrate 103, epitaxial growth was attempted at a substrate temperature as low as 250.degree.

基体支持台と平行な表面が(111)面の配向を有する
シリコンウェハを用いて上記成膜条件で成膜をした後反
射電子線回折rLHEED (1)パターンより、エピ
タキシャル成長であることを確認した。
After a film was formed under the above film forming conditions using a silicon wafer whose surface parallel to the substrate support was oriented in the (111) plane, epitaxial growth was confirmed from the reflection electron diffraction rLHEED (1) pattern.

〔実施例4〕 第1図に示した装置を用い、以下の操作によシa−8l
:Ge膜を形成した。
[Example 4] Using the apparatus shown in FIG.
:Ge film was formed.

81 F  ガス流量を58CCM、G・2F6がス流
望をQ、 5 SCCMとし同時に原料ガス供給管10
gから供給し、一方H2ガスを30 SCCMでガス供
給管112から外管111に供給した。次に成膜室内の
圧力を0.2 Torr K調整して、Wフィラメント
の電源ノやワーを110W投入して、成膜を行った。
81 F Gas flow rate is 58 CCM, G・2F6 is set to Q, 5 SCCM is set, and raw material gas supply pipe 10 is set at the same time.
On the other hand, H2 gas was supplied from the gas supply pipe 112 to the outer tube 111 at 30 SCCM. Next, the pressure in the film-forming chamber was adjusted to 0.2 Torr K, and a 110 W power supply for the W filament was applied to form a film.

上記方法で得られた*−8l:Go:H(:F) 膜は
、60震φの範囲内で”goptが1.38eV(±2
%)と光学的バンドギャップ幅の狭い膜が得らnた。
The *-8l:Go:H(:F) film obtained by the above method had a "gopt" of 1.38 eV (±2
%) and a narrow optical bandgap width was obtained.

〔実施例5〕 第1図に示した装置を用い、以下の如き操作によりて第
2図の(at 、 (blに示した太陽電池を作製した
[Example 5] Using the apparatus shown in FIG. 1, the solar cell shown in (at, (bl) in FIG. 2 was produced by the following operations.

基体203は5US−304であり上に反射金属膜20
4としてAgを2500X蒸着した。
The base 203 is made of 5US-304 and has a reflective metal film 20 on top.
4, Ag was evaporated at 2500X.

まず、上記Agを蒸着したSUS基体を第1図に示した
装置に載置し、実施例2の条件でn型のμX−5t膜2
05を150X、実施例1の条件でa−81:H(:F
) @ 206を6000X、さらに実施例20条件で
p型のμX−5t膜207を150X積層した。次にI
TO膜208を約900X酸素雰囲気中で蒸着した。次
に5sl11間隔で導電ペースト209を塗布して25
.4wX25.4ms角の太陽電池のサブモジエールを
9個作製した。この素子を(&)とする。
First, the SUS substrate on which Ag was vapor-deposited was placed on the apparatus shown in FIG. 1, and the n-type μX-5t film 2 was
a-81:H(:F
) @ 206 was stacked at 6000X, and p-type μX-5t film 207 was stacked at 150X under the conditions of Example 20. Next I
TO film 208 was deposited in an approximately 900X oxygen atmosphere. Next, apply conductive paste 209 at intervals of 5sl11 and
.. Nine solar cell submodgieres of 4w x 25.4ms square were fabricated. Let this element be (&).

また、上記方法と同様にして第2図(blに示したタン
デム構造の太陽電池(blを作製した。尚、第2図(b
l中第2図(atと同一要素は同一符号で表わすと同時
に、同一の形成法で作製した。210のa−81:Ge
 :H(:F)層は、実施例4の条件で25001堆積
させた。またa−81:H(:F)層206は3500
1とした。
In addition, a tandem structure solar cell (bl) shown in FIG. 2(b) was fabricated in the same manner as the above method.
Figure 2 in Figure 1 (the same elements as at are represented by the same symbols and were produced using the same formation method. 210 a-81: Ge
The :H (:F) layer was deposited in 25001 layers under the conditions of Example 4. Also, the a-81:H (:F) layer 206 has a density of 3500
It was set to 1.

第1表に上記太陽電池(al e (b)の評価結果を
示した。光電変換効率の平均値は25.41111X2
5.4W角のサラモジエール9個の平均値であるが本実
施例により形成した素子(a) 、 (bl共にバラツ
キが±6.3%以下であることが認められた。
Table 1 shows the evaluation results of the solar cell (al e (b)).The average value of photoelectric conversion efficiency is 25.41111X2
The average value of nine 5.4W square Salamosieres was found to be within ±6.3% for both elements (a) and (bl) formed according to this example.

〔実施例6〕 第3図に第1図に示した装置における原料ガス活性化空
間(B)での活性化エネルギーを赤外線イメージ炉の熱
エネルギーからマイクロ波発振器による放電エネルギー
に変えた装置を示した。
[Example 6] Fig. 3 shows an apparatus in which the activation energy in the raw material gas activation space (B) in the apparatus shown in Fig. 1 was changed from thermal energy of an infrared image furnace to discharge energy by a microwave oscillator. Ta.

第1図と同一要素を同一符号で表わすと、311はプラ
ズマ発生炉、312はマイクロ波導波管、313はマイ
クロ波発生装置であシ、活性化空間(B)内の圧力は前
駆体輸送管110の内径を小さくすることによシ成膜空
間101内の圧力よシも高く保持できる為プラズマ放電
を安定化させることが可能となっている。
The same elements as in FIG. 1 are represented by the same symbols. 311 is a plasma generation furnace, 312 is a microwave waveguide, 313 is a microwave generator, and the pressure in the activation space (B) is a precursor transport pipe. By reducing the inner diameter of the film 110, the pressure inside the film forming space 101 can be kept high, making it possible to stabilize the plasma discharge.

第3図に示した装置を用い以下の操作によシロ−8i膜
を作成した。
Using the apparatus shown in FIG. 3, a Shiro-8i film was prepared by the following operations.

供給管108を通じて不図示のボンベから5IF4を4
0800M導入し、マイクロ波のパワーを200W投入
した。以下実施例1と同様な手順と操作によシ堆積膜を
形成した。
5IF4 is supplied from a cylinder (not shown) through the supply pipe 108.
0800M was introduced and microwave power of 200W was input. Thereafter, a deposited film was formed using the same procedures and operations as in Example 1.

上記方法で形成したa−8l:H(F)膜は基体103
上60m+φの範囲内で膜厚分布が±7%以下、暗電導
率(σd)、ημτ、活性化エネルギー(Ea)光学パ
ンドギャッf(Ego、、)等の特性バラツキが±4係
以下になっていた。
The a-8l:H(F) film formed by the above method is the substrate 103.
Within the range of 60 m + φ, the film thickness distribution is less than ±7%, and the variation in characteristics such as dark conductivity (σd), ημτ, activation energy (Ea), optical breadth gap f (Ego, ) is less than ±4 factor. Ta.

〔実施例7〕 第3図に示した装置を用い以下の操作によシアモルファ
スシリコンの一形態である微結晶相を含むSt(μX−
5t)膜を形成した。実施例6と同様な方法でSiF4
ガスを60800M導入しマイクロ波のパワーを220
W投入した。以下実施例2と同様な手順と操作によ多形
成した堆積膜はラマンスペクトルが465crn から
シフトしておシ約60Xの微結晶を含むa−8i :H
(:F)膜であることがわかった。
[Example 7] St (μX-
5t) A film was formed. SiF4 in the same manner as in Example 6
Introducing 60800M gas and increasing the microwave power to 220M
I put in a W. The deposited film formed by the same procedure and operation as in Example 2 has a Raman spectrum shifted from 465crn and contains a-8i:H microcrystals of about 60X.
(:F) It turned out to be a film.

また、実施例2に於いて512F6ガスを5IF4がス
に変え流量を20 SCCMとして成膜したn型a−8
i:H(:F)膜は、ラマンスペクトル、 T111M
観察の結果70〜110Xの微結晶相を含んでいた。堆
積膜の特性はσdm1.6 Ca/an〕、Ea mO
,o 6 eV、E、。pt#18mVであり、それぞ
れのバラツキは60mφの範囲内で±5俤以内であった
In addition, in Example 2, the n-type a-8 film was formed by changing the 512F6 gas to 5IF4 gas and setting the flow rate to 20 SCCM.
i:H(:F) film has Raman spectrum, T111M
As a result of observation, it contained a 70-110X microcrystalline phase. The characteristics of the deposited film are σdm1.6 Ca/an], Ea mO
, o 6 eV, E,. pt# was 18 mV, and each variation was within ±5 yen within a range of 60 mφ.

さらに実施例2に於いて512F6ガスをS IF4ガ
スに変え流量を10 SCCMとして成膜した。この様
にして得たp型のa−81:H(:F)膜は微結晶相を
含んでおυ、堆積膜の特性は(F d −1,0(a/
z)、Eaxo、06eV。
Furthermore, in Example 2, 512F6 gas was replaced with SIF4 gas and the flow rate was set to 10 SCCM to form a film. The p-type a-81:H(:F) film obtained in this way contains a microcrystalline phase, and the characteristics of the deposited film are (F d -1,0(a/
z), Eaxo, 06eV.

Ego、、り2.OeVであり50鱈φの範囲内でバラ
ツキが±5チ以内と均一性も良好であった。
Ego, ri2. OeV, and the uniformity was good with variation within ±5 inches within the range of 50 cod φ.

〔実施例8〕 第3図に示した装置を用い以下の操作によシ多結晶シリ
コン(ポリ−St )膜を形成した。
[Example 8] A polycrystalline silicon (poly-St) film was formed by the following operations using the apparatus shown in FIG.

実施例3と同様な方法で512F6ガスをSiF4ガス
に変え流量を15 SCCMとして成膜した。
A film was formed in the same manner as in Example 3, replacing 512F6 gas with SiF4 gas and changing the flow rate to 15 SCCM.

得られたシリコン膜はTEM観察の結果50mφの範囲
内でダレインサイズが3200X以上のポリ−8iであ
った。
As a result of TEM observation, the obtained silicon film was found to be poly-8i with a diameter of 3200X or more within a range of 50 mφ.

さらに基体103としてシリコンウェハを用いた場合、
基体温度250℃という低温でのエピタキシャル成長を
試みた。基体支持台と平行な表面が(111)面の配向
を有するシリコンウェハを用いて上記条件で成膜をした
後RHEEDのパターンよりエピタキシャル成長である
ことを確認した。
Furthermore, when a silicon wafer is used as the base 103,
Epitaxial growth was attempted at a low substrate temperature of 250°C. After forming a film under the above conditions using a silicon wafer whose surface parallel to the substrate support has a (111) plane orientation, it was confirmed from the RHEED pattern that it was epitaxial growth.

〔実施例9〕 第3図に示した装置を用い実施例4と同様な手順と操作
によ#)a−8l:Ge:H(:F)膜を形成した。
[Example 9] An a-8l:Ge:H (:F) film was formed using the apparatus shown in FIG. 3 and following the same procedure and operation as in Example 4.

実施例4においてSi2F6./l/スをSiF4がス
に変え流量を10 SCCMとして成膜した。
In Example 4, Si2F6. The film was formed by changing the /l/s to SiF4 and setting the flow rate to 10 SCCM.

得られたa−8t:Go:H(:F)膜は60mφの範
囲内で”goptが1.39 eV (±3%)と光学
的バンドギャップ幅の狭い膜が得られた。
The resulting a-8t:Go:H(:F) film had a narrow optical bandgap width of 1.39 eV (±3%) within the range of 60 mφ.

〔実施例10〕 第3図に示した装置を用い実施例5と同様な手順と操作
によりて第2図の(a) p (b)に示した太陽電池
を作製した。
[Example 10] Using the apparatus shown in FIG. 3, the solar cell shown in FIGS. 2(a) and 2(b) was produced by the same procedure and operation as in Example 5.

実施例5に於いて、n型のμx−s +膜は実施例7の
条件で成膜し、a−8t:H(:F)膜は実施例60条
件で成膜し、p型のμX−5t膜は実施例7の条件で成
膜し得られた素子を(a’)とする。
In Example 5, the n-type μx-s+ film was formed under the conditions of Example 7, the a-8t:H(:F) film was formed under the conditions of Example 60, and the p-type μX The -5t film was formed under the conditions of Example 7, and the resulting device is designated as (a').

また、上記方法と同様にして第2図(b)に示したタン
デム構造の太陽電池(b′)を作成した。210のa−
81:Ge:H(:F)層は実施例9の条件で堆積した
Further, a solar cell (b') having a tandem structure as shown in FIG. 2(b) was produced in the same manner as the above method. 210 a-
The 81:Ge:H(:F) layer was deposited under the conditions of Example 9.

第1表に上記太陽電池(aつ+(bつの評価、浩果を示
した。光電変換効率の平均値は25.4mX 25.4
m+角のサブモジュール9個の平均値であるが本実施例
によシ形成した素子(aつ(bつ共にバラツキが±7.
0チ以下であることが認められた。
Table 1 shows the evaluation of the above solar cells (a + (b). The average value of photoelectric conversion efficiency is 25.4 mX 25.4
The average value of nine submodules of m+ angle is the variation of ±7.
It was recognized that the temperature was less than 0.

〔発明の効果〕〔Effect of the invention〕

以上の実施例からも確認されるとおシ、本発明の堆積膜
形成法によれば、大面積にわたシ高品質で種々の膜質を
有する堆積膜を均一に形成することが容易になシ、再現
性良く高効率で堆積膜を形成することができる。
As confirmed from the above examples, according to the deposited film forming method of the present invention, it is easy to uniformly form deposited films having various film qualities with high quality over a large area. A deposited film can be formed with good reproducibility and high efficiency.

また、例えば基体温度250℃という低い温度でポリシ
リコンの堆積膜を得ることができ、さらには堆積膜形成
装置及び条件の管理の簡素化および膜の量産化を容易に
達成することができる。
Further, a polysilicon deposited film can be obtained at a low substrate temperature of 250° C., and furthermore, it is possible to simplify the management of the deposited film forming apparatus and conditions and to easily mass-produce the film.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第3図は、夫々本発明を実施するために用い
ることのできる堆積膜形成装置の模式的概略図である。 第2図(a) # (b)は、夫々本発明方法によシ作
製し得る太陽電池の構造を示す模式図である。 101・・・反応室、102・・・基体支持台、103
・・・基体、104・・・基体加熱用ヒーター、105
・・・導線、106・・・熱電対、107・・・排気系
、108・・・原料ガス導入管、109・・・赤外線イ
メージ炉、110・・・前駆体輸送管、111・・・外
管、112・・・ガス供給管、113・・・Wフィラメ
ント、115・・・真空計、311・・・活性化エネル
ギー導入管、312・・・マイクロ波発振器、313・
・・マイクロ波導波管、203・・・SUS基体、20
4・・・反射金属膜層、205−1 、205−2・・
・n型−μX−3t層、206−・・a−8l:H(:
F)層、207−1,207−2・・・p型−μx−s
i層、208・・・ITO層、2,09・・・導電ペー
スト、210・・・a−8i :Ge:H(:F)。
FIGS. 1 and 3 are schematic diagrams of deposited film forming apparatuses that can be used to carry out the present invention, respectively. FIGS. 2(a) and 2(b) are schematic diagrams each showing the structure of a solar cell that can be produced by the method of the present invention. 101...Reaction chamber, 102...Substrate support, 103
...Base, 104...Heater for heating the base, 105
... Conductor wire, 106 ... Thermocouple, 107 ... Exhaust system, 108 ... Raw material gas introduction pipe, 109 ... Infrared image furnace, 110 ... Precursor transport pipe, 111 ... Outside Pipe, 112... Gas supply pipe, 113... W filament, 115... Vacuum gauge, 311... Activation energy introduction tube, 312... Microwave oscillator, 313...
...Microwave waveguide, 203...SUS base, 20
4... Reflective metal film layer, 205-1, 205-2...
・N-type-μX-3t layer, 206-...a-8l:H(:
F) layer, 207-1, 207-2...p type-μx-s
i layer, 208...ITO layer, 2,09...conductive paste, 210...a-8i:Ge:H(:F).

Claims (1)

【特許請求の範囲】[Claims] 基体上に堆積膜を形成するための成膜空間(A)に、活
性化空間(B)において生成される堆積膜形成用の原料
となる前駆体と、活性化空間(C)において生成され、
前記前駆体と相互作用をする活性種とを導入することに
よって、前記基体上に堆積膜を形成する堆積膜形成法に
おいて、前記活性種は活性化空間(C)で触媒効果を有
する遷移金属元素の単体又は合金から成る発熱体により
生成されて成膜空間(A)に導入され、前記前駆体は、
前記活性化空間(C)中を前記活性種と接触することな
く通過せしめられて成膜空間(A)に導入され、かくし
て成膜空間(A)に導入された前記前駆体及び活性種が
化学反応することによって堆積膜が形成されることを特
徴とする堆積膜形成法。
In a film forming space (A) for forming a deposited film on a substrate, a precursor that is a raw material for forming a deposited film is produced in an activation space (B), and a precursor is produced in an activation space (C),
In the deposited film forming method of forming a deposited film on the substrate by introducing an active species that interacts with the precursor, the active species is a transition metal element having a catalytic effect in the activation space (C). The precursor is generated by a heating element made of a single substance or an alloy of and introduced into the film forming space (A), and the precursor is
The precursors and active species introduced into the film forming space (A) are passed through the activation space (C) without coming into contact with the active species and are introduced into the film forming space (A). A deposited film forming method characterized in that a deposited film is formed by reaction.
JP62056483A 1987-03-13 1987-03-13 Formation of deposition film Pending JPS63224216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62056483A JPS63224216A (en) 1987-03-13 1987-03-13 Formation of deposition film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62056483A JPS63224216A (en) 1987-03-13 1987-03-13 Formation of deposition film

Publications (1)

Publication Number Publication Date
JPS63224216A true JPS63224216A (en) 1988-09-19

Family

ID=13028346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62056483A Pending JPS63224216A (en) 1987-03-13 1987-03-13 Formation of deposition film

Country Status (1)

Country Link
JP (1) JPS63224216A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005022618A1 (en) * 2003-08-29 2005-03-10 Ips Ltd. Method for depositing thin film on wafer
JP2007129246A (en) * 2006-12-06 2007-05-24 Semiconductor Energy Lab Co Ltd Microcrystal silicon film, semiconductor device and photovoltaic conversion device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005022618A1 (en) * 2003-08-29 2005-03-10 Ips Ltd. Method for depositing thin film on wafer
JP2007129246A (en) * 2006-12-06 2007-05-24 Semiconductor Energy Lab Co Ltd Microcrystal silicon film, semiconductor device and photovoltaic conversion device
JP4489750B2 (en) * 2006-12-06 2010-06-23 株式会社半導体エネルギー研究所 Method for manufacturing silicon film, method for manufacturing semiconductor device, and method for manufacturing photoelectric conversion device

Similar Documents

Publication Publication Date Title
EP0232619B1 (en) Method of manufacturing a thin-film transistor
JPH0513347A (en) Formation of deposited film
US5002793A (en) Process for forming film in a three-chambered apparatus having two chamber faces coated with films of at least 106 Ω cm resistance
JPS61222121A (en) Functional deposit-film and method and apparatus for manufacturing said film
JPH0647730B2 (en) Deposited film formation method
JPS62151572A (en) Deposited film forming device
JPS63224216A (en) Formation of deposition film
JPS62186527A (en) Deposited film forming method
JP2547741B2 (en) Deposition film manufacturing equipment
JPH0651908B2 (en) Method of forming thin film multilayer structure
JP2649221B2 (en) Deposition film formation method
JPS6360830B2 (en)
JPS62163314A (en) Thin-film multilayer structure and forming method thereof
JPS6357777A (en) Deposited film forming device
JP2547728B2 (en) Deposition film forming equipment
JPH01275761A (en) Deposit film-forming equipment
JPS63222422A (en) Formation of deposited film
JPS61247018A (en) Deposition film forming method and deposition film forming equipment
JPS6318856B2 (en)
JPH0647731B2 (en) Deposited film formation method
JPH0647729B2 (en) Deposited film formation method
JPH05275354A (en) Manufacture of silicon film
JPS61102027A (en) Method of forming deposited film
JPS61193429A (en) Formation of deposited film
JPS60218839A (en) Deposited film forming method