JPS63223885A - Stereoscopic image display device - Google Patents

Stereoscopic image display device

Info

Publication number
JPS63223885A
JPS63223885A JP5534787A JP5534787A JPS63223885A JP S63223885 A JPS63223885 A JP S63223885A JP 5534787 A JP5534787 A JP 5534787A JP 5534787 A JP5534787 A JP 5534787A JP S63223885 A JPS63223885 A JP S63223885A
Authority
JP
Japan
Prior art keywords
projection
image
projection image
dimensional image
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5534787A
Other languages
Japanese (ja)
Inventor
Akinami Ohashi
大橋 昭南
Hiroko Shiotani
塩谷 裕子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Canon Medical Systems Corp
Original Assignee
Toshiba Corp
Toshiba Medical Systems Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Medical Systems Engineering Co Ltd filed Critical Toshiba Corp
Priority to JP5534787A priority Critical patent/JPS63223885A/en
Publication of JPS63223885A publication Critical patent/JPS63223885A/en
Pending legal-status Critical Current

Links

Landscapes

  • Image Generation (AREA)

Abstract

PURPOSE:To enable accurate projection even when a complex structure is an object by generating a projection image while putting a view point to be projected in three-dimensional image data. CONSTITUTION:A projection image generation part 2 generates the projection image according to three-dimensional image data stored in a three-dimensional image storage part 1. In this case, an observer sets a view point axis Z and projection distances r1 and r2. Then an imaginary line 9 is drawn from the view point axis Z to a projection surface 8 and voxel data at an object position 6 is ranges of r1 and r2 are integrated radially along the imaginary line 9 to generate the projection image. Then the imaginary line 9 is shifted clockwise by DELTAtheta deg. and similar arithmetic processing is carried out to generate a 2nd projection image. Thus, the line is shifted by DELTAtheta deg. successively to perform the similar processing over the 360 deg. range and projection images are stored in a projection image storage part 3. Then an image to be viewed actually is segmented by a segmenting part 4 and displayed stereoscopically on a display device 5.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は、三次元画像データに基き任意の投影像を作成
し表示する立体画像表示装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention (Field of Industrial Application) The present invention relates to a three-dimensional image display device that creates and displays an arbitrary projection image based on three-dimensional image data.

(従来の技術) 画(!(I処理による立体画像表示方法には、断面変換
法2表面表示法、マルチフレーム表示法、再投影表示法
等の種々のものが知られており、表示対象に応じて最適
な方法が選ばれる。これらの中で再投影法は内部構造を
表現する場合に有効な表示法でおる。再投影法とは、C
T多多層層面ら得られた三次元状のボクセルデータを観
察者の視線方向に積分することにより投影像を再構成す
るものである。
(Prior art) There are various known stereoscopic image display methods using I processing, such as the cross-section conversion method, 2-surface display method, multi-frame display method, and reprojection display method. The most suitable method is selected accordingly. Among these, the reprojection method is an effective display method when expressing the internal structure.
A projected image is reconstructed by integrating three-dimensional voxel data obtained from a T-multilayer surface in the direction of the viewer's line of sight.

このような再投影法は例えば次に示すような文献(1]
、 C2)に示されている。
Such a reprojection method is described in the following literature (1), for example:
, C2).

(1)  L、r)、Harris、  “Dispi
ay and Visualizationof Th
ree−Dementiona! Reconstru
cted AnatomicMorphology; 
 Experience  with  the  T
horax、Heartand Coronary V
asculaturc of Dogs” 、J、Co
mpt。
(1) L, r), Harris, “Dispi
ay and Visualization of Th
ree-Dementiona! Reconstruct
cted AnatomicMorphology;
Experience with the T
horax, Heart and Coronary V
asculaturc of Dogs”, J, Co.
mpt.

As5ist、 Tomoraphy、Vol、3、N
o、 4(1979)(2)  L、り、1larri
s、  ”Identification of th
e Op−timal  0rientation  
of  0blique  5ections  丁h
rou−gh Multiple CT !mages
、”   J、Compt、As5ist。
As5ist, Tomoraphy, Vol, 3, N
o, 4 (1979) (2) L, ri, 1larri
s, “Identification of th
e Optimal Orientation
of 0blique 5ections dingh
rou-gh Multiple CT! mages
,” J,Compt,As5ist.

Tomography、 Vo!、5. No、 6.
 (1981)(発明が解決しようとする問題点) ところで従来のそのような再投影法では、投影像を得る
ための投影を行う視点をボクセルデータの外に置いてい
るので、心臓をとりまいている冠状脈のように立体的に
複雑な形状をもった構造を表現するのは困難であるとい
う問題がある。
Tomography, Vo! ,5. No, 6.
(1981) (Problem to be Solved by the Invention) However, in such conventional reprojection methods, the viewpoint from which the projection is performed to obtain the projected image is placed outside the voxel data, so the image surrounding the heart is There is a problem in that it is difficult to express a structure with a three-dimensionally complex shape such as a coronary vein.

例えばX線CT像を得る場合には、頭部のようにX線吸
収率の高い物質(骨など)で囲まれた部位を対象に選ぶ
と、この物質に影響されて対象部位を正確に投影できな
いおそれがある。このため骨などのX線吸収率の高い物
質を認識し消去した後に投影を行う必要があるので、手
間がかかるようになる。
For example, when obtaining an X-ray CT image, if you select an area like the head that is surrounded by substances with high X-ray absorption (bone, etc.), the target area will be accurately projected due to the influence of this substance. There is a possibility that it cannot be done. For this reason, it is necessary to perform projection after recognizing and erasing substances with a high X-ray absorption rate, such as bones, which becomes time-consuming.

本発明は以上のような問題に対処してなされたもので、
立体的に複雑な形状を持った構造を対象とした場合でも
正確な投影が行えるようにした立体画像表示装置を提供
することを目的とするものである。
The present invention has been made in response to the above-mentioned problems.
It is an object of the present invention to provide a stereoscopic image display device that can perform accurate projection even when a structure having a three-dimensionally complex shape is targeted.

[発明の構成] (問題点を解決するための手段) 上記目的を達成するために本発明は、三次元画像データ
の内部に置かれた視点から外部に向けて投影像を作成す
ることを特徴としている。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, the present invention is characterized in that a projected image is created outward from a viewpoint placed inside three-dimensional image data. It is said that

(作 用) 投影する視点を三次元両会データの内部に置いて投影像
を作成するようにしたので、複雑な構造を対象とした場
合でも正確な投影を行うことができる。
(Function) Since the projected image is created by placing the projection viewpoint inside the three-dimensional Ryokai data, accurate projection can be performed even when a complex structure is targeted.

(実施例) 第1図は本発明実施例の立体画像表示装置を示すブロッ
ク図である。1は三次元画像記憶部で例λばX線CT装
置、MRI装置等によって得られるCT多断層画像を三
次元画像データとして記憶するためのもので、複数枚の
CT両画像らボクセルを単位とした三次元画像が作成さ
れて記憶されている。2は投影画像作成部で三次元画像
データの内部の任意点を視点としてこれから外部に向け
て投影像を作成するためのもので、ボクセルデータを積
分することにより視点から外部に向かう投影像及び視点
を中心として360”の範囲にわたる投影像が作成され
る。3は投影画像記憶部で前記のようにして得られた投
影画像を記憶するためのものである。4は表示画像切り
出し部で前記投影画像記憶部3に記憶されている投影画
像を基に、任意の視線方向に沿って実際に見たい画像を
切り出して後述の表示装置5に表示させるためのもので
ある。5は表示装置で通常のCRTディスプレイ等から
成っている。
(Embodiment) FIG. 1 is a block diagram showing a stereoscopic image display device according to an embodiment of the present invention. 1 is a three-dimensional image storage unit for storing CT multi-sectional images obtained by, for example, an X-ray CT device, an MRI device, etc. as three-dimensional image data, and stores voxels as units from a plurality of CT images. A three-dimensional image is created and stored. 2 is a projection image creation unit that creates a projected image outward from an arbitrary point inside the three-dimensional image data as a viewpoint, and integrates voxel data to create a projected image and viewpoint from the viewpoint to the outside. A projection image is created over a range of 360" with the center at the center. 3 is a projection image storage section for storing the projection image obtained in the above manner. 4 is a display image cutting section for storing the projection image obtained in the above manner. This is for cutting out an image that you actually want to see along an arbitrary viewing direction based on the projection image stored in the image storage unit 3 and displaying it on a display device 5, which will be described later. It consists of a CRT display, etc.

次に本実施例の作用を説明する。Next, the operation of this embodiment will be explained.

投影画像作成部2は三次元画像記憶部1に記憶されてい
る三次元画像データを基に、第2図及び第3図に示すよ
うな方法で演算処理を行って投影画像を作成する。先ず
、観察者は視点軸Zと投影距離r1.r2を与える。6
は投影対象部位、7は三次元画像データ、8は投影面を
示している。
The projection image creation unit 2 creates a projection image by performing arithmetic processing based on the three-dimensional image data stored in the three-dimensional image storage unit 1 using the method shown in FIGS. 2 and 3. First, the observer determines the viewpoint axis Z and the projection distance r1. Give r2. 6
7 shows the projection target part, 7 shows the three-dimensional image data, and 8 shows the projection plane.

次に視点軸Zから投影面8に向けて仮想線9を引きこれ
に沿ってrl、r2の範囲内の対象部位6のボクセルデ
ータを放射線状に積分することによって投影像を作成す
る。
Next, a virtual line 9 is drawn from the viewpoint axis Z toward the projection plane 8, and a projection image is created by radially integrating the voxel data of the target region 6 within the range of rl and r2 along this line.

対象部位6の範囲は任意に設定することができるが、骨
等のX線吸収率の高い物質を避けるために本例のように
限定した範囲を設定することが効果的である。
Although the range of the target region 6 can be set arbitrarily, it is effective to set a limited range as in this example in order to avoid substances with a high X-ray absorption rate such as bones.

続いて仮想線9を第3図で例えば時計方向にΔθ°ずら
して同様な演算処理を行って、同様に第2の投影像を作
成する。以下Δθ°ずつずらして360°の範囲にわた
って同様な演算処理をくり返して、多数の投影像を作成
する。
Subsequently, the virtual line 9 is shifted, for example, by Δθ° in the clockwise direction in FIG. 3, and similar arithmetic processing is performed to similarly create a second projection image. Thereafter, the same arithmetic processing is repeated over a range of 360° by shifting each Δθ° to create a large number of projected images.

第4図はこのようにしてΔθ°の間隔で360゜にわた
って連続して得られた投影像の配置を示すもので、横軸
は角度、縦軸は視点軸Zからの距離(?1点軸重に平行
な深さ方向)を示している。このような投影像は次に投
影画像記憶部3に記憶される。
Figure 4 shows the arrangement of projection images obtained continuously over 360° at intervals of Δθ°, where the horizontal axis is the angle and the vertical axis is the distance from the viewing axis Z (?1 point axis). (depth direction parallel to the depth direction). Such a projected image is then stored in the projected image storage section 3.

続いて投影画像記憶部3に記憶されている投影画像を基
に、表示画像切り出し部4は実際に見たい画像を第6図
に示すような方法で切り出して表水装置5へ送る。すな
わちaのような投影像上の任恩方向例えばθXに視線方
向を与えると、この角度θXを中心として表示画面の大
きざに応じた角度部(θx−n乃至θx+n )の画像
データを切り出してbのように表示する。この際投影面
の曲面を考慮し、視線方向角度から離れるに従い平面に
投影したのと同じ画面となるように、Cのように補正し
た表示画像を作成する。
Next, based on the projection image stored in the projection image storage section 3, the display image cutting section 4 cuts out the image that the user actually wants to see using the method shown in FIG. 6, and sends it to the surface water device 5. In other words, if we give the line of sight direction, for example θX, on the projected image like a, then we can cut out the image data of the angle part (θx-n to θx+n) according to the size of the display screen with this angle θX as the center. Display as shown in b. At this time, taking into consideration the curved surface of the projection surface, a corrected display image as shown in C is created so that the screen becomes the same as that projected onto a plane as it moves away from the line-of-sight direction angle.

このように作成された表示画像は表示装置5に立体的に
表示される。
The display image created in this way is displayed three-dimensionally on the display device 5.

立体的に表示させる方法としては次のような二つの方法
を利用することができる。その一つは、二枚の異なる角
度の画像を観察者の左右それぞれの眼に表示し、人間の
眼の左右の視差角を利用して立体画像とする方法である
(この方法は例えば本出願人の出願による特願昭59−
201913号に詳細に述べられている)。
The following two methods can be used for three-dimensional display. One method is to display two images at different angles to the left and right eyes of an observer, and use the left and right parallax angles of the human eyes to create a three-dimensional image. Patent application filed by a person in 1982-
201913).

他の一つは、表示装置に視線角度を除々に変化させた表
示画面をアニメーション表示させ、運動視差によって立
体表示を行わせる方法である。
Another method is to have a display device display an animation of a display screen that gradually changes the line of sight angle, and perform stereoscopic display using motion parallax.

このいずれによっても視点から外部に向かって放射状に
演算した投影データを立体感のある画像として表示させ
ることができる。
With either of these methods, projection data calculated radially outward from the viewpoint can be displayed as an image with a three-dimensional effect.

第5図は本発明の他の実施例を示すもので、対象部位6
の範囲を360°以下の角度θに設定した例を示すもの
である。本実施例は特に対象部位が限定された位置に存
在している場合に適用して効果的であり、演算処理時間
を短縮することができる。
FIG. 5 shows another embodiment of the present invention, in which the target region 6
This shows an example in which the range is set to an angle θ of 360° or less. This embodiment is particularly effective when applied when the target region exists in a limited position, and can shorten the calculation processing time.

本発明のその他の実施例として、対象部位6の範囲を決
定する投影距離r1.r2を角度ごとに一定でなく変化
させるようにすることができる。
As another embodiment of the present invention, the projection distance r1. It is possible to make r2 not constant but change for each angle.

本実施例によれば特に複雑な形状の対象部位に適用して
効果的となる。
This embodiment is particularly effective when applied to target parts with complex shapes.

このように本発明実施例によれば、投影する視点を三次
元画像データの内部に置くようにしたので、複雑な形状
をもった構造を対象とした場合でも正確な投影を行うこ
とができる。またX線吸収率の高い物質による影響を避
けることができるので、このための余分な手間をかける
ことなく投影を行うことができる。従って観察者が投影
対象の形状、構造を把握する際の大きな手助けとなり、
医療機器に適用することにより診断能を向上させること
ができる。
As described above, according to the embodiment of the present invention, since the projection viewpoint is placed inside the three-dimensional image data, accurate projection can be performed even when a structure with a complicated shape is targeted. Furthermore, since the influence of substances with high X-ray absorption rate can be avoided, projection can be performed without extra effort for this purpose. Therefore, it is a great help for the observer to understand the shape and structure of the projected object.
Diagnostic performance can be improved by applying it to medical equipment.

[発明の効果] 以上述べたように本発明によれば、投影する視点を三次
元画像データ内部において投影像を作成するようにした
ので、正確な立体表示を行うことができる。
[Effects of the Invention] As described above, according to the present invention, since a projected image is created from a viewpoint within three-dimensional image data, accurate three-dimensional display can be performed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例の立体画像表示装置を示すブロッ
ク図、第2図は本実施例の作用を説明する概略透視図、
第3図及び第5図は本実施例の作用を説明する概略図、
第4図及び第6図は本実施例の作用を説明するデータ配
置図である。 2・・・投影画像作成部、3・・・投影画像記憶部、4
・・・表示画像切り出し部、6・・・対象部位、8・・
・投影面。 代理人 弁理士 則  近  憲  缶周     大
   胡   典   夫第3図 第4図 第5図
FIG. 1 is a block diagram showing a three-dimensional image display device according to an embodiment of the present invention, and FIG. 2 is a schematic perspective view illustrating the operation of this embodiment.
3 and 5 are schematic diagrams illustrating the operation of this embodiment,
FIGS. 4 and 6 are data layout diagrams explaining the operation of this embodiment. 2... Projection image creation unit, 3... Projection image storage unit, 4
...Display image cutting section, 6...Target part, 8...
・Projection surface. Agent Patent Attorney Norihiro Chika Ken Zhou Daiko Norifu Figure 3 Figure 4 Figure 5

Claims (3)

【特許請求の範囲】[Claims] (1)三次元画像データに基き任意の投影像を作成し表
示する立体画像表示装置において、CT多断層画像を三
次元画像データとして記憶する三次元画像記憶部と、三
次元画像データの内部に置かれた視点から外部に向けて
投影像を作成する投影画像作成部と、投影画像を記憶す
る投影画像記憶部とを備えたことを特徴とする立体画像
表示装置。
(1) In a three-dimensional image display device that creates and displays an arbitrary projection image based on three-dimensional image data, there is a three-dimensional image storage unit that stores CT multi-sectional images as three-dimensional image data, and a three-dimensional image storage unit that stores CT multi-sectional images as three-dimensional image data. A stereoscopic image display device comprising: a projection image creation unit that creates a projection image outward from a placed viewpoint; and a projection image storage unit that stores the projection image.
(2)投影画像を視線方向に順次切り出して表示する表
示画像切り出し部を備えた特許請求の範囲第1項記載の
立体画像表示装置。
(2) The stereoscopic image display device according to claim 1, further comprising a display image cutting section that sequentially cuts out and displays the projected images in the viewing direction.
(3)投影画像作成部が、前記視点からの距離の或る限
られた範囲内にのみ投影像を作成する特許請求の範囲第
1項記載の立体画像表示装置。
(3) The stereoscopic image display device according to claim 1, wherein the projection image creation section creates the projection image only within a certain limited range of distance from the viewpoint.
JP5534787A 1987-03-12 1987-03-12 Stereoscopic image display device Pending JPS63223885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5534787A JPS63223885A (en) 1987-03-12 1987-03-12 Stereoscopic image display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5534787A JPS63223885A (en) 1987-03-12 1987-03-12 Stereoscopic image display device

Publications (1)

Publication Number Publication Date
JPS63223885A true JPS63223885A (en) 1988-09-19

Family

ID=12995969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5534787A Pending JPS63223885A (en) 1987-03-12 1987-03-12 Stereoscopic image display device

Country Status (1)

Country Link
JP (1) JPS63223885A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08212391A (en) * 1995-02-03 1996-08-20 Toshiba Medical Eng Co Ltd Medical image conversion device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08212391A (en) * 1995-02-03 1996-08-20 Toshiba Medical Eng Co Ltd Medical image conversion device

Similar Documents

Publication Publication Date Title
US6980675B2 (en) Method for processing images of coronary arteries
US6807292B1 (en) Image displaying method and apparatus
US7127091B2 (en) Method and apparatus for visualizing a limited part of a 3D medical image-point-related data set, through basing a rendered image on an intermediate region between first and second clipping planes, and including spectroscopic viewing of such region
EP0968683B1 (en) Method and apparatus for forming and displaying image from a plurality of sectional images
JP4421016B2 (en) Medical image processing device
Herman et al. Display of three-dimensional discrete surfaces
US20070147671A1 (en) Analyzing radiological image using 3D stereo pairs
JP2938502B2 (en) Image display device
US11961193B2 (en) Method for controlling a display, computer program and mixed reality display device
EP3166082A1 (en) Rendering expanded lumen image
JP4257218B2 (en) Method, system and computer program for stereoscopic observation of three-dimensional medical images
JP2005521960A5 (en)
KR100420791B1 (en) Method for generating 3-dimensional volume-section combination image
JPS63223885A (en) Stereoscopic image display device
JPS5960680A (en) Picture processor
JP2006068350A (en) Medical image display method, medical image displaying device and program for medical image displaying
US20160205390A1 (en) Method for displaying on a screen an object shown in a 3d data set
JPH01209583A (en) Three-dimensional data processor
Baxter Three-dimensional viewing device for examining internal structure
Harris Display of multidimensional biomedical image information
JPS63244184A (en) Display device for stereoscopic picture
KR20050094536A (en) Method for displaying the planar images and the real 3d images at the same time
Hardy et al. An objective evaluation of the effectiveness of different methods of displaying three-dimensional information with medical x-ray images
JPH06348863A (en) Picture processor
JPH01135339A (en) Three-dimensional image diagnostic apparatus