JPS6322273A - Sintered abrasive body - Google Patents

Sintered abrasive body

Info

Publication number
JPS6322273A
JPS6322273A JP6021686A JP6021686A JPS6322273A JP S6322273 A JPS6322273 A JP S6322273A JP 6021686 A JP6021686 A JP 6021686A JP 6021686 A JP6021686 A JP 6021686A JP S6322273 A JPS6322273 A JP S6322273A
Authority
JP
Japan
Prior art keywords
abrasive grains
fine
abrasive
grinding
dispersed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6021686A
Other languages
Japanese (ja)
Inventor
Takao Ishida
石田 喬男
Toru Takahashi
徹 高橋
Takeo Nakagawa
威雄 中川
Kiyoshi Suzuki
清 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINTOU BUREETAA KK
Sintobrator Ltd
Original Assignee
SHINTOU BUREETAA KK
Sintobrator Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINTOU BUREETAA KK, Sintobrator Ltd filed Critical SHINTOU BUREETAA KK
Priority to JP6021686A priority Critical patent/JPS6322273A/en
Publication of JPS6322273A publication Critical patent/JPS6322273A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)

Abstract

PURPOSE:To prevent a failure in abrasive grain uniform distribution and an omission of abrasive grains from occurring, by molding and sintering a flat, curled fine metallic short fiber, to be obtained out of grinding a parent metal together with abrasive grains as a binding material. CONSTITUTION:A parent metal (for example, nodular graphite cast iron) is ground by a grinding stone, securing a curled, namely, bent flat striplike the metallic fiber 1. Abrasive grains 2 including the specified quantity of diamond or the like are mixed in this short fiber 1, and when they are mixed and dispersed by a stirrer or the like, as in illustration, each short fiber 1 gets intertwined so complicatedly and contacted with each other whereby a very fine mesh multilayer reticulate skeletal body 3 is formed, and these abrasive grains 2 are dispersed and charged in the fine void 4, forming a mixture 5 of the short fiber 1 and the abrasive grain 2. This mixture 5 is charged in a metal mold, and when it is pressurized, each abrasive grain 2 is firmly wrapped and held in an inner part, where a binding material is curved and bent, in this fine void 4, thus these abrasive grains are dispersed and set up in a state of being uniformly distributed. Next, they are taken out of the metal mold and sintered, thus these abrasive grains 2 are strongly deposited to the skeletal body 3 as one body.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、被加工物を所要の形状、寸法に加工する研削
作業に使用される研削砥石等の研摩体に関し、特に超硬
材料や硬脆材料の研削加工等に使用される微細金属短繊
維を結合材とする焼結型研摩体に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to an abrasive body such as a grinding wheel used in grinding work to process a workpiece into a required shape and size, and in particular, it relates to an abrasive body such as a grinding wheel used for grinding a workpiece into a desired shape and size, and in particular, The present invention relates to a sintered abrasive body using fine short metal fibers as a binder, which is used for grinding of brittle materials.

(従来の技術) 一般に、被加工物を所要の形状、寸法に加工してその表
面を良好な平滑面に仕上げる研摩体としては、ダイヤモ
ンド、CBN、熔融アルミナ、炭化ケイ素等の砥粒を磁
器質結合材、合成樹脂結合材、金属結合材など適宜の結
合材で固めて形成されている。このうち、ダイヤモンド
、CBNなどの高性能砥粒の結合材としては、結合力の
点より鉄系金属あるいは青銅、黄銅などの銅合金系金属
等の金属粉末よりなる金属結合材が主として使われてい
る。そしてこれら粉末状の金属結合材による研摩体は、
必要に応じ適宜の補助剤の混入の下に電着法や焼結法に
より製造されているが、砥粒の含有量に限度があって研
摩性能の向上が望めず、また、砥粒の分散性や保持力が
良好でなく、シたがって、研摩体の摩耗、機械的強度、
研削抵抗等に問題があった。そこで最近では、母材をび
びり振動切削して製造したアスペクト比がほぼ4〜70
の微細金属短繊維を結合材として用い、この微細金属短
繊維の焼結Mi織を骨格として砥粒を分散包蔵せしめて
なる微細金属短繊維焼結型研摩体の開発がすすめられて
いる。この場合、びびり振動切削による微細金属短繊維
の製造は、柱状や棒状をなす母材ブロックを回転させる
か又は高い固有振動数を持つ弾性工具を母材金属のまわ
りで回転させ、この弾性工具に所定量の微少な送りを与
えながら積極的にびびり振動を発生させ、びびり1サイ
クルごとに母材表層を強制的に分断して繊維化するもの
で、振動数に対応した本数と切込み幅に対応した長さの
微細で均一な寸法、物性の微細金属短繊維が製造される
。このようなびびり振動切削による微細金属短繊維は加
工硬化により母材以上の強度を示し、かつ、乾式でブロ
ックから直接分離創生されるため表面の接合に対する活
性度が高いと同時に酸化物や他の異物が少ない。そして
、断面が平滑面と破さい面及び粗面とからなる略三角形
類似をなし、表面積が大きい。ただ、このびびり振動切
削で製造した微細金属短繊維は粒子よりも流動性が低い
ため、長めで太さが細いと繊維のからみ合いが強すぎて
ファイバーボールと称する塊を形成し、砥粒の効果的な
分散封入を図れなくなる。また、逆にあまり短く太さを
大にすると、粒子に近くなるため成形性、焼結性が低下
し、砥粒の高含存率化を達成できないという問題がある
ので、これらの点を考慮して、びびり振動切削で製造し
た微細金属短繊維のアスペクト比はほぼ4〜70の範囲
としである。
(Prior art) Generally, as an abrasive body for processing a workpiece into the required shape and dimensions and finishing the surface with a good smooth surface, abrasive grains such as diamond, CBN, fused alumina, and silicon carbide are used. It is formed by solidifying with a suitable binding material such as a binding material, a synthetic resin binding material, a metal binding material, etc. Among these, metal binders made of metal powders such as iron metals or copper alloy metals such as bronze and brass are mainly used as binders for high-performance abrasive grains such as diamond and CBN due to their bonding strength. There is. The abrasive body made of these powdered metal binders is
Although it is manufactured by electrodeposition or sintering with the addition of appropriate auxiliary agents as necessary, the content of abrasive grains is limited, making it difficult to improve polishing performance, and the dispersion of abrasive grains The polishing properties and retention are not good, and the abrasive body wears, mechanical strength,
There were problems with grinding resistance, etc. Therefore, recently, the aspect ratio of the base material manufactured by chatter vibration cutting is approximately 4 to 70.
The development of a fine metal short fiber sintered abrasive body using fine metal short fibers as a bonding material and using a sintered Mi weave of the fine metal short fibers as a skeleton to disperse and embed abrasive grains is underway. In this case, the production of fine short metal fibers by chatter vibration cutting involves rotating a base metal block in the shape of a column or rod, or rotating an elastic tool with a high natural frequency around the base metal. It actively generates chatter vibration while applying a predetermined amount of minute feed, and for each chatter cycle, the surface layer of the base material is forcibly divided into fibers, and the number and cutting width correspond to the vibration frequency. Fine short metal fibers with uniform dimensions and physical properties are produced. The fine metal short fibers produced by chatter vibration cutting have a strength greater than that of the base material due to work hardening, and since they are separated directly from the block in a dry process, they have high surface bonding activity and are free from oxides and other substances. There are few foreign substances. The cross section has a substantially triangular shape consisting of a smooth surface, a fractured surface, and a rough surface, and has a large surface area. However, the fine metal short fibers produced by chatter vibration cutting have lower fluidity than particles, so if they are long and thin, the fibers will become too entangled, forming a lump called a fiber ball, and the abrasive grains will Effective dispersion and encapsulation cannot be achieved. On the other hand, if the thickness is made too short and thick, the moldability and sinterability will decrease because it will become close to particles, and a high content of abrasive grains will not be achieved, so these points should be taken into account. The aspect ratio of the fine short metal fibers produced by chatter vibration cutting is approximately in the range of 4 to 70.

(発明が解決しようとする問題点) しかしながら、前記のような研摩体は、結合材である微
細金属短繊維をびびり振動切削法で製造する作業が厄介
であるとともにびびり振動切削するためのチップ等の工
具の消耗が激しく、ダイヤモンドを砥粒とする研摩体の
金属結合材として使用するには、20μm等価径以上が
経済的に限度である。しかも、びびり振動切削により得
られる微細金属短繊維は、例えば第4図に示す球状黒鉛
鋳鉄(FCD  50)をびびり振動切削した場合の例
に示すように各繊維は直線形状とされ、そのため、これ
ら微細金属短繊維により形成される多層網目状の骨格が
崩れやすく、砥粒との混合、成形により得られる成形体
中の砥粒均一分布不良および砥粒脱落や高密度成形化に
は高圧が必要など種々の問題点がある。
(Problems to be Solved by the Invention) However, with the abrasive body as described above, it is difficult to manufacture fine metal short fibers as a binding material by a chatter vibration cutting method, and chips etc. for chatter vibration cutting are difficult to manufacture. This causes severe tool wear, and the economic limit for using diamond as a metal bonding material for abrasive bodies using diamond as an abrasive is an equivalent diameter of 20 μm or more. In addition, the fine metal short fibers obtained by chatter vibration cutting, for example, each fiber has a linear shape, as shown in the example of the chatter vibration cutting of spheroidal graphite cast iron (FCD 50) shown in Fig. 4. The multilayer network-like skeleton formed by fine short metal fibers is easily collapsed, resulting in poor uniform distribution of abrasive grains in the molded product obtained by mixing with abrasive grains and molding, resulting in abrasive grains falling off and high pressure being required for high-density molding. There are various problems such as.

(問題点を解決するための手段) 本発明は、以上のような問題点のない微細金属短繊維を
結合材とする焼結型研摩体を目的として完成されたもの
で、研削加工により得られる扁平なカール状の微細金属
短繊維を結合材として砥粒とともに成形焼結したことを
特徴とするものである。
(Means for Solving the Problems) The present invention was completed with the aim of producing a sintered abrasive body using fine short metal fibers as a binder, which does not have the above-mentioned problems. It is characterized by being formed and sintered with abrasive grains using flat curled fine short metal fibers as a binder.

(作用) このような微細金属短繊維を結合材とする焼結型研摩体
は従来の研摩体と何ら変わることなく使用すればよい。
(Function) A sintered abrasive body using such fine short metal fibers as a binder can be used in the same way as a conventional abrasive body.

(実施例) 次に、本発明を図面を参考にしながらその製造法ととも
に詳細に説明すれば、第1図は鋳鉄を母材金属として研
削加工した場合の微細金属短繊維の一例を示す拡大斜視
図で、微細金属短繊維(11は図示のようにカール状す
なわち緩やかに湾曲又は屈曲した扁平な帯状で、寸法的
にも1〜20μm等価径、弧長0.1〜1.5N程度の
微細な繊維状を呈している。この微細金属短繊維(1)
は研削条件や研削に用いる砥石の粒度を変えることによ
り異なった性状を示し、例えば、母材金属を球状黒鉛鋳
鉄(FCD  50)としてこれを研削する研削砥石に
直径1501凋、幅30 mm、粒度#80のCBN電
着砥石を使用し、研削速度1484 m /minで湿
式研削した場合において、切込み深さと送り速度を変え
ることにより第3図に拡大写真で示されるような微細金
属短繊維(1)が得られる。なお、バイト切削によって
もカール状に切削できるが、本発明に供する1〜20μ
m等価径程度の微細金属短wA! (11を得ることは
技術的にも経済的にも難しい、また、第2図は無数の微
細金属短繊維(11を絡合させた多層網目状の骨格体(
3)に砥粒(2)を分散して包蔵させた状態を示すもの
で、前記のようにして製造された微細金属短繊維(1)
を所定の分級機により分級後脱脂洗浄を行い、続いて還
元焼戻し処理をする。その後、微細金属短繊維(1)に
所定量のダイヤモンドやCBN等の砥粒(2)を配合し
、適宜の混合撹拌機等により混合分散を行う。この操作
により微細金属短繊維(1)は第2図に示すように、互
いに複雑に絡み合って接触し合い、掻めて目の細い多層
綱目状の骨格体(3)が形成され、前記網目によって示
される多数の微小空隙部(4)に砥粒(2)が分散充填
され、微細金属短繊維(1)と砥粒(2)との混合物(
5)となる。次に該混合物(5)を所定量計量して所要
の金型に充填し、所定の圧力で加圧成形する。このとき
の加圧力は結合材が粉末粒子ではなく、扁平なカール状
の微細金属短繊維(1)であるため低圧力で所要の形状
に成形され、また、各砥粒(2)は微小間隙部(4)に
おける結合材の湾曲又は屈曲した内側部分にしっかり包
蔵保持され、均一な分布状態に分散配置される0次に、
このように形成された成形体は、前記金型より脱型して
適当な支持体又は容器に移されたうえ焼成窯内へ送られ
るが、前記したように湾曲又は屈曲した扁平な帯状の微
細金属短繊維(1)の複雑な絡み合いにより成形体の強
度が比較的大であるため、金型からの取出しゃ運搬、移
し変え等の取扱操作が容易で、これら取扱い中に損傷を
生ずることはない。しかして、焼成窯内において焼結が
行われると、微細金属短繊維+11により形成された骨
格体(3)が互いに溶着するとともに、均一に分散配合
された砥粒(2)も該骨格体(3)に強固に一体状に溶
着され、かつ、骨格体(3)間における残りの微小空隙
部(4)はそのまま多数の気孔部となり、所定の焼結組
織が構成されるから、この焼結体を必要に応じ所定の形
状、寸法に仕上げて砥石等の製品として使用する。なお
、微細金属短繊維(1)と砥粒(2)との混合分散時に
必要に応じ適宜の補助剤を混入してもよく、また、本実
施例のような製品のほか、無給油自己潤滑材料や漱細粉
複合焼結品などへも適用できる。
(Example) Next, the present invention will be explained in detail together with its manufacturing method with reference to the drawings. Fig. 1 is an enlarged perspective view showing an example of fine metal short fibers when cast iron is ground as a base metal. In the figure, fine short metal fibers (11 are curled, that is, gently curved or bent flat strips as shown in the figure, have an equivalent diameter of 1 to 20 μm, and an arc length of about 0.1 to 1.5 N). This fine short metal fiber (1) has a fibrous shape.
shows different properties by changing the grinding conditions and the grain size of the grinding wheel used for grinding. For example, the base metal is spheroidal graphite cast iron (FCD 50), and the grinding wheel used for grinding it has a diameter of 1501 mm, width of 30 mm, and grain size. In the case of wet grinding using a #80 CBN electrodeposited grindstone at a grinding speed of 1484 m/min, fine short metal fibers (1 ) is obtained. It should be noted that cutting with a cutting tool can also be used to cut into a curled shape.
Fine metal short wA with an equivalent diameter of m! (It is technically and economically difficult to obtain 11, and FIG.
3) shows a state in which abrasive grains (2) are dispersed and encapsulated in fine metal short fibers (1) produced as described above.
After classification using a specified classifier, degreasing and cleaning are performed, followed by reduction and tempering treatment. Thereafter, a predetermined amount of abrasive grains (2) such as diamond or CBN are added to the fine short metal fibers (1), and mixed and dispersed using an appropriate mixer or the like. Through this operation, the fine metal short fibers (1) intertwine and come into contact with each other in a complicated manner, as shown in Figure 2, and are raked to form a thin, multilayered mesh-like skeleton (3), and the mesh Abrasive grains (2) are dispersed and filled in a large number of micro voids (4) shown, and a mixture of fine short metal fibers (1) and abrasive grains (2) is formed.
5). Next, a predetermined amount of the mixture (5) is measured, filled into a required mold, and pressure-molded at a predetermined pressure. The pressure applied at this time is low because the binder is not powder particles but flat curled fine metal short fibers (1), so it is molded into the desired shape with low pressure, and each abrasive grain (2) is Zero-order particles are firmly contained and held in the curved or bent inner part of the bonding material in part (4) and are dispersed in a uniformly distributed state;
The molded product thus formed is demolded from the mold, transferred to a suitable support or container, and then sent into a firing kiln. The strength of the compact is relatively high due to the complex intertwining of the short metal fibers (1), so handling operations such as removal from the mold, transportation, and transfer are easy, and no damage occurs during these handling operations. do not have. When sintering is performed in the firing kiln, the skeleton bodies (3) formed by the short metal fibers +11 are welded to each other, and the abrasive grains (2) uniformly dispersed in the skeleton body (3) are also welded together. 3), and the remaining micro voids (4) between the skeletons (3) become many pores, forming a predetermined sintered structure. The body is finished into a predetermined shape and size as required and used as a product such as a whetstone. In addition, when mixing and dispersing the fine short metal fibers (1) and the abrasive grains (2), an appropriate auxiliary agent may be mixed as necessary. It can also be applied to materials and sour powder composite sintered products.

次に、このようにして得られた本発明に係る焼結型研摩
体と、従来の各種研摩体との性能結果を下表に示す。こ
の場合の研削条件は製品としての砥石の周速を636 
m /win とし、研削幅3.0龍、切込み3.0f
i、送り速度42tm/ll1nであり、また、いずれ
も砥粒としてダイヤモンド砥粒を使用して研削を行った
もので、その粒度はSD#100/1、集中度は100
である。また、研削比とは加工製品の除去体積を研摩体
(砥石)の摩耗体積で割った値、すなわち、砥石の単位
消耗量光たりの加工除去能力を示しその値が大きい程砥
石の寿命が長く研削能力があることを示している。
Next, the performance results of the thus obtained sintered abrasive body according to the present invention and various conventional abrasive bodies are shown in the table below. In this case, the grinding conditions are such that the circumferential speed of the grindstone as a product is 636
m/win, grinding width 3.0, depth of cut 3.0f
i, the feed rate was 42tm/ll1n, and both were ground using diamond abrasive grains, the grain size was SD#100/1, and the concentration was 100.
It is. In addition, the grinding ratio is the value obtained by dividing the removed volume of the processed product by the worn volume of the abrasive body (grinding wheel), that is, the processing removal ability per unit consumption of the grinding wheel.The larger the value, the longer the life of the grinding wheel. It shows that it has grinding ability.

この表によれば、Iは強度が不足でこの研削条件以上で
はレジンの焼付が発生し、使用不可である、また、■も
前記同様に強度不足であり、かつ、研削初期では研削抵
抗は少ないが、砥粒摩耗後は研削抵抗が大きく、再ドレ
ンシングは表中の■〜■の各砥石に比べ困難で簡単に再
生し難く、これらに対し■は若干強度が大であるが成形
性がやや不良である。■は砥石強度良好、かつ、研削能
率が大で全体としてすぐれた性質を有しているが、本発
明の実施例である■は■より更に砥石強度が大であると
ともに成形性にすぐれ、更に、焼結性、砥粒保持力が良
好で、しかも切れ味(研削抵抗)もよく、かつ、砥石寿
命(研削比)もすぐれている。
According to this table, I lacks strength and resin seizure occurs under these grinding conditions, making it unusable. Similarly, ■ also lacks strength, and the grinding resistance is low in the early stages of grinding. However, after the abrasive grains wear out, the grinding resistance is large, and re-drenching is more difficult than with the grindstones marked ■ to ■ in the table. It is defective. ■ has good grindstone strength and high grinding efficiency, and has excellent properties as a whole, but ■, which is an example of the present invention, has even higher grindstone strength than ■, excellent formability, and It has good sinterability, good abrasive retention, good sharpness (grinding resistance), and excellent grinding wheel life (grinding ratio).

(発明の効果) 以上より明らかなように、本発明によれば、結合材とし
て母材金属を研削することにより得られる扁平なカール
状の微細金属短繊維を使用しているので、振動切削の場
合よりも極めて工程が簡単で多量に製造できて経済的で
ある。また、寸法的にも前記びびり振動切削の場合より
も微細な1〜20μm等価径の範囲が主体とされるとと
もに、形状が単なる直線状繊維ではなくてカール状すな
わち湾曲又は屈曲した扁平帯状であるため、砥粒との混
合分散時に前記形状の微細金属短繊維が互いに複雑に絡
み合い、接触し合って容易に分離崩壊しない多層網目状
の極めて目の細かい骨格体を形成し、したがって、成形
性が良好となって成形品の取出し、運搬等の取扱いが容
易である。更に、ダイヤモンド等の砥粒は微細金属短繊
維の湾曲又は屈曲内方側にしっかりと包み込まれて均一
に分散保持されるとともに、焼結時に収縮率が大きくて
砥粒が硬く保持焼結されるため砥粒保持力が高く、そし
て砥粒脱落ができないので、研削抵抗も低くて切れ味を
長時間持続でき、かつ、研削比も高いため、重研削であ
るクリープフィード研削加工などにも容易に経済的に使
用できる。
(Effects of the Invention) As is clear from the above, according to the present invention, flat curled fine short metal fibers obtained by grinding the base metal are used as the binding material, so vibration cutting is possible. The process is much simpler and can be produced in large quantities, making it more economical. In addition, the dimensions are mainly in the range of 1 to 20 μm equivalent diameter, which is finer than in the case of chatter vibration cutting, and the shape is not just a straight fiber but a curled shape, that is, a curved or bent flat band shape. Therefore, when mixed and dispersed with abrasive grains, the fine short metal fibers of the above shape intertwine with each other in a complicated manner and form a multilayer network-like extremely fine skeleton that does not easily separate and collapse by contacting each other, and therefore has poor formability. This makes it easy to take out the molded product, transport it, etc. Furthermore, abrasive grains such as diamond are tightly wrapped inside the curved or bent inner side of the fine short metal fibers and are evenly dispersed and held, and the shrinkage rate is large during sintering, so the abrasive grains are held hard and sintered. Therefore, the abrasive grain retention is high and the abrasive grains do not fall off, so the grinding resistance is low and the sharpness can be maintained for a long time.The grinding ratio is also high, so it is easily economical for heavy grinding such as creep feed grinding. can be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に使用されるカール状の微細金属短繊維
の一例を示す拡大斜視図、第2図は同じくカール状の微
細金属短繊維により形成される多層網目状の骨格体に砥
粒が分散包蔵された混合物の拡大斜視図、第3図は従来
のびびり振動切削による微細金属短繊維の拡大写真図で
ある。 (1)二カール状の微細金属短繊維、(2):砥粒。 特許出願人  新東プレークー株式会社代  理  人
    名  嶋   明   部間        
  綿  貫  達  離開          山 
 零  文  夫l°フーノ1=メ」パ) オ9〔ネ=
lづを:、1”、、’<:54ぜさζ球第1図    
2°豚郡 第2図 り ′図面の浄1!F(内容に変更なし) 手続補正占(方式) 昭和61年6月2日
Fig. 1 is an enlarged perspective view showing an example of curled fine metal short fibers used in the present invention, and Fig. 2 shows abrasive particles attached to a multilayer network skeleton formed by curled fine metal short fibers. FIG. 3 is an enlarged perspective view of a mixture in which . (1) Two-curl fine metal short fibers, (2): Abrasive grains. Patent applicant: Shinto Preku Co., Ltd. Representative: Akira Shima Buma
Watakan Tatsu Likai Mountain
0 sentence husbandl°funo1=me'pa) o9[ne=
lzuwo:,1'',,'<:54zesa ζ sphere Figure 1
2° Butagun 2nd Diagram 'Drawing Purification 1! F (No change in content) Procedural amendment (method) June 2, 1986

Claims (1)

【特許請求の範囲】[Claims]  研削加工により得られる扁平なカール状の微細金属短
繊維を結合材として砥粒とともに成形焼結したことを特
徴とする焼結型研摩体。
A sintered abrasive body characterized by being formed and sintered with abrasive grains using flat, curled fine metal short fibers obtained by grinding as a binding material.
JP6021686A 1986-03-18 1986-03-18 Sintered abrasive body Pending JPS6322273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6021686A JPS6322273A (en) 1986-03-18 1986-03-18 Sintered abrasive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6021686A JPS6322273A (en) 1986-03-18 1986-03-18 Sintered abrasive body

Publications (1)

Publication Number Publication Date
JPS6322273A true JPS6322273A (en) 1988-01-29

Family

ID=13135746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6021686A Pending JPS6322273A (en) 1986-03-18 1986-03-18 Sintered abrasive body

Country Status (1)

Country Link
JP (1) JPS6322273A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995027593A1 (en) * 1994-04-12 1995-10-19 Norton S.A. Abrasive grinding wheels
JP2012240164A (en) * 2011-05-20 2012-12-10 Fujimi Inc Metal-bonded grinding wheel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995027593A1 (en) * 1994-04-12 1995-10-19 Norton S.A. Abrasive grinding wheels
JP2012240164A (en) * 2011-05-20 2012-12-10 Fujimi Inc Metal-bonded grinding wheel

Similar Documents

Publication Publication Date Title
US4618349A (en) Grinding wheel manufacturing method
US3928949A (en) Hollow body grinding materials
US3594141A (en) Method for making a metal bonded diamond abrasive tool
KR940011293B1 (en) Dressing tool for grinding wheel
JPH10503428A (en) Powder preform and method for producing abrasive article made therefrom
SE438620B (en) SET TO MAKE AGGREGATED DIAMOND SLIP PARTICLES
JPH0543462B2 (en)
JPH09103965A (en) Porous superbrasive grinding wheel and its manufacture
JPH0716880B2 (en) Porous whetstone with huge pores
US4776885A (en) Sintered composite materials with short metal fibers as matrix
JPS62205203A (en) Production of ultrafine short metallic fiber
JPH03264263A (en) Porous metal bond grinding wheel and manufacture thereof
JPS6322273A (en) Sintered abrasive body
JPS606356A (en) Sintered minute short fiber abrasive
US7273409B2 (en) Process for forming spherical components
EP0668126A2 (en) Porous metal bond grinder and method of manufacturing the same
JP2987485B2 (en) Superabrasive grindstone and method of manufacturing the same
JPS6257871A (en) Manufacture for metal bond grinding wheel
JPS63256365A (en) Porous grindstone
JPH0919867A (en) Manufacture of super-abrasive grain single layer grinding wheel
JPS62246474A (en) Manufacture of super abrasive grain grindstone for mirror-like surface finishing
JPS64183B2 (en)
JPH10113876A (en) Diamond grindstone, its manufacturing method and tool
JP7539997B2 (en) Manufacturing method of porous metal bonded grindstone and manufacturing method of porous metal bonded wheel
JP2003089064A (en) Rotary truer and manufacturing method therefor