JPS63222264A - Determination of base sequence of nucleic acid by chemiluminescence detection - Google Patents

Determination of base sequence of nucleic acid by chemiluminescence detection

Info

Publication number
JPS63222264A
JPS63222264A JP62057723A JP5772387A JPS63222264A JP S63222264 A JPS63222264 A JP S63222264A JP 62057723 A JP62057723 A JP 62057723A JP 5772387 A JP5772387 A JP 5772387A JP S63222264 A JPS63222264 A JP S63222264A
Authority
JP
Japan
Prior art keywords
electrophoresis
nucleic acid
chemiluminescent substrate
dna
base sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62057723A
Other languages
Japanese (ja)
Inventor
Toshihiro Watanabe
渡辺 俊宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP62057723A priority Critical patent/JPS63222264A/en
Publication of JPS63222264A publication Critical patent/JPS63222264A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Saccharide Compounds (AREA)

Abstract

PURPOSE:To achieve a measurement with an inexpensive device and with a high S/N ratio, by a method wherein a nucleic acid fragment labeled by a chemiluminescent substrate is eluted by electrophoresis, a reagent for emission of light is made to react with an elution sample to detect chemiluminescence optically. CONSTITUTION:A DNA fragment labeled by N-(4-aminobutyl)-N-ethylisoluminol or the like is injected at one end of migration columns 2-1-2-4 and an electrophoresis is performed by a phoretic voltage from a power source 18. Bands (a), (b)... of the DNA fragment eluted from the other end of the migration columns 2-1-2-4 are carried through a passage 10 by a buffer 14. Then, hydrogen peroxide, potassium ferricyanide and caustic soda are mixed sequentially and then, a solution is introduced into a flowcell 16 to detect chemiluminescence. The results of detection are processed by a signal processing section 34 to determine the sequence of DNA.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は標識物質によりラベルされたDNAなどの核酸
断片を電気泳動させ、泳動後に前記a織物質を光学的に
検出することによって核酸の塩基配列を決定する方法に
関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention electrophores nucleic acid fragments such as DNA labeled with a labeling substance, and optically detects the a-textured material after electrophoresis, thereby detecting the nucleic acid bases. It relates to a method for determining sequences.

(従来の技術) これまでの色素ラベル法によるDNAの塩基配列を決定
する方法では、標識色素として蛍光物質を用いた蛍光色
素法が行なわれている(例えば、特開昭60−2208
60号公報、特開昭60−242368号公報などを参
照)。
(Prior art) Conventional methods for determining DNA base sequences using dye labeling methods include fluorescent dye methods that use fluorescent substances as labeling dyes (for example, Japanese Patent Application Laid-Open No. 60-2208
(See Japanese Patent Laid-Open No. 60-242368, etc.).

蛍光色素法ではゲルによる励起光のレーリー散乱や水に
よるラマン散乱(ストークス線)が僅かな蛍光光の邪魔
をしてバックグラウンドを高める。
In the fluorescent dye method, Rayleigh scattering of excitation light by the gel and Raman scattering (Stokes lines) by water interfere with a small amount of fluorescent light, increasing the background.

励起光を連続して照射する定常蛍光法はラジオアイソト
ープ法に比べて感度が1〜2桁劣るといわれている。そ
のため、誤り率が1%以上に達している( rNatu
reJ誌321巻12号674〜679ページ参照)。
It is said that the constant fluorescence method, in which excitation light is continuously irradiated, is one to two orders of magnitude less sensitive than the radioisotope method. Therefore, the error rate has reached more than 1% (rNatur
(Refer to reJ, Vol. 321, No. 12, pp. 674-679).

そのため、蛍光色素法では定常蛍光法に代って時間分解
蛍光法が提案されている(特開昭61−2077号公報
を参照)。時間分解蛍光法では励起光をパルス的に照射
し、励起光が消光した後のみの蛍光を検出することによ
ってバックグラウンドを減少させている(例えば「蛍光
測定−生物科学への応用」 (学会出版センター、19
83年刊)99〜160ページなどを参照)。
Therefore, in the fluorescent dye method, a time-resolved fluorescence method has been proposed in place of the steady fluorescence method (see Japanese Patent Laid-Open No. 61-2077). In the time-resolved fluorescence method, the background is reduced by irradiating excitation light in a pulsed manner and detecting the fluorescence only after the excitation light is quenched (for example, "Fluorescence Measurement - Application to Biological Sciences" (Society Publishing) Center, 19
(published in 1983), see pages 99-160).

(発明が解決しようとする問題点) 時間分解蛍光法では、蛍光の発光時間が非常に短かいの
で、励起光パルスの立下り時間を1ナノ秒以下にするス
イッチングが必要である。このような高速のスイッチン
グは機械的なシャッタでは実現することができず、モー
ドロックレーザを用いなければならない。そのため、装
置が高価になる。また、高速での信号処理が難しく、時
間分解蛍光法は現在のところ提案のみに留まっている。
(Problems to be Solved by the Invention) In the time-resolved fluorescence method, since the emission time of fluorescence is very short, switching is required to make the fall time of the excitation light pulse 1 nanosecond or less. Such high-speed switching cannot be achieved with a mechanical shutter and requires the use of a mode-locked laser. Therefore, the device becomes expensive. In addition, high-speed signal processing is difficult, and the time-resolved fluorescence method is currently only a proposal.

また、電気泳動装置で使用されるゲルの支持体はガラス
製又はポリエチレン製であるが、それらの支持体には弱
いながらも蛍光を尭するものがある。そのため、仮に時
間分解蛍光法を採用したとしても、それだけではDNA
断片を充分に高感度に検出できるという保証はない。
Furthermore, gel supports used in electrophoresis devices are made of glass or polyethylene, and some of these supports exhibit weak fluorescence. Therefore, even if a time-resolved fluorescence method was adopted, it would not be possible to analyze DNA by itself.
There is no guarantee that fragments can be detected with sufficiently high sensitivity.

本発明は励起光源により蛍光ラベルを励起する蛍光法に
換えて、化学発光性基質による標識化を行ない、核酸断
片を泳動ゲルから溶出させた後化学反応を行なわせ、光
学的に検出することによって、レーザなどの高価な励起
光源を必要とせず、安価で、かつ、S/N比を高めるこ
とのできる塩基配列決定方法を提供することを目的とす
るものである。
In place of the fluorescence method in which a fluorescent label is excited by an excitation light source, the present invention uses a chemiluminescent substrate to label the nucleic acid fragments, performs a chemical reaction after eluting the nucleic acid fragments from an electrophoresis gel, and optically detects the nucleic acid fragments. The object of the present invention is to provide a base sequencing method that does not require an expensive excitation light source such as a laser, is inexpensive, and can increase the S/N ratio.

(問題点を解決するための手段) 本発明では、電気泳動装置のゲルの一端を流路に接続し
、前記ゲルの他端には化学発光性基質で標識化された核
酸断片を末端塩基種ごとに注入し電気泳動させてゲルの
一端から溶出させ、前記流路に前記化学発光性基質と反
応して発光させる反応試薬を供給するとともに、前記流
路をフローセルに導いて化学発光を光学的に検出して塩
基配列を決定する。
(Means for Solving the Problems) In the present invention, one end of the gel of an electrophoresis device is connected to a flow path, and the other end of the gel is provided with a terminal base species of a nucleic acid fragment labeled with a chemiluminescent substrate. A reaction reagent that reacts with the chemiluminescent substrate to emit light is supplied to the channel, and the channel is guided to a flow cell to elute the chemiluminescence from one end of the gel through electrophoresis. Detect and determine the base sequence.

(実施例) 図は本発明に使用する塩基配列決定装置の一例を示すも
のである。
(Example) The figure shows an example of a base sequence determination device used in the present invention.

2−1〜2−4は例えば内径が1mm程度のガラス管に
ポリアクリルアミド・ゲルが充填された泳動カラムであ
る。試料としては末端塩基種別に調整された4種類のD
NA断片が使用されるため、泳動管は4本が1組として
使用される。各泳動カラム2−1〜2−4の一端は一側
電極槽4に入れられた緩衝液6に浸され、それぞれの一
端からDNA断片試料が注入される。
2-1 to 2-4 are electrophoresis columns in which polyacrylamide gel is filled in a glass tube having an inner diameter of about 1 mm, for example. The samples include four types of D adjusted to the type of terminal base.
Since NA fragments are used, a set of four electrophoresis tubes is used. One end of each of the electrophoresis columns 2-1 to 2-4 is immersed in a buffer solution 6 placed in a one-sided electrode tank 4, and a DNA fragment sample is injected from each end.

各泳動カラム2−1〜2−4の他端はミキシング用コネ
クタ8によって流路10に接続されている。流路10に
は+側電極槽12中の緩衝液14がポンプ15によって
供給され、流路10を流れてフローセル16に導かれる
The other end of each of the electrophoresis columns 2-1 to 2-4 is connected to the channel 10 by a mixing connector 8. The buffer solution 14 in the + side electrode tank 12 is supplied to the flow path 10 by a pump 15, flows through the flow path 10, and is guided to the flow cell 16.

一側電極槽4と+側電極槽12の間には泳動用電源18
が設けられて泳動カラム2−1〜2−4に泳動電圧が印
加される。
A power source 18 for electrophoresis is provided between the one side electrode tank 4 and the + side electrode tank 12.
is provided, and a migration voltage is applied to the migration columns 2-1 to 2-4.

ミキシング用コネクタ8とフローセル16の間の流路に
はミキシング用コネクタ20によって過酸化水素(H2
0=)水用の流路が接続され、過酸化水素水溶液槽22
からポンプ24によって過酸化水素水が流路10に供給
される。
A mixing connector 20 connects hydrogen peroxide (H2
0=) A flow path for water is connected, and the hydrogen peroxide aqueous solution tank 22
A hydrogen peroxide solution is supplied to the channel 10 by a pump 24 from the pump 24 .

ミキシング用コネクタ8とフローセル16の間の流路に
は更にミキシング用コネクタ26によってフェリシアン
化カリウム(K3 Fe (CN)s)水溶液用の流路
が接続され、フェリシアン化カリウムとカセイソーダ(
N a OH)を含む水溶液の槽28からポンプ30に
よってフェリシアン化カリウムとカセイソーダの水溶液
が流路10に供給される。
A flow path for a potassium ferricyanide (K3 Fe (CN)s) aqueous solution is further connected to the flow path between the mixing connector 8 and the flow cell 16 by a mixing connector 26, and a flow path for potassium ferricyanide (K3 Fe (CN)s) aqueous solution is connected to the flow path between the mixing connector 8 and flow cell 16.
An aqueous solution of potassium ferricyanide and caustic soda is supplied to the channel 10 by a pump 30 from a tank 28 of an aqueous solution containing NaOH).

フローセル16に接近して光電子増倍管32が設けられ
ており、フローセル16中で化学発光した光が光電子増
倍管32で検出され、マイクロコンピュータによる信号
処理部34に導かれてDNAの塩基配列が決定される。
A photomultiplier tube 32 is provided close to the flow cell 16, and the light emitted from chemiluminescence in the flow cell 16 is detected by the photomultiplier tube 32 and guided to a signal processing section 34 using a microcomputer to determine the base sequence of the DNA. is determined.

泳動カラムの一端に注入されるDNA断片試料は末端が
アミノ化されたオリゴヌクレオチド・プライマーに化学
発光性基質で標識化し、 Sanger法による鎖伸長
反応を行なった一群のDNA断片である。化学発光性基
質としてはN−(4−アミノブチル)−N−エチルイソ
ルミノールを用い、この化学発光性基質による標識化の
プロセスは「J。
The DNA fragment sample injected into one end of the electrophoresis column is a group of DNA fragments obtained by labeling an oligonucleotide primer with an aminated end with a chemiluminescent substrate and performing a chain elongation reaction using the Sanger method. N-(4-aminobutyl)-N-ethylisoluminol was used as the chemiluminescent substrate, and the process of labeling with this chemiluminescent substrate was described in "J.

of ChromatographyJ誌、328号、
121〜126ページ(1985年)に記載されている
アミンへの標識化法に準じて行なう。
of ChromatographyJ magazine, No. 328,
This is carried out according to the method for labeling amines described on pages 121 to 126 (1985).

N−(4−アミノブチル)−N−エチルイソルミノール
で標識化された末端塩基A(アデニン)、G(グアニン
)、T(チミン)及びC(シトシン)別のDNA断片を
各泳動カラム2−1〜2−4の一端に注入して泳動用電
源18からの泳動電圧により電気泳動を行なわせる。
DNA fragments labeled with N-(4-aminobutyl)-N-ethylisoluminol with different terminal bases A (adenine), G (guanine), T (thymine) and C (cytosine) were added to each electrophoresis column 2- 1 to 2-4, and electrophoresis is performed using the electrophoresis voltage from the electrophoresis power source 18.

図で泳動カラム2−1の他端に設けられる流路10に関
する構成だけが示されているが、他の泳動カラム2−2
〜2−4の他端にも同じ構成の流路10が接続されてお
り、各流路10がそれぞれのフローセル16に導かれて
化学発光が検出されるようになっている。
Although only the configuration related to the flow path 10 provided at the other end of the electrophoresis column 2-1 is shown in the figure, other electrophoresis columns 2-2
A flow path 10 having the same configuration is also connected to the other end of ~2-4, and each flow path 10 is guided to a respective flow cell 16 so that chemiluminescence is detected.

各泳動カラム2−1〜2−4の一端にDNA断片試料が
注入され、同時に泳動が開始されると、各泳動カラム2
−1〜2−4の他端からは泳動したDNA断片のバンド
a、b・・・・・・が順次子側電極槽12の泳動用緩衝
液14によって溶出され、流路10をフローセル16の
方向に運ばれていく。
When a DNA fragment sample is injected into one end of each electrophoresis column 2-1 to 2-4 and electrophoresis is started at the same time, each electrophoresis column 2
Bands a, b, etc. of the migrated DNA fragments are sequentially eluted from the other ends of -1 to 2-4 by the migration buffer 14 of the secondary electrode tank 12, and the flow path 10 is transferred to the flow cell 16. being carried in the direction.

この標識化されたDNA断片を含む溶液に対して適切な
濃度の過酸化水素とフェリシアン化カリウム及びカセイ
ソーダが次々に混合されることによって化学発光を生じ
る。化学発光を開始した溶液は直ちにフローセル16に
導入され、光電子増倍管32で光子計数法により検出さ
れる。この操作を各泳動カラム2−1〜2−4の試料A
、G。
Chemiluminescence is produced by sequentially mixing appropriate concentrations of hydrogen peroxide, potassium ferricyanide, and caustic soda into a solution containing this labeled DNA fragment. The solution that has started chemiluminescence is immediately introduced into the flow cell 16 and detected by the photomultiplier tube 32 by photon counting. Repeat this operation for sample A of each electrophoresis column 2-1 to 2-4.
,G.

T、Cの4種類に対して行なったものを信号処理部34
で処理し、DNAの塩基配列を決定する。
The signal processing unit 34 performs the processing for the four types of T and C.
to determine the DNA base sequence.

N−(4−アミノブチル)−N−エチルイソルミノール
が過酸化水素及びフェリシアン化カリウムと反応して化
学発光をする機構は上記の文献rJ、of Chro+
matographyJ誌に記載されている。
The mechanism by which N-(4-aminobutyl)-N-ethylisoluminol reacts with hydrogen peroxide and potassium ferricyanide to emit chemiluminescence is described in the above-mentioned document rJ, of Chro+
It is described in the magazine MatographyJ.

化学発光をする反応系はイソルミノール誘導体とフェリ
シアン化カリウムの系に限ったものではない。例えば、
過酸化水素と反応して蛍光物質を化学的に励起する分子
種(例えばジオキセタンジオンなど)を生じる化合物を
用いれば、蛍光色素で標識化されたDNA断片を光源励
起によらずに化学発光させて検出させることができる。
Reaction systems that produce chemiluminescence are not limited to the system of isoluminol derivatives and potassium ferricyanide. for example,
By using a compound that reacts with hydrogen peroxide to generate a molecular species (such as dioxetanedione) that chemically excites a fluorescent substance, DNA fragments labeled with a fluorescent dye can be chemiluminescent without being excited by a light source. can be detected.

蛍光物質を化学的に励起する機構については、HLPC
分析での例としてrJ、of Liquid Chro
matographyJ誌、第6巻、第9号、第160
3〜1616ベージ(1983年)に記載されている。
Regarding the mechanism of chemically exciting fluorescent substances, HLPC
An example in the analysis is rJ, of Liquid Chro.
MatographyJ Magazine, Volume 6, No. 9, No. 160
3-1616 pages (1983).

この場合、化学発光性基質としては蛍光物質を用い、従
来の蛍光法で行なわれているようにDNA断片を蛍光物
質で標識化する。そしてフェリシアン化カリウムとカセ
イソーダの水溶液槽28に代えて過酸化水素と反応しジ
オキセタンジオンなどの蛍光物質励起分子を生じる化合
物の水溶液を供給するようにすればよい。
In this case, a fluorescent substance is used as the chemiluminescent substrate, and the DNA fragments are labeled with the fluorescent substance as is done in conventional fluorescence methods. Instead of the aqueous solution tank 28 of potassium ferricyanide and caustic soda, an aqueous solution of a compound that reacts with hydrogen peroxide to produce excited molecules of a fluorescent substance such as dioxetanedione may be supplied.

(発明の効果) 本発明では化学発光性基質で標識化された核酸断片を電
気泳動させて溶出させ、溶出試料に化学発光性基質と反
応して発光させる反応試薬を反応させてフローセルに導
いて化学発光を光学的に検出して塩基配列を決定するの
で、従来の蛍光法に比較してレーザなどの高価な励起光
源を必要としないため、装置が安価となる。
(Effects of the Invention) In the present invention, a nucleic acid fragment labeled with a chemiluminescent substrate is electrophoresed and eluted, and the eluted sample is reacted with a reaction reagent that reacts with the chemiluminescent substrate to emit light, and is guided to a flow cell. Since the base sequence is determined by optically detecting chemiluminescence, compared to conventional fluorescence methods, it does not require an expensive excitation light source such as a laser, making the device less expensive.

また、光による励起を行なわないため、迷光などのバッ
クグランドを低く抑えることができる。のでS/N比が
向上する。
Furthermore, since no light excitation is performed, background such as stray light can be kept low. Therefore, the S/N ratio is improved.

さらに、レンズやミラーなどによる複雑な光学系を必要
としないので、調整が容易である。
Furthermore, since a complicated optical system such as lenses and mirrors is not required, adjustment is easy.

【図面の簡単な説明】[Brief explanation of drawings]

図は一実施例を示す概略図である。 2−1〜2−4・・・・・・泳動カラム、IO・・・・
・・流路。 16・・・・・・フロセル、 22・・・・・・過酸化水素水溶液槽、28・・・・・
・フェリシアン化カリウムとカセイソーダの水溶液槽、 32・・・・・・光電子増倍管、 34・・・・・・信号処理部。
The figure is a schematic diagram showing one embodiment. 2-1 to 2-4...Migration column, IO...
...Flow path. 16...Flocel, 22...Hydrogen peroxide aqueous solution tank, 28...
- Potassium ferricyanide and caustic soda aqueous solution tank, 32... photomultiplier tube, 34... signal processing section.

Claims (2)

【特許請求の範囲】[Claims] (1)電気泳動装置のゲルの一端を流路に接続し、前記
ゲルの他端には化学発光性基質で標識化された核酸断片
を末端塩基種ごとに注入し電気泳動させてゲルの一端か
ら溶出させ、前記流路に前記化学発光性基質と反応して
発光させる反応試薬を供給するとともに、前記流路をフ
ローセルに導いて化学発光を光学的に検出して塩基配列
を決定する方法。
(1) One end of the gel of an electrophoresis device is connected to a flow channel, and nucleic acid fragments labeled with a chemiluminescent substrate are injected into the other end of the gel for each terminal base type, and electrophoresed to form one end of the gel. A method in which a reaction reagent that reacts with the chemiluminescent substrate to emit light is supplied to the channel, and the channel is led to a flow cell to optically detect chemiluminescence to determine the base sequence.
(2)化学発光性基質としてN−(4−アミノブチル)
−N−エチルイソルミノールを用い、反応試薬として過
酸化水素とフェリシアン化カリウムを用いる特許請求の
範囲第1項に記載の方法。
(2) N-(4-aminobutyl) as chemiluminescent substrate
2. The method according to claim 1, using -N-ethylisoluminol and using hydrogen peroxide and potassium ferricyanide as reaction reagents.
JP62057723A 1987-03-11 1987-03-11 Determination of base sequence of nucleic acid by chemiluminescence detection Pending JPS63222264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62057723A JPS63222264A (en) 1987-03-11 1987-03-11 Determination of base sequence of nucleic acid by chemiluminescence detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62057723A JPS63222264A (en) 1987-03-11 1987-03-11 Determination of base sequence of nucleic acid by chemiluminescence detection

Publications (1)

Publication Number Publication Date
JPS63222264A true JPS63222264A (en) 1988-09-16

Family

ID=13063859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62057723A Pending JPS63222264A (en) 1987-03-11 1987-03-11 Determination of base sequence of nucleic acid by chemiluminescence detection

Country Status (1)

Country Link
JP (1) JPS63222264A (en)

Similar Documents

Publication Publication Date Title
Castro et al. Fluorescence detection and size measurement of single DNA molecules
Butler et al. Quantitation of polymerase chain reaction products by capillary electrophoresis using laser fluorescence
Liu et al. Ultrasensitive chemiluminescence detection in capillary electrophoresis
EP4092405A1 (en) Bioanalytical instrumentation using a light source subsystem
JPH0743347B2 (en) Method and apparatus for determining DNA base sequence
Hashimoto et al. Compact detection cell using optical fiber for sensitization and simplification of capillary electrophoresis–chemiluminescence detection
JPH07209251A (en) Electrophoretic device
JPS60242368A (en) Determination of base sequence of nucleic acid
JP2776208B2 (en) Electrophoresis device
Baeyens et al. Chemiluminescence detection in capillary electrophoresis
Liu et al. Ultrasensitive chemiluminescence detection of sub-fM level Co (II) in capillary electrophoresis
JP2003508783A (en) Method for analyzing a plurality of samples simultaneously by detecting absorption, and a system used in such a method
JPH01112147A (en) Method for determining base sequence of nucleic acid
JP2974495B2 (en) Electrophoresis apparatus and electrophoresis method
JPH0347097A (en) Hybridization method, gene mutation detection using same and apparatus therefor
JPS63222264A (en) Determination of base sequence of nucleic acid by chemiluminescence detection
EP0616212B1 (en) Apparatus and method for reading a gel electrophoresis pattern
JPH01245160A (en) Method of determining base sequence of nucleic acid
Tsukagoshi et al. Small-sized capillary electrophoresis with a chemiluminescence detector equipped with cross-intersection for sample injection
Campaña et al. Trends towards sensitive detection in capillary electrophoresis: an overview of some recent developments
JP3042487B2 (en) Electrophoresis device
Yamamoto et al. Postcolumn reactor using a laser‐drilled capillary for light‐emitting diode‐induced fluorescence detection in CE
JP3296351B2 (en) Electrophoresis device
Tsukagoshi et al. Capillary electrophoresis with chemiluminescent detection for luminol using potassium ferricyanide as a catalyst
JP3042370B2 (en) Electrophoresis device