JPS63222071A - Electroconductive zro2 base sintered body - Google Patents

Electroconductive zro2 base sintered body

Info

Publication number
JPS63222071A
JPS63222071A JP62054944A JP5494487A JPS63222071A JP S63222071 A JPS63222071 A JP S63222071A JP 62054944 A JP62054944 A JP 62054944A JP 5494487 A JP5494487 A JP 5494487A JP S63222071 A JPS63222071 A JP S63222071A
Authority
JP
Japan
Prior art keywords
sintered body
conductive
zrn
zro2
tin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62054944A
Other languages
Japanese (ja)
Inventor
良二 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP62054944A priority Critical patent/JPS63222071A/en
Publication of JPS63222071A publication Critical patent/JPS63222071A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、良好な導電性を有し、放電加工が可能で、し
かも高強度な導電性ZrO2系焼結体に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a conductive ZrO2-based sintered body that has good conductivity, can be subjected to electrical discharge machining, and has high strength.

〔従来の技術〕[Conventional technology]

ZrO2系焼結体は、セラミックスの中でも強靭性を具
備するものとして広く知られ、刃物等の他家廃用、工業
用を問わず、その用途が拡大している。
ZrO2-based sintered bodies are widely known as having toughness among ceramics, and their uses are expanding, regardless of whether they are used for other purposes such as cutlery or for industrial purposes.

しかしながら、一層の用途拡大のためにはまだいくつか
の問題点を有している。なかでも加工性の問題が掲げら
れる。これは、高強度および高硬度というZrO2系焼
結体の特長が裏を返せば良好な加工性が得られないこと
になるためである。特に複雑形状への応用の際に大きな
問題となる。
However, there are still some problems in further expanding its use. Among them, the problem of workability is raised. This is because the advantages of ZrO2-based sintered bodies, such as high strength and high hardness, mean that good workability cannot be obtained. This is especially a big problem when applied to complex shapes.

一方、近年超硬合金等の高硬度材料の加工分野で放電加
工が急速な進歩を成し遂げている。
On the other hand, electric discharge machining has recently achieved rapid progress in the field of machining high hardness materials such as cemented carbide.

ZrO2系焼結体を含めたセラミックスの分野において
も放電加工の可能な導電性セラミックスの研究が進めら
れている。
In the field of ceramics, including ZrO2-based sintered bodies, research on conductive ceramics that can be subjected to electrical discharge machining is progressing.

従来、導電性を有すると考えられるZrO2系焼結体と
しては、 ■クロム金属粉末とジルコニア粉末とからなる混合粉末
成形体を窒素ガス雰囲気中で焼成してなるZrO2−C
r2N(特開昭61−236653号)、■psz粉末
(平均粒子径0.5μm)にNbC粉末(平均粒子径]
、、27zm)を20−35vol%添加、混合後、ホ
ットプレスにて焼結してなるZr07−NbC焼結体(
昭和61年度窯業協会年会講演予稿集P 3]、9 )
が報告されている。
Conventionally, ZrO2-based sintered bodies considered to have electrical conductivity include: (1) ZrO2-C, which is produced by firing a mixed powder compact consisting of chromium metal powder and zirconia powder in a nitrogen gas atmosphere;
r2N (Japanese Unexamined Patent Publication No. 61-236653), ■ NbC powder (average particle diameter) in psz powder (average particle diameter 0.5 μm)
,,27zm) was added to 20-35 vol%, mixed, and then sintered in a hot press to produce a Zr07-NbC sintered body (
Proceedings of the 1986 Ceramics Association Annual Meeting P3], 9)
has been reported.

本発明者は、上記従来技術等に基づき種々検討を行なっ
たわけであるが、実用的にはさらに放電加工性を改善し
、かつ高強度を兼備させることが望ましいことが判明し
た。
The present inventor has conducted various studies based on the above-mentioned prior art, etc., and has found that it is practically desirable to further improve electrical discharge machinability and have high strength.

すなわち本発明の目的は、良好な導電性を有し、かつ高
強度を兼備する導電性ZrO2系焼結体を提供すること
である。
That is, an object of the present invention is to provide a conductive ZrO2-based sintered body that has good conductivity and high strength.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記問題に鑑み、常圧焼結が可能と思われる窒
化物添加ZrO2系焼結体について種々検討した結果、
窒化物としてはTjNとZrNがZrO,中に添加、焼
結された場合に良好な導電性を有するとともに緻密化し
やすいこと、さらに焼結体中の導電相の平均粒子径が2
μm以下である場合に導電性および強度の向上に寄与す
ることを見出したことに基づくものである。
In view of the above problems, the present invention was developed as a result of various studies on nitride-added ZrO2-based sintered bodies that are thought to be capable of pressureless sintering.
When TjN and ZrN are added to ZrO as nitrides and sintered, they have good conductivity and are easily densified, and the average particle size of the conductive phase in the sintered body is 2.
This is based on the discovery that when the thickness is .mu.m or less, it contributes to improvement in conductivity and strength.

すなわち本発明は、TiNおよびZrNの1種または2
種を20〜60vo]、%、残部上として正方品の結晶
構造を有するZrO2から構成され、TiNおよびZr
Nの1種または2種から構成される導電性を有する相の
平均粒子径が2μm以下で、電気抵抗が10−2Ω・鄭
以下あることを特徴とする導電性ZrO2系焼結体であ
る。さらに、温度1300〜1600℃、圧力50at
;m以」二の条件下で熱間静水圧プレスを施すことによ
り、はぼ気孔率がOとなり飛躍的に強度が向」ニするこ
とが判明した。
That is, the present invention provides one or both of TiN and ZrN.
The seeds are composed of ZrO2 with a tetragonal crystal structure, with the remainder being composed of ZrO2 with a tetragonal crystal structure, TiN and Zr
This is a conductive ZrO2-based sintered body characterized in that the average particle size of the conductive phase composed of one or two types of N is 2 μm or less, and the electrical resistance is 10 −2 Ω·zheng or less. Furthermore, temperature 1300-1600℃, pressure 50at
It has been found that by applying hot isostatic pressing under conditions of 0 or more, the porosity becomes O and the strength is dramatically improved.

本発明焼結体を得るには、2μm以下にTjN、ZrN
を粉砕した後、Y2O3等の安定化剤を含有するZrO
,に対し、20〜60vol%となるように配合、成形
した後、窒素雰囲気中で温度1400〜1600℃の範
囲で焼結すれば良い。更に強度を向」ニさせるためには
、」二連のごとく温度1300〜1600℃、圧力50
atmの条件下で熱間静水圧プレスを施すことにより、
はぼ気孔率が0となり、抗折強度は130〜160kg
 / mm 2と向−ヒする。
In order to obtain the sintered body of the present invention, TjN, ZrN and
After pulverizing ZrO containing stabilizers such as Y2O3
, and then sintered in a nitrogen atmosphere at a temperature in the range of 1400 to 1600°C. In order to further improve the strength, the temperature is 1300 to 1600℃ and the pressure is 50℃.
By applying hot isostatic pressing under ATM conditions,
The porosity is 0 and the bending strength is 130 to 160 kg.
/ mm2.

なお1本発明において主として正方品の結晶構造を有す
るZrO2とするには、Y2O3、JOlCe、0等従
来公知の安定化剤を含有させるものである。また主とし
て正方品とは、lJi斜品、立方晶の結晶構造も含めて
、全体の7は以」二の場合を言う。
In the present invention, in order to obtain ZrO2 having a mainly tetragonal crystal structure, a conventionally known stabilizer such as Y2O3, JOlCe, 0, etc. is contained. In addition, the term "tetragonal product" mainly refers to the following two cases, including lJi diagonal product and cubic crystal structure.

TiN、ZrNの含有量が20vol.%未満では、電
気抵抗が10−2Ω・■以上となり放電加工が行なえず
、60vol%を越えると強度の低下が大きくなる。よ
って20〜60vo]%に限定した。
The content of TiN and ZrN is 20 vol. If it is less than 60 vol %, the electric resistance will be 10 -2 Ω·■ or more, and electrical discharge machining cannot be performed, and if it exceeds 60 vol %, the strength will be significantly reduced. Therefore, it was limited to 20 to 60 vo]%.

また、Tj、N、ZrNの1種または2種から構成され
る導電性を有する相の平均粒子径を2μm以下とするの
は、後述する実施例からも明らかなようにこの範囲で導
電性、強度ともに向上することが判明したからである。
In addition, the reason why the average particle size of the conductive phase composed of one or two of Tj, N, and ZrN is set to 2 μm or less is because the conductivity is within this range, as is clear from the examples described later. This is because it has been found that both strength is improved.

〔実施例〕〔Example〕

以下本発明を実施例に基づいて更に詳細に説明する。 The present invention will be explained in more detail below based on examples.

実施例1 市販のゴ]N粉末で、0.2μm〔白水化学(株)〕、
2μm〔ニューメタルス(株)〕、5μm〔ニューメタ
ルス(株)〕以下の粒径を持っTiN粉末を準備した。
Example 1 Commercially available N powder, 0.2 μm [Hakusui Kagaku Co., Ltd.],
TiN powders having particle sizes of 2 μm (Nu Metals Co., Ltd.) and 5 μm (Nu Metals Co., Ltd.) were prepared.

これら粉末を、市販のY2O3を3mo1%含有した共
沈法で製造されたZrO2粉末に30vol%添加しボ
ールミルで混合した。これにバインダーを添加し、スプ
レードライヤーで造粒し、ゴム型に造粒粉を充填し3t
on/ ciで成形した。成形体を脱脂した後、雰囲気
炉でN21気圧下、1500℃で焼結した。焼結後、1
450°C,11000at、 N2雰囲気中で熱間静
水圧プレスを施し、種々の粒径をもつTiNを含んだ焼
結体を作成した。得られた焼結体中のTjNの平均粒径
、電気抵抗、抗折強度を第1表に示す。
These powders were added in an amount of 30 vol % to a commercially available ZrO 2 powder containing 3 mol % of Y 2 O 3 produced by a coprecipitation method, and mixed in a ball mill. A binder is added to this, granulated with a spray dryer, and the granulated powder is filled into a rubber mold to make 3 tons.
Molded on/ci. After the molded body was degreased, it was sintered at 1500° C. under N21 atmosphere in an atmospheric furnace. After sintering, 1
Hot isostatic pressing was performed at 450°C, 11,000 at, and N2 atmosphere to produce sintered bodies containing TiN with various particle sizes. Table 1 shows the average particle size, electrical resistance, and bending strength of TjN in the obtained sintered body.

抗折強度はJIS  R1601に従って測定した(以
下同じ)。
The bending strength was measured according to JIS R1601 (the same applies hereinafter).

第1表 第1表から、T 3− Nの平均粒径が1.8μm以下
である場合に電気抵抗、抗折強度ともに向」ニすること
がわかる。
From Table 1, it can be seen that when the average particle size of T 3-N is 1.8 μm or less, both the electrical resistance and the bending strength are improved.

実施例2 市販のZrN[平均粒径3μm、ニューメタルス(株)
〕粉末をジェン1へミルで粉砕、分級し、最大粒径1.
2.5μmの3種の粒径をもっTjN粉末を準備した。
Example 2 Commercially available ZrN [average particle size 3 μm, Nu Metals Co., Ltd.]
] The powder is crushed in a Gen 1 mill, classified, and has a maximum particle size of 1.
TjN powders with three types of particle sizes of 2.5 μm were prepared.

これら粉末を用い、実施例1と同条件で種々粒径をもっ
7.rNを含んだ焼結体を作成した。
7. Using these powders, various particle sizes were prepared under the same conditions as in Example 1. A sintered body containing rN was created.

得られた焼結体中のZrNの平均粒径、電気抵抗、抗折
強度を第2表に示す。
Table 2 shows the average particle size, electrical resistance, and bending strength of ZrN in the obtained sintered body.

第2表 第2表から、ZrNの平均粒径が1.6μm以下である
場合に電気抵抗、抗折強度ともに向」ニすることがわか
る。
From Table 2, it can be seen that when the average particle size of ZrN is 1.6 μm or less, both the electrical resistance and the bending strength are improved.

実施例3 2μm以下の粒径を持つTiNとZrN粉末を準備し、
市販のY2O3を3mo1″1含有した共沈法で製造さ
れたZr○2粉末に10〜70vol%の範囲で添加し
、ボールミルで混合した。バインダーを添加し、スラリ
ーとした後、スプレードライヤーで造粒し、ゴム型に造
粒粉を充填し3ton/ cAで成形した。脱脂した後
、雰囲気炉でN2]気圧下、1500°Cで焼結した。
Example 3 TiN and ZrN powders having a particle size of 2 μm or less were prepared,
It was added in a range of 10 to 70 vol% to Zr○2 powder produced by a coprecipitation method containing 3 mo1"1 of commercially available Y2O3 and mixed in a ball mill. After adding a binder and making a slurry, it was made with a spray dryer. It was granulated, filled with the granulated powder in a rubber mold, and molded at 3 tons/cA.After degreasing, it was sintered in an atmospheric furnace at 1500°C under N2] pressure.

焼結後、1450℃、11000at、 Nzn囲気中
でHI P処理した。HI P後の焼結体の電気抵抗と
抗折強度を測定したものが第1図と第2図である。抗折
強度ばJISRl、601に従って測定した。
After sintering, HIP treatment was performed at 1450° C. and 11000 atm in a Nzn atmosphere. Figures 1 and 2 show measurements of the electrical resistance and bending strength of the sintered body after HIP. The bending strength was measured according to JISRl, 601.

これから、TiNまたはZrNが25vol%以上のと
きに電気抵抗は、10−2Ω・■以下となる。また、抗
折強度は60vo]%を越えると] OOkg / r
trn12以下となることがわかる。
From this, when TiN or ZrN is 25 vol % or more, the electrical resistance becomes 10 −2 Ω·■ or less. In addition, when the bending strength exceeds 60vo]%]OOkg/r
It can be seen that trn12 or less.

〔発明の効果〕〔Effect of the invention〕

以上説明のように、本発明によると良好な導電性を有し
、かつ優れた強度をも具備する導電性Z r OZ系焼
結体を得ることができ、産業上非常に有益である。
As described above, according to the present invention, it is possible to obtain a conductive Z r OZ-based sintered body having good conductivity and excellent strength, which is very useful industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、2μm以下の原料粉を用いた場合のT i 
Nの含有量と電気抵抗、抗折強度との関係を示すグラフ
、第2図は、2μm以下の原料粉を用いた場合のZrN
の含有量と電気抵抗、抗折強度仁の関係を示すグラフで
ある。 TiN添加量(VO2係) ZrN添加量(vol%)
Figure 1 shows the T i when using raw material powder of 2 μm or less.
A graph showing the relationship between N content, electrical resistance, and bending strength, Figure 2 shows ZrN when raw material powder of 2 μm or less is used.
2 is a graph showing the relationship between the content, electrical resistance, and bending strength. TiN addition amount (VO2) ZrN addition amount (vol%)

Claims (1)

【特許請求の範囲】 1 TiNおよびZrNの1種または2種を20〜60
vol%、残部主として正方晶の結晶構造を有するZr
O_2から構成され、TiNおよびZrNの1種または
2種から構成される導電性を有する相の平均粒子径が2
μm以下で、電気抵抗が10^−^2Ω・cm以下であ
ることを特徴とする導電性ZrO_2系焼結体。 2 温度1300〜1600℃、圧力50atm以上の
条件下で熱間静水圧プレスを施し、抗折強度が100k
g/cm^2以上であることを特徴とする特許請求の範
囲第1項記載の導電性ZrO_2系焼結体。
[Claims] 1. 20 to 60 of one or both of TiN and ZrN
vol%, the remainder mainly Zr having a tetragonal crystal structure
The average particle diameter of the conductive phase composed of O_2 and one or both of TiN and ZrN is 2.
A conductive ZrO_2-based sintered body characterized by having an electrical resistance of 10^-^2 Ω·cm or less. 2 Hot isostatic pressing is performed at a temperature of 1300 to 1600°C and a pressure of 50 atm or more, and the bending strength is 100K.
The conductive ZrO_2-based sintered body according to claim 1, characterized in that the conductive ZrO_2-based sintered body has a conductive conductivity of at least g/cm^2.
JP62054944A 1987-03-10 1987-03-10 Electroconductive zro2 base sintered body Pending JPS63222071A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62054944A JPS63222071A (en) 1987-03-10 1987-03-10 Electroconductive zro2 base sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62054944A JPS63222071A (en) 1987-03-10 1987-03-10 Electroconductive zro2 base sintered body

Publications (1)

Publication Number Publication Date
JPS63222071A true JPS63222071A (en) 1988-09-14

Family

ID=12984758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62054944A Pending JPS63222071A (en) 1987-03-10 1987-03-10 Electroconductive zro2 base sintered body

Country Status (1)

Country Link
JP (1) JPS63222071A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5169810A (en) * 1990-07-19 1992-12-08 Tioxide Group Services Limited Process for forming tin-zirconia ceramics
US5916833A (en) * 1995-11-07 1999-06-29 Ngk Spark Plug Company Limited Sintered ceramic bodies and ceramic metal working tools
JP2016182668A (en) * 2015-03-26 2016-10-20 京セラ株式会社 cutter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5169810A (en) * 1990-07-19 1992-12-08 Tioxide Group Services Limited Process for forming tin-zirconia ceramics
US5916833A (en) * 1995-11-07 1999-06-29 Ngk Spark Plug Company Limited Sintered ceramic bodies and ceramic metal working tools
US5994250A (en) * 1995-11-07 1999-11-30 Ngk Spark Plug Company Limited Sintered ceramic bodies and ceramic working tools
JP2016182668A (en) * 2015-03-26 2016-10-20 京セラ株式会社 cutter

Similar Documents

Publication Publication Date Title
JPS61197464A (en) Manufacture of sintered formed body
US4325710A (en) Sintered ceramics for cutting tools and manufacturing process thereof
JPS61111970A (en) Silicon nitride sintered body and manufacture
US4933308A (en) High strength high toughness TiB2 ceramics
JPS63222071A (en) Electroconductive zro2 base sintered body
EP0174463A1 (en) Process for the production of heat and wear-resistant ceramic materials, product of the process and starting material composition for use in the process
Cho et al. Densification and hardness of Al2O3 Cr2O3 system with and without Ti addition
KR100321939B1 (en) Titanium diboride sintered body with silicon nitride as a sintering aid and method for manufacture thereof
JP3145470B2 (en) Tungsten carbide-alumina sintered body and method for producing the same
JPH069264A (en) Wc-al2o3 sintered composite compact
JP3076682B2 (en) Alumina-based sintered body and method for producing the same
JP3078430B2 (en) High-strength alumina sintered body
Cameron et al. A Comparison of Reaction vs Conventionally Hot‐Pressed Ceramic Composites
JP2690571B2 (en) Zirconia cutting tool and its manufacturing method
JP2513260B2 (en) Alumina-based ceramic thin film head substrate
US5571759A (en) CrB2 -NbB2 ceramics materials
JPH0545548B2 (en)
JP2858965B2 (en) Aluminum oxide sintered body
JP3735397B2 (en) Titanium nitride sintered body and method for producing the same
JPS6245194B2 (en)
JPH0813702B2 (en) Composite ceramics
JPH05246763A (en) Ceramic sintered compact
JP2533854B2 (en) ZrO2-based ceramics sintered body for wear resistant structural material
JPH0640770A (en) Alumina-based combined sintered compact and its production
JP2742620B2 (en) Boride-aluminum oxide sintered body and method for producing the same