JPS63221815A - Manufacture of porous diaphragm - Google Patents

Manufacture of porous diaphragm

Info

Publication number
JPS63221815A
JPS63221815A JP5727887A JP5727887A JPS63221815A JP S63221815 A JPS63221815 A JP S63221815A JP 5727887 A JP5727887 A JP 5727887A JP 5727887 A JP5727887 A JP 5727887A JP S63221815 A JPS63221815 A JP S63221815A
Authority
JP
Japan
Prior art keywords
mixed sol
manufacturing
porous
porous carrier
porous diaphragm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5727887A
Other languages
Japanese (ja)
Other versions
JPH0480726B2 (en
Inventor
Fumio Abe
文夫 安部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP5727887A priority Critical patent/JPS63221815A/en
Publication of JPS63221815A publication Critical patent/JPS63221815A/en
Publication of JPH0480726B2 publication Critical patent/JPH0480726B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Filtering Materials (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To manufacture a diaphragm of superior heat resistance and chemical resistance and with sharp and ultrafine average pore diameter distribution by using mixed sol of oxide or hydroxide of specific elements as a starting raw material of a film of porous carrier. CONSTITUTION:Mixed sol the respective oxide or hydroxide compounds of at least one element selected out of the groups of Si, Ti and Zr, Al and Na is applied on a porous carrier such as alumina or the like simply by the dipping or spraying method, or calcinated at 400 deg.C or lower, gels and coats the porous carrier. Then, the coated carrier is immersed simply in hot water, or hot water in an autoclave in the range of 80-500 deg.C, or being put in circulating heated water vapor, and calcined at 400-1,300 deg.C.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、分離機能を備えた多孔質隔膜の製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a porous diaphragm having a separation function.

〔従来技術〕[Prior art]

この種の多孔質隔膜はガス分離、限外濾過、精密濾過等
に使用されるが、近年使用条件に応じて耐熱性、耐薬品
性の要求が強くなり、セラミックス粉末や金属粉末を成
形し焼成してなる多孔質隔膜が開発されている。特開昭
60−129119号公報には、この種多孔質隔膜の一
例である気体分離膜が示されている。
This type of porous diaphragm is used for gas separation, ultrafiltration, precision filtration, etc., but in recent years, demands for heat resistance and chemical resistance have become stronger depending on usage conditions, and ceramic powders and metal powders are molded and fired. A porous diaphragm has been developed. JP-A-60-129119 discloses a gas separation membrane that is an example of this type of porous diaphragm.

当該分R膜はゼオライトの優れた分m機能を利用して耐
熱性、耐薬品性に優れたものを得べ〈発明されたもので
、多孔質担持体上にゼオライトの粉末を固着しまたはゼ
オライトの結晶を析出してゼオライト膜を形成したもの
である。
The separation membrane was invented by utilizing the excellent separation function of zeolite to obtain a membrane with excellent heat resistance and chemical resistance. A zeolite membrane is formed by precipitating crystals.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、当該分離膜においてはゼオライト膜の平均細
孔径の大きさに限度があり、またはゼオライト粉体粒子
間によって形成される細孔のため細孔径の分布がシャー
プにはならない。従って、10〜数100;という超微
細な平均細孔径の分離膜を得るのは困難である。
However, in the separation membrane, there is a limit to the average pore size of the zeolite membrane, or the pore size distribution is not sharp because of the pores formed between zeolite powder particles. Therefore, it is difficult to obtain a separation membrane with an ultra-fine average pore diameter of 10 to several 100 pores.

従って、本発明の目的は、耐熱性および耐薬品性に優れ
るとともに細孔径の分布がシャープで10〜数100λ
という超微細な平均細孔径を有する多孔質隔膜を製造す
ることにある。
Therefore, the object of the present invention is to have excellent heat resistance and chemical resistance, and a sharp pore size distribution of 10 to several 100 λ.
The objective is to produce a porous diaphragm having an ultra-fine average pore diameter.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はかかる多孔質隔膜の製造方法に関するもので、
Si、Ti 、Zrの群から選ばれる少くとも1種の元
素とA!およびNaの各酸化または水酸化物の混合ゾル
をそれ自体または仮焼した後多孔質担持体に被覆して同
担持体を水熱処理し、次いで乾燥、焼成することを特徴
とするものである。
The present invention relates to a method for manufacturing such a porous diaphragm,
At least one element selected from the group of Si, Ti, and Zr and A! The mixed sol of each oxidation or hydroxide of Na and Na itself or after being calcined is coated on a porous support, the support is hydrothermally treated, and then dried and fired.

本発明においては、混合ゾル中の固形分のうちNa成分
が酸化物換算で1〜20iv t%含んでいることが好
ましく、また(St、Tt 、Zr )群の成分は50
−t%以上、Aβ成分は5〜40wt%含んでいること
がより好ましい。これら元素の混合ゾルの出発原料とし
ては各元素のアルコラート、キレート、塩等が好ましい
。具体的には、アルミニウムイソプロピレート、アルミ
ニウムブチレート、モノブトキシアルミニウムジイソプ
ロピレート、エチルアセトアセテートアルミニウムジイ
ソプロピレート、アルミニウムトリス(エチルアセトア
セテート)等が挙げられ、また上記した各元素の塩化物
、硝酸塩、硫酸塩等が挙げられる。混合ゾルはこれらを
加水分解することによって得られるが、加水分解時には
酸を添加してP)lを1〜5に調製することが好ましい
In the present invention, it is preferable that the Na component of the solid content in the mixed sol is 1 to 20 iv t% in terms of oxide, and the components of the (St, Tt, Zr) group are preferably 50 to 20 iv t%.
-t% or more, it is more preferable that the Aβ component is contained in an amount of 5 to 40 wt%. As starting materials for a mixed sol of these elements, alcoholates, chelates, salts, etc. of each element are preferred. Specific examples include aluminum isopropylate, aluminum butyrate, monobutoxyaluminum diisopropylate, ethyl acetoacetate aluminum diisopropylate, aluminum tris (ethylacetoacetate), and chlorides and nitrates of each of the above elements. , sulfates, and the like. A mixed sol can be obtained by hydrolyzing these, but it is preferable to add an acid during hydrolysis to adjust P)l to 1 to 5.

混合ゾルはそれ自体で多孔質担持体にディッピングまた
はスプレー法により被覆されるか、または400℃以下
で仮焼しゲル化し付着して被覆される。被覆された多孔
質担持体は80〜500℃の範囲にて単に熱水またはオ
ートクレーブ内の熱水中に浸漬するか、流通する加熱水
蒸気内に置くことにより水熱処理され、400〜1 、
300℃の温度で焼成される。被膜中のSiの混合割合
が50〜70w t%の場合には700℃までという比
較的低温で焼成し、その混合割合が多い場合には700
℃以上の高温で焼成することが好ましい。
The mixed sol itself can be coated on a porous carrier by dipping or spraying, or it can be calcined at 400° C. or below to gel and adhere to the porous carrier. The coated porous support is hydrothermally treated in the range of 80-500°C by simply immersing it in hot water or hot water in an autoclave, or by placing it in flowing heated steam;
It is fired at a temperature of 300°C. When the mixing ratio of Si in the film is 50 to 70wt%, firing is performed at a relatively low temperature of up to 700°C, and when the mixing ratio is high, firing is performed at a relatively low temperature of up to 700°C.
It is preferable to bake at a high temperature of ℃ or higher.

なお、多孔質担持体としてはアルミナ、シリカ−アルミ
ナ、ムライト、コーディエライト、ジルコニア、カーボ
ン等セラミックス質の適宜のものが採用され、その平均
細孔径は被膜の平均細孔径より大きいもの、例えば0.
1〜10μm程度のものが好ましい。
As the porous carrier, an appropriate ceramic material such as alumina, silica-alumina, mullite, cordierite, zirconia, carbon, etc. is used, and the average pore diameter thereof is larger than the average pore diameter of the coating, for example, 0. ..
The thickness is preferably about 1 to 10 μm.

〔発明の作用・効果〕[Action/effect of the invention]

本発明の方法により製造される多孔質隔膜においては、
担持体を被覆する被膜がその組成上擬ゼオライト構造を
呈して分1i!If機能を有するとともに、耐熱性およ
び耐薬品性に優れているが、特に同被膜の出発原料とし
て各元素の酸化または水酸化物の混合ゾルを使用してい
る。混合ゾル中の各元素の酸化または水酸化物の粒子は
橿めて微細で粒径も揃い、かつ均一な混合状態にあり、
このためかかる混合ゾルを出発原料とする被膜は超微細
な細孔径を有しかつ細孔径の分布がシャープとなる。
In the porous diaphragm produced by the method of the present invention,
The film covering the support exhibits a pseudo-zeolite structure due to its composition, and the film has a pseudo-zeolite structure. It has an If function and is excellent in heat resistance and chemical resistance, but in particular, a mixed sol of oxidation or hydroxide of each element is used as a starting material for the film. The oxidized or hydroxide particles of each element in the mixed sol are extremely fine, have uniform particle sizes, and are in a uniformly mixed state.
Therefore, a coating using such a mixed sol as a starting material has ultrafine pore diameters and a sharp pore diameter distribution.

なお、本発明の方法においてはNa成分が酸化物換算で
1〜20w t%含んでいることが好ましく、この値よ
り小さい場合には均一な細孔ものが得られず、かつ上記
値より大きい場合にも均一な細孔のものが得られないと
ともに、耐酸性の低下を招く。
In addition, in the method of the present invention, it is preferable that the Na component contains 1 to 20 wt% in terms of oxide; if it is smaller than this value, uniform pores cannot be obtained, and if it is larger than the above value, However, it is not possible to obtain a material with uniform pores, and this also leads to a decrease in acid resistance.

水熱処理に関しては80〜500℃の範囲が好ましく、
この値より低い場合には水熱処理が不十分で擬ゼオライ
ト構造のものが得らえ難くかつ熱安定性が悪(、また上
記値より大きくなると工業上操作が困難となる。本発明
の方法においては、特に加水分解時酸を添加しPH1〜
5に調節すれば、安定したゾル液でしかも微小な粒子が
形成されるため製膜に好適である。PHが上記値より低
い場合にはゾル液がゲル化し易くて製膜には通せず、ま
た上記値より大きい場合にはコロイド粒子が重縮合して
巨大分子となり、微細な細孔径の製膜は難しい。
Regarding hydrothermal treatment, the temperature is preferably in the range of 80 to 500°C,
If it is lower than this value, the hydrothermal treatment is insufficient, making it difficult to obtain a pseudo-zeolite structure and having poor thermal stability (and if it is higher than the above value, industrial operation becomes difficult. In the method of the present invention, In particular, add acid during hydrolysis to achieve a pH of 1~
When adjusted to 5, a stable sol solution and fine particles are formed, which is suitable for film formation. If the pH is lower than the above value, the sol will easily gel and cannot be passed through membrane formation, and if it is higher than the above value, colloidal particles will polycondense and become macromolecules, making it difficult to form membranes with fine pores. difficult.

焼成温度に関しては400〜1,300°Cの範囲にあ
ることが好ましい。かかる値より低い場合には耐熱性、
耐食性の十分なものが得られず、しかも残存炭化物が消
失せずかつ添加剤である酸の離脱が不十分である。また
上記値よりも高い場合には、微小細孔を形成している微
粒子が焼結により粒成長し、最後にはガラス化して膜機
能を消失させる。
The firing temperature is preferably in the range of 400 to 1,300°C. If lower than such value, heat resistance;
Sufficient corrosion resistance cannot be obtained, and furthermore, the residual carbide does not disappear and the release of the acid as an additive is insufficient. Further, when the value is higher than the above value, the fine particles forming the micropores grow due to sintering, and finally become vitrified and lose the membrane function.

混合ゾルの仮焼に関しては400°C以下であることが
好ましく、これにより一層微小な粒子の状態で圧縮形成
してその後の焼成により粒子間結合力を増大させ、微細
な細孔径の膜を得ることができる。
The temperature for calcination of the mixed sol is preferably 400°C or lower, thereby compressing it into finer particles and increasing the interparticle bonding force by subsequent firing to obtain a film with fine pores. be able to.

〔実施例〕〔Example〕

5i(QC)1ρ4、八6 (OCJH,)、および水
ガラスを各金属元素の酸化物換算で80wt%、15−
t%、5wt%となるように混合し、80℃の熱水に添
加して1時間加水分解した後、硝酸をPH=3になるよ
うに添加して混合ゾルを得た。得られた混合ゾルを外径
10鶴、内径8N、平均細孔径1μmのα−アルミナ質
のパイプ上に担持し、乾燥後オートクレーブ中で200
℃の熱水に12時間浸漬して水熱処理する。次いで、こ
のパイプを乾燥後650℃で1時間焼成し、その後80
℃の熱水で1時間洗浄して多孔質隔膜を得た。得られた
多孔質隔膜の被膜における平均細孔径は10λであった
。なお、平均細孔径の測定はガス吸着法による。
5i (QC) 1ρ4, 86 (OCJH, ), and water glass at 80 wt% in terms of oxide of each metal element, 15-
t % and 5 wt %, added to 80° C. hot water and hydrolyzed for 1 hour, and then added nitric acid so that the pH was 3 to obtain a mixed sol. The obtained mixed sol was supported on an α-alumina pipe with an outer diameter of 10 N, an inner diameter of 8 N, and an average pore diameter of 1 μm, and after drying, it was heated in an autoclave for 200 min.
It is hydrothermally treated by immersing it in hot water at ℃ for 12 hours. Next, this pipe was dried and fired at 650°C for 1 hour, and then heated at 80°C.
A porous diaphragm was obtained by washing with hot water at .degree. C. for 1 hour. The average pore diameter of the resulting porous diaphragm was 10λ. Note that the average pore diameter is measured by a gas adsorption method.

〔実施例2〕 実施例1のAβ(OCJH7”)xに換えてZr(QC
,Hl)3、T 1(QC,H7)、を用いて同実施例
と同様の方法で多孔質隔膜を製造した。得られた各隔膜
の被膜における平均細孔径(ガス吸着法)は1〇八であ
った。
[Example 2] Zr(QC
, Hl)3, and T1(QC, H7), a porous diaphragm was produced in the same manner as in the same example. The average pore diameter (gas adsorption method) of each membrane obtained was 108.

〔実施例3〕 実施例1における各金属元素(Si、Aβ、Na)の酸
化物換算の値を95−L%、4wt%、1−t%としか
つ焼成温度を1,200℃とした以外は同実施例と同様
の方法で多孔質隔膜を製造した。得られた各隔膜の被膜
における平均細孔径は100Aであった。なお、平均細
孔径の測定はガス吸着法による。
[Example 3] Except for Example 1, in which the oxide equivalent values of each metal element (Si, Aβ, Na) were set to 95-L%, 4wt%, and 1-t%, and the firing temperature was set to 1,200°C. produced a porous diaphragm in the same manner as in the same example. The average pore diameter in the resulting membrane of each diaphragm was 100A. Note that the average pore diameter is measured by a gas adsorption method.

以上の各実施例にて製造された多孔質隔膜を流通式ガス
分離装置にセントし、IIz50voA%、Nz50ν
o1%の混合ガスを用いて常温、2〜20kg/−の供
給圧力で分離試験を行った。透過側のガス中のHlは6
5〜61vo1%に濃縮され、優れた選択的透過能(分
離機能)を有していることを確認した。また各隔膜を4
00℃の大気中で100時間熱処理したもの、P11=
1で温度90℃のHCl溶液に200時間浸漬したもの
、PH= 14で温度90℃のNaOH溶液に200時
間浸漬したものについて上記の分離試験を行ったところ
、これらの処理の前後では分離機能に変化がほとんどな
かった。
The porous diaphragm manufactured in each of the above examples was placed in a flow-through gas separation device, and IIz50voA%, Nz50ν
A separation test was conducted using a 1% O mixed gas at room temperature and a supply pressure of 2 to 20 kg/-. Hl in the gas on the permeate side is 6
It was confirmed that it was concentrated to 5 to 61 vol% and had excellent selective permeability (separation function). Also, each diaphragm has 4
Heat treated in the atmosphere at 00°C for 100 hours, P11=
When we conducted the above separation test on samples that had been immersed in HCl solution at a temperature of 90℃ for 200 hours at pH=14 and for 200 hours on samples that had been immersed in a NaOH solution at a temperature of 90℃ at pH=14, we found that the separation function did not change before and after these treatments. There were almost no changes.

Claims (6)

【特許請求の範囲】[Claims] (1)Si、Ti、Zrの群から選ばれる少くとも1種
の元素とAlおよびNaの各酸化または水酸化物の混合
ゾルをそれ自体または仮焼した後多孔質担持体に被覆し
て同担持体を水熱処理し、次いで乾燥、焼成することを
特徴とする多孔質隔膜の製造方法。
(1) A mixed sol of at least one element selected from the group of Si, Ti, and Zr and each oxidation or hydroxide of Al and Na is coated on a porous support by itself or after calcining. A method for producing a porous diaphragm, which comprises hydrothermally treating a carrier, followed by drying and firing.
(2)混合ゾル中の固形分のうちNaの成分が酸化物換
算で1〜20wt%含んでいる特許請求の範囲第1項に
記載の製造方法。
(2) The manufacturing method according to claim 1, wherein the solid content of the mixed sol contains 1 to 20 wt% of Na as an oxide.
(3)混合ゾルが前記各元素のアルコラート、キレート
、塩を出発原料としている特許請求の範囲第1項または
第2項に記載の製造方法。
(3) The manufacturing method according to claim 1 or 2, wherein the mixed sol uses an alcoholate, chelate, or salt of each of the elements as a starting material.
(4)混合ゾルが前記出発原料の溶液中に酸を添加し同
原料を加水分解することにより得る特許請求の範囲第1
項、第2項または第3項に記載の製造方法。
(4) Claim 1: The mixed sol is obtained by adding an acid to a solution of the starting raw materials and hydrolyzing the same raw materials.
2. The manufacturing method according to item 2, item 3, or item 3.
(5)水熱処理が80〜500℃の水または水蒸気でな
される特許請求の範囲第1項、第2項、第3項または第
4項に記載の製造方法。
(5) The manufacturing method according to claim 1, 2, 3, or 4, wherein the hydrothermal treatment is performed with water or steam at 80 to 500°C.
(6)焼成温度が400〜1,300℃である特許請求
の範囲第1項、第2項、第3項、第4項または第5項に
記載の製造方法。
(6) The manufacturing method according to claim 1, 2, 3, 4, or 5, wherein the firing temperature is 400 to 1,300°C.
JP5727887A 1987-03-12 1987-03-12 Manufacture of porous diaphragm Granted JPS63221815A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5727887A JPS63221815A (en) 1987-03-12 1987-03-12 Manufacture of porous diaphragm

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5727887A JPS63221815A (en) 1987-03-12 1987-03-12 Manufacture of porous diaphragm

Publications (2)

Publication Number Publication Date
JPS63221815A true JPS63221815A (en) 1988-09-14
JPH0480726B2 JPH0480726B2 (en) 1992-12-21

Family

ID=13051070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5727887A Granted JPS63221815A (en) 1987-03-12 1987-03-12 Manufacture of porous diaphragm

Country Status (1)

Country Link
JP (1) JPS63221815A (en)

Also Published As

Publication number Publication date
JPH0480726B2 (en) 1992-12-21

Similar Documents

Publication Publication Date Title
US5439624A (en) Method for forming porous ceramic materials
Julbe et al. The sol-gel approach to prepare candidate microporous inorganic membranes for membrane reactors
WO2021047205A1 (en) Method for preparing ceramic nanofiltration membrane
JP2524060B2 (en) Microporous aluminosilicate ceramic membrane
JP2002516744A (en) Hydrophobic, substance-permeable composites, methods for their production and use
US5208190A (en) Microporous alumina ceramic membranes
CN106178970A (en) A kind of method preparing zirconia ceramic ultrafiltration film
WO2021248896A1 (en) Preparation method for titania ceramic ultrafiltration membrane
Erdem Sol-gel applications for ceramic membrane preparation
JP2665042B2 (en) Metal oxide porous ceramic membranes with small pore size
Khalili et al. Preparation of ceramic γ-Al2O3–TiO2 nanofiltration membranes for desalination
EP0401928B1 (en) Process for the preparation of a binary membrane top layer
JPS63221815A (en) Manufacture of porous diaphragm
JPH01304006A (en) Inorganic porous membrane and preparation thereof
CN109569313A (en) A kind of flat ceramic seperation film and its spraying preparation method
JP2003206185A (en) Aluminum oxide ceramic porous body and method for producing the same
CN102389715A (en) Method for preparing porous inorganic membrane by carbon skeleton-assisted particle sintering process
JPH0243928A (en) Inorganic porous membrane
JPS63221804A (en) Porous diaphragm and its manufacture
Santos et al. Formation of SnO 2 supported porous membranes
JPH02167826A (en) Zirconia sol and production thereof
JP2900358B2 (en) Zirconia sol
JP2003220319A (en) Separation membrane module and manufacturing method thereof
JPH0871385A (en) Carbon dioxide separator
JP2001259324A (en) Method for producing ceramic filter