JPS63221805A - Filter - Google Patents

Filter

Info

Publication number
JPS63221805A
JPS63221805A JP62055322A JP5532287A JPS63221805A JP S63221805 A JPS63221805 A JP S63221805A JP 62055322 A JP62055322 A JP 62055322A JP 5532287 A JP5532287 A JP 5532287A JP S63221805 A JPS63221805 A JP S63221805A
Authority
JP
Japan
Prior art keywords
liquid
filtration
treated
modules
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62055322A
Other languages
Japanese (ja)
Inventor
Toshio Nakao
中尾 俊夫
Yasuhide Sawada
沢田 泰秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP62055322A priority Critical patent/JPS63221805A/en
Publication of JPS63221805A publication Critical patent/JPS63221805A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/149Multistep processes comprising different kinds of membrane processes selected from ultrafiltration or microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • B01D61/146Ultrafiltration comprising multiple ultrafiltration steps

Landscapes

  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To maintain the feeding speed to respective modules uniformly and filter the liquid to be treated efficiently and at a low cost by providing bypass piping connected directly to the inlet pipe of the first module and feeding respective filter modules connected in series with the liquid to be treated. CONSTITUTION:Respective filter modules are divided into unit modules 1 consisting of one to a plurality of modules, and a bypass piping 3 for feeding the respective units with the fresh liquid to be treated, connected directly with the inlet pipe of the first module, is provided. The liquid to be treated passes through the filter modules, and is filtered and concentrated to reduce the liquid volume, and the liquid volume to compensate said reduction is replenished from said bypass pipings 3 to make the feeding speed to respective units within the range of 70-100% of the feeding speed to the first filter module unit for the purpose of preventing the feeding speed from decreasing and also preventing the concentration of the liquid to be treated from increasing unnecessarily.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は蛋白、糖、アミノ酸等の有価物回収あるいは食
品、醗酵、産業排水処理等の分野に於いて利用できる比
較的高濃度溶液の精製、濃縮に用いる選択性透過膜濾過
モジュールによる濾過装置に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is applicable to the recovery of valuable substances such as proteins, sugars, and amino acids, and the purification of relatively highly concentrated solutions that can be used in fields such as food, fermentation, and industrial wastewater treatment. , relates to a filtration device using a selective permeable membrane filtration module used for concentration.

〔従来技術〕[Prior art]

高濃度の被処理液を選択性透過膜で濾過精製、濃縮する
場合には以下のような問題が生じ実用化が困難になって
いる例が多くみられるのが現状である。
At present, when a highly concentrated liquid to be treated is filtered, purified and concentrated using a selective permeable membrane, the following problems arise, making it difficult to put the process into practical use.

すなわち、 (i)被処理液のP、度が上昇するにつれ、一般に透過
液量(以下FltlXという)は指数輪間数的に減少す
る。
That is, (i) As the P value of the liquid to be treated increases, the amount of permeated liquid (hereinafter referred to as FltlX) generally decreases in an exponential manner.

(11)濾過にともない被処理液の液量が減少し、流速
が低下し、このために膜面の汚染が著しくなり、FIU
Xが低下する。
(11) With filtration, the amount of the liquid to be treated decreases and the flow rate decreases, resulting in significant contamination of the membrane surface and FIU
X decreases.

(iii )複数の濾過モジュールにより濾過する場合
は膜面の汚れかたが濾過モジュール毎に不均一となりや
すく濾過モジュールの取替え作業が繁雑化し、ランニン
グコストが高くなってしまう。
(iii) When filtration is performed using a plurality of filtration modules, the dirt on the membrane surface tends to be nonuniform among the filtration modules, making the task of replacing filtration modules complicated and increasing running costs.

このような問題を解決せんとして種々の方法が提唱され
ているがいずれも未だ十分とはいえない。
Various methods have been proposed to solve these problems, but none of them can be said to be sufficient.

例えば、濾過モジュールをクリスマスツリー型に配した
ものが知られている。(特開昭53−14961号公報
等) クリスマスツリー型は濾過による被処理液の減少に従っ
て並列に並べる濾過モジュールの本数を逐次少なくして
いくことにより被処理液の供給流速を保つようにした装
置であり、実用例も多いが濾過モジュールの本数は整数
価しかとり得ないことから濾過モジュールの使用本数が
多くなる。
For example, it is known that filtration modules are arranged in the shape of a Christmas tree. (Japanese Unexamined Patent Publication No. 53-14961, etc.) The Christmas tree type is a device that maintains the supply flow rate of the liquid to be treated by gradually decreasing the number of filtration modules arranged in parallel as the liquid to be treated decreases due to filtration. Although there are many practical examples, the number of filtration modules can only be an integer value, so the number of filtration modules used is large.

この方法において濾過モジュールの配列や、格段の膜面
積や性能を調整することによって改善する方法があるが
、(特開昭52−128888号公報、特開昭57−1
94017号公報、特開昭53−78653号公報等)
いずれも配管、配列が複雑となりイニシャルコストの上
昇をきたし、更に被処理液のロットのバラツキに対して
柔軟な対応がとりにくくなる問題も生じてしまう。これ
らの方法においてワンバスで濾過処理するには膜面積を
非常に多くとる必要があることから、同一濾過モジュー
ルに被処理液を繰り返し流し濾過する回分法濾過装置も
知られている。この回分法濾過装置においては被処理液
の流速コントロールは容易であり、膜面積は少なくでき
るが、前述のように被処理液の濃度が上昇するにつれF
+uxが減少し、多大の濾過時間を要するという問題点
がある。
There are ways to improve this method by adjusting the arrangement of the filtration modules and the membrane area and performance.
94017, JP-A-53-78653, etc.)
In either case, the piping and arrangement become complicated, resulting in an increase in initial cost, and furthermore, there arises the problem that it becomes difficult to respond flexibly to lot variations in the liquid to be treated. In these methods, since it is necessary to have a very large membrane area to carry out filtration treatment in one bath, batch method filtration apparatuses are also known in which the liquid to be treated is repeatedly passed through the same filtration module for filtration. In this batch method filtration device, it is easy to control the flow rate of the liquid to be treated and the membrane area can be reduced, but as mentioned above, as the concentration of the liquid to be treated increases, F
There is a problem that +ux decreases and a large amount of filtration time is required.

これらを解決するために濾過モジュールを並列に多本数
ならべて濾過時間を短縮化する装置も考えられるが被処
理液の液送のために吐出量の大きいポンプを要すること
からイニシャルコストの上昇をきたす。
To solve these problems, a device that shortens the filtration time by arranging a large number of filtration modules in parallel could be considered, but this would require a pump with a large discharge volume to transport the liquid to be treated, which would increase the initial cost. .

他に回分法濾過装置を数段直列に配して濾過する半回法
濾過装置が知られているが、この装置は各段で回分方法
により濾過モジュールを通過した被処理液の一部を次ぎ
の段に送り順次被処理液の濃度を高めていく方法であり
、膜面積は少なく被処理液の流速も高く保つことが出来
るが、各段で濃縮度をあげて次ぎの段に送るためにつね
に高めの濃度の被処理液が回分していることとなりFl
uXの点で理想的とは言えず、又格段との連絡、各段で
の圧力、流速の調整をこまかく管理する必要があり非常
にコントロールが難しい。
Another known method is a semi-batch filtration device in which several stages of batch filtration devices are arranged in series for filtration. This is a method in which the concentration of the liquid to be treated is increased in stages, and the membrane area is small and the flow rate of the liquid to be treated can be maintained at a high level. The liquid to be treated with a higher concentration is always batched, so the Fl
It is not ideal in terms of uX, and it is extremely difficult to control as it requires careful management of communication between stages and adjustment of pressure and flow rate at each stage.

又、これらの方法を組み合わせた装置や濾過方法も種々
提唱されているが(例えば特開昭53−58974号公
報、特開昭56−67583号公報)いずれも一層複雑
となりイニシャルコストの上昇、管理の繁雑さは避けら
れないのが現状である。
In addition, various devices and filtration methods that combine these methods have been proposed (for example, JP-A-53-58974 and JP-A-56-67583), but all of them are more complex, resulting in increased initial costs and management problems. The current situation is that complexity is unavoidable.

〔発明の目的〕[Purpose of the invention]

本発明は効率のよい、しかも容易に低コストで被処理液
を濾過精製あるいは濾過濃縮する装置を得んとして鋭意
検討した結果、被処理液の濃度の上昇を出来るだけ抑え
て、かつ被処理液の供給流速を出来るだけ均一に保つこ
とによって達成出来るとの知見を得て更に研究を進め完
成するに至ったものである。
The present invention was developed as a result of intensive studies aimed at creating an apparatus for filtering, refining, or filtering and concentrating a liquid to be treated with high efficiency and at low cost. With the knowledge that this could be achieved by keeping the supply flow rate as uniform as possible, further research was conducted and the result was completed.

〔発明の構成〕[Structure of the invention]

本発明は被処理液を選択性透過膜で濾過精製あるいは濾
過濃縮を行うに際し直列に接続された各濾過モジュール
を1本〜複数本からなる単位に分け、各単位の濾過モジ
ュールへの被処理液を供給速度が、最初の濾過モジュー
ル単位に供給する速度の70〜100%の範囲となるよ
うに、各単位の濾過モジュールの被処理液供給配管に最
初の単位の濾過モジュールに被処理液を供給する配管に
直結したバイパス配管を有する濾過装置に関するもので
ある。
In the present invention, when performing filtration purification or filtration concentration of a liquid to be treated using a selective permeable membrane, each filtration module connected in series is divided into units consisting of one to a plurality of filtration modules, and the liquid to be treated is transferred to each unit's filtration module. Supply the liquid to be treated to the filtration module of the first unit to the liquid to be treated piping of each filtration module so that the supply rate is in the range of 70 to 100% of the rate of supply to the first filtration module. The present invention relates to a filtration device having a bypass pipe directly connected to a pipe.

本発明に於いて用いられる濾過モジュールの形式は特に
限定されるものでなく、クロスフローで選択透過膜を用
いるものであれば、中空系、チューブラ、スパイラル等
いずれの形式の膜を用いたモジュールも利用できる。
The type of filtration module used in the present invention is not particularly limited, and modules using any type of membrane such as hollow type, tubular type, spiral type, etc. can be used as long as they use a selectively permeable membrane in cross flow. Available.

濾過モジュールを直列に接続すれば、最初の濾過モジュ
ールに供給される被処理液に比べて該濾過モジュールを
通過した被処理液は濾過濃縮されたものとなり、該濾過
モジュールにおいて濾過された液量分だけ被処理液の供
給速度は低下し、更に濃度も高くなってしまう。
If the filtration modules are connected in series, the liquid to be treated that has passed through the filtration module will be filtered and concentrated compared to the liquid to be treated that is supplied to the first filtration module, and the amount of liquid filtered in the filtration module will be However, the supply speed of the liquid to be treated decreases, and the concentration also increases.

ここにこの減量分に見合う量を最初の濾過モジュールに
被処理液を供給する配管からバイパス配管により最初の
被処理液を補充供給すれば、供給速度の低下を防ぎ、同
時に不必要なS度の上昇も緩和することができる。被処
理液は、供給速度が全濾過モジュールに対し最初の濾過
モジュールに供給した速度の70〜100%、好ましく
は90〜100%の範囲になるようにする。各濾過モジ
ュールに対して被処理液供給速度が最初の濾過モジュー
ルに対する供給速度の70%を下回れば、膜面線速度が
不充分でかつ濃度が高くなってしまい濾過効率の向上は
得られない。100%を上回れば膜面線速度が大きくな
りすぎ、部分的に高効率となるが濾過モジュールを通ら
ない被処理液の割合が増大するので被処理液全体として
の処理量は低下する。
By replenishing the first liquid to be treated by bypass piping from the piping that supplies the liquid to the first filtration module in an amount commensurate with this reduction, the supply rate can be prevented from decreasing, and at the same time unnecessary S degree The increase can also be mitigated. The supply rate of the liquid to be treated is set to be in the range of 70 to 100%, preferably 90 to 100%, of the rate of supply to the first filtration module for all filtration modules. If the supply rate of the liquid to be treated to each filtration module is less than 70% of the supply rate to the first filtration module, the membrane surface linear velocity will be insufficient and the concentration will become high, making it impossible to improve the filtration efficiency. If it exceeds 100%, the surface linear velocity of the membrane becomes too high, and although efficiency is partially achieved, the proportion of the liquid to be treated that does not pass through the filtration module increases, resulting in a decrease in the throughput of the liquid to be treated as a whole.

本発明の装置においては最初の濾過モジュールへの被処
理液供給速度を高め、途中で補充供給する被処理液をこ
の系全体として100%を下回るようにするのが望まし
い。又、これらの被処理液の供給速度を調節するのにバ
イパス配管に取り付けたバルブを用いることによってこ
れらの供給速度の調整は比較的容易にすることもできる
。配管が複雑になるものを防ぐために直列に接続された
各単位の濾過モジュールの全てのものに最初の被処理液
の供給を行うのでなく、その1部にのみ供給するだけで
も効果を上げることができる。
In the apparatus of the present invention, it is desirable to increase the rate of supply of the liquid to be treated to the first filtration module so that the amount of liquid to be treated that is replenished midway through the system is less than 100%. Further, by using a valve attached to the bypass piping to adjust the supply rate of these liquids to be treated, adjustment of these supply rates can be made relatively easy. In order to avoid complicating the piping, instead of initially supplying the liquid to be treated to all of the filtration modules in each unit connected in series, it is possible to increase the effect by supplying only one part of the filtration modules. can.

被処理液の供給は特に工夫をすることは必要としない。No special measures are required for supplying the liquid to be treated.

濾過モジュールを通過した液は圧損により濾過モジュー
ルに供給しだ液圧よりも若干低圧となっているため、単
に配管と簡単なパルプ操作でよい。特にこの目的のため
にポンプを利用するにしても消費電力は少なく、ランニ
ングコストの上昇にはならない。
Since the liquid that has passed through the filtration module has a pressure slightly lower than the pressure of the liquid that is supplied to the filtration module due to pressure loss, only piping and a simple pulp operation are required. In particular, even if a pump is used for this purpose, the power consumption is low and running costs do not increase.

〔発明の効果〕〔Effect of the invention〕

本発明装置は (イ)複雑な制御や配管、濾過モジュールの組み合わせ
を必要とせず濾過効率を上げることができる。従ってワ
ンパス、回分、半回分いずれの形式に於いても必要濾過
膜モジュールの本数が少なくてすむ。
The device of the present invention (a) can increase filtration efficiency without requiring complicated controls, piping, or combinations of filtration modules; Therefore, the number of filtration membrane modules required is small in any one-pass, batch, or semi-batch format.

(ロ)被処理液の途中補充を調整することにより、供給
被処理液の濃度、供給量のバラツキに対してフレキシブ
ルな対応がとれる。特にクリスマスツリー型のように多
数本並列に運転する場合、ムダの発生を防ぐことができ
る。
(b) By adjusting midway replenishment of the liquid to be treated, it is possible to flexibly deal with variations in the concentration and amount of the supplied liquid to be treated. Particularly when a large number of them are operated in parallel, such as in a Christmas tree type, it is possible to prevent waste from occurring.

(ハ)濾過モジュールを通過し、粘度が高くなった濃縮
液に粘度の未だ低い、濾過モジュールを通過していない
被処理液を供給してやると低粘度化するので、圧損、温
調の点で有利となる。
(c) Supplying the liquid to be treated, which has a low viscosity and has not passed through the filtration module, to the concentrated liquid that has passed through the filtration module and has a high viscosity, will reduce the viscosity, which is advantageous in terms of pressure drop and temperature control. becomes.

また、被処理液が膜面にゲル層を形成し易い場合に有効
でおり、食品、排水処理等への利用が期待できる。
Moreover, it is effective when the liquid to be treated easily forms a gel layer on the membrane surface, and can be expected to be used in food, wastewater treatment, etc.

(ニ)被処理液に過酸化水素、鉄塩等凝集剤を添加し濾
過効率を高める方法があるが、最適の添加量は濃度によ
って異なり、過度に添加すると濾過モジュールの閉塞を
きたすことがある。
(d) There is a method to increase filtration efficiency by adding coagulants such as hydrogen peroxide and iron salts to the liquid to be treated, but the optimal amount to add varies depending on the concentration, and adding too much may clog the filtration module. .

本発明の装置に於いては、被処理液を補給するラインよ
り途中から適量ずつ添加してやれるので濾過モジュール
の閉塞を心配する必要がない。
In the apparatus of the present invention, the liquid to be treated can be added in an appropriate amount from the midway through the supply line, so there is no need to worry about clogging the filtration module.

〔実施例〕〔Example〕

実施例1 (i)  使用濾過モジュール 長さ1m、管径167!I11のチューブラ膜7本を並
列に結束したものを用いた。
Example 1 (i) The length of the filtration module used was 1 m, and the pipe diameter was 167! Seven I11 tubular membranes tied in parallel were used.

(11)膜性能 ショ糖5重量%水溶液を、水温20℃、入り0圧20(
Kg/cri)、線速1 (7?Z/SeC)の条件で
濾過運転を行なった時の濾過モジュールの透過液量は7
31 /Trthr) 、ショ糖粗止率10(%)であ
った。
(11) Membrane performance A 5% by weight aqueous solution of sucrose was added at a water temperature of 20°C and a pressure of 20°C (
Kg/cri) and linear velocity of 1 (7?Z/SeC), the amount of liquid permeated through the filtration module is 7.
31/Trthr), and the rough sucrose conversion rate was 10 (%).

(iii )被処理液 アミノメラノイジン、糖等を含む40〜45BX、PH
5,0,C0D28%の廃糖蜜水溶液を用いた。この液
は比較的ゲル層を形成し易く、また濾過運転後膜表面に
かなりの着色、付着が認められた。
(iii) Liquid to be treated 40-45BX containing aminomelanoidin, sugar, etc., PH
A molasses aqueous solution containing 28% of 5,0, C0D was used. This liquid relatively easily formed a gel layer, and considerable coloring and adhesion were observed on the membrane surface after filtration operation.

(iv)濾過条件 液温70±3(℃)、最初のモジュール単位に入る被処
理液の供給速度は1.0(TrL/sec >  (4
,87ft/hr) 、入口圧力を20(Kg/cIi
)とした。また、途中で被処理液を導入する濾過モジュ
ールについても、入口流速を1 、0力g、os (m
/sec )となるよう調整した。
(iv) Filtration conditions: Liquid temperature: 70 ± 3 (℃), supply rate of the liquid to be treated entering the first module unit: 1.0 (TrL/sec > (4
, 87 ft/hr), and the inlet pressure was set to 20 (Kg/cIi).
). In addition, for the filtration module that introduces the liquid to be treated midway, the inlet flow rate is set to 1, 0 force g, os (m
/sec).

(V )濾過装置 第1図に示すように、濾過モジュール30本(30Tr
L>毎に被処理液を補充する、本発明に従う改良型ワン
パス濾過装置を用いた。
(V) Filtration device As shown in Figure 1, 30 filtration modules (30Tr
An improved one-pass filtration device according to the invention was used, in which the liquid to be treated was replenished every L>.

装置の長さを変えて、出口の濃度と液量を測定した結果
を第1表に示す。
Table 1 shows the results of measuring the concentration and liquid volume at the outlet while changing the length of the device.

比較例1 途中での被処理液供給を行なわない、従来形式のワンパ
ス濾過装置について、実施例1と同様、装置の長さを変
えて測定した結果を第1表にまとめて示す。
Comparative Example 1 Table 1 summarizes the results of measurements made by changing the length of the device in the same manner as in Example 1 for a conventional one-pass filtration device that does not supply the liquid to be treated midway.

このように本発明の装置を用いるなら、濃縮倍率(被処
理液供給伍/出口液量)は低いが、被処理液供給母が多
くとれ、結果として透過液量が多いことが判る。
As described above, it can be seen that when the apparatus of the present invention is used, although the concentration ratio (the amount of liquid to be treated/the amount of liquid at the outlet) is low, a large amount of the liquid to be treated can be supplied, and as a result, the amount of permeated liquid is large.

実施例2 24(TIi/hr)で供給される被処理液を、3倍に
濃縮する濾過システムとして第4図に示すように、本発
明の装置をクリスマスツリー型に接続した。運転条件は
実施例1と同時に入口線速1,0(m/sec )入口
圧力20(Kg/cIi)で、被処理液の供給も同様に
30m毎に行なった。
Example 2 As shown in FIG. 4, the apparatus of the present invention was connected in a Christmas tree shape as a filtration system for concentrating the liquid to be treated fed at 24 (TIi/hr) three times. The operating conditions were the same as in Example 1: an inlet linear velocity of 1.0 (m/sec) and an inlet pressure of 20 (Kg/cIi), and the liquid to be treated was supplied every 30 m.

第1段は本発明の装置を240m直列に接続したものを
4本並列に用い、順次第二段は630mのものを3本並
列に、第三段は360mのものを2本並列とし、第4段
は本発明の装置を360m直列に接続した側に6.16
 (TIi/hr)を、また420m従来法で直列に接
続した側に3.58(TIi/hr)それぞれ供給し、
濃縮液を得た。各段出口の濃縮倍率は1.25.1.6
6.2.46.3.00であった。要した濾過モジュー
ルの総本数は4200本(4200m>である。
The first stage uses four devices of the present invention connected in series of 240 m in parallel, the second stage uses three devices of 630 m in parallel, the third stage uses two devices of 360 m in parallel, and the second stage uses two devices of 360 m in parallel. The fourth stage is 6.16 on the side where the devices of the present invention are connected in series for 360 m.
(TIi/hr) and 3.58 (TIi/hr) respectively to the 420m conventional method connected in series,
A concentrated solution was obtained. The concentration ratio of each stage outlet is 1.25.1.6
It was 6.2.46.3.00. The total number of filtration modules required was 4200 (4200 m>).

比較例2 実施例2と同じ、24m/hrで供給される被処理液を
、3倍に濃縮する濾過システムに於いて、従来型のクリ
スマスツリー形式を用いた。運転条件は比較例1と同様
である。第1段は240m直列に接続した濾過モジュー
ルを5本並列とし、順次、第2段は330mを4本、第
3段は540mを3本、第4段は270mを2本とした
。各段の出口濃縮倍率はそれぞれ1.24.1.64.
2.49.3.0であった。要した濾過モジュールの総
本数は4680本(4680m>であった。
Comparative Example 2 The same as in Example 2, a conventional Christmas tree type filtration system was used in which the liquid to be treated, supplied at 24 m/hr, was concentrated three times. The operating conditions are the same as in Comparative Example 1. The first stage had five filtration modules connected in series with 240 m in parallel, the second stage had four 330 m modules, the third stage had three 540 m modules, and the fourth stage had two 270 m modules. The outlet concentration ratio of each stage is 1.24.1.64.
It was 2.49.3.0. The total number of filtration modules required was 4680 (4680 m>).

入口流速を1 、0 (m/sec )以下で運転する
場合、従来のクリスマスツリーだとこれが最小本数第1
表 ワンパス装置に於ける濾過効果a)単位(m/hr
)    b)  単位(TrL)である。
When operating at an inlet flow velocity of 1.0 (m/sec) or less, this is the minimum number of traditional Christmas trees.
Table Filtration effect in one pass device a) Unit (m/hr
) b) Unit (TrL).

このように本発明に従うと従来型のクリスマスツリー形
式に比較し、約1割モジュールが少なくて済む。
As described above, according to the present invention, the number of modules can be reduced by about 10% compared to the conventional Christmas tree format.

実施例3 第2図に示すように、濾過モジュール30本(30m>
毎に被処理液を補充する、本発明に従う回分型濾過装置
を用い、運転条件は実施例1と同様にし、濃縮所要時間
を測定した。
Example 3 As shown in Fig. 2, 30 filtration modules (30m>
Using a batch-type filtration apparatus according to the present invention, which replenishes the liquid to be treated every time, the operating conditions were the same as in Example 1, and the time required for concentration was measured.

被処理液1Qボを装置の全長をかえて濃縮した結果を第
2表に示す。
Table 2 shows the results of concentrating 1Q of the liquid to be treated by changing the overall length of the apparatus.

比較例−3 被処理液の途中供給を行なわない従来型の回分濾過装置
を用い、実施例3と同様の実験を行なった。結果を第2
表にまとめて示す。
Comparative Example 3 An experiment similar to Example 3 was conducted using a conventional batch filtration device that does not supply the liquid to be treated midway. Second result
They are summarized in the table.

第2表 回分装置における濃縮所要時間 a)a)単位
(hrs) b)初期原処理液量10ゴから透過液層を測定し算出実
施例4 第3図を示すように、濾過モジュール30本(30m)
毎に被処理液を補充する、本発明に従う改良型半回分装
置を用い、装置への供給液量を960(i/hr)とし
た時の平衡状態に於ける濃縮液の濃縮倍率と濃縮液量を
測定した。運転条件は実施例1と同様であり、装置の全
長をふくらませた結果を第3表に示す。
Table 2 Required time for concentration in a batch device a) a) Unit (hrs) b) Calculation by measuring the permeate layer from the initial raw treated liquid volume of 10 grams Example 4 As shown in Figure 3, 30 filtration modules ( 30m)
Using the improved semi-batch apparatus according to the present invention, which replenishes the liquid to be treated every time, the concentration ratio of the concentrated liquid and the concentrated liquid in an equilibrium state when the amount of liquid supplied to the apparatus is set to 960 (i/hr) The amount was measured. The operating conditions were the same as in Example 1, and Table 3 shows the results of increasing the total length of the device.

比較例−4 被処理液の途中補充を行なわない従来の半回分濾過装置
を用いる他は実施例4と同様の実験を行なった。結果を
第3表に示す。
Comparative Example 4 The same experiment as in Example 4 was conducted except that a conventional semi-batch filtration device was used in which the liquid to be treated was not replenished midway. The results are shown in Table 3.

第3表 半回分装置に於ける濃縮効果 a)単位(1/hr) b)半回分装置への供給液量960(J! /hr)に
対する透過液量の比より算出 実施例5 本発明に従う改良型ワンバス濾過装置に於いて、全長6
30mで実施例1と同じ条件で濾過すると濃縮倍率1.
55、出口流速0.98m、/5eC(4,68m/h
r)である。すなわち、途中で補充した被処理液も加え
ると結果的には装置全体ととり、rl、5m/sec 
 (7,2m/hr)で処理していることになる。
Table 3 Concentration effect in the semi-batch device a) Unit (1/hr) b) Calculated from the ratio of the amount of permeate to the amount of liquid supplied to the semi-batch device, 960 (J!/hr) Example 5 According to the present invention In the improved one-bath filtration device, the total length is 6.
When filtered at 30 m under the same conditions as Example 1, the concentration ratio was 1.
55, outlet flow velocity 0.98 m, /5eC (4,68 m/h
r). In other words, if the liquid to be treated is replenished in the middle of the process, the entire apparatus is taken up, and the rl is 5 m/sec.
(7.2 m/hr).

比較例5 人口流速1.5m、/SeCで長時間運転するのは、装
置上好ましくないので、従来型ワンパスを2本並列して
濾過を行なった。それぞれの濾過モジュール入口流速は
0.75m/sec  (3,6TrL/hr)である
Comparative Example 5 Since it is not preferable for the apparatus to operate for a long time at an artificial flow rate of 1.5 m and /SeC, filtration was performed using two conventional one-pass filters in parallel. The inlet flow rate of each filtration module is 0.75 m/sec (3,6 TrL/hr).

実施例5と同様に出口濃縮倍率1.55とするのには、
1本全長が660m (装置全体として1320Tr1
.)必要であった。このように本発明によれば、膜が少
なくて済むだけでなく、被処理液の供給量が増減しても
、フレキシブルに対応できるメリットもあることが判る
To set the exit concentration ratio to 1.55 as in Example 5,
The total length of one piece is 660m (the entire equipment is 1320Tr1
.. ) was necessary. As described above, it can be seen that the present invention not only requires fewer membranes, but also has the advantage of being able to flexibly respond to changes in the supply amount of the liquid to be treated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図はそれぞれ本発明による改良型
のワンバス、回分、半回分形式の濾過装置を示す。1は
濾過モジュールを直列に接続してなる単位、2は送液ポ
ンプ、3はバイパス配管、4は処理液タンク、図中の矢
印は液の流れを示す。 第4図は実施例2で述べた改良型クリスマスツリー形式
の濾過装置を示す。5は被処理液の途中補充を行なう7
本発明の装置部分であり、内容的には第1図のワンパス
型を意味する。6は従来のワンパス型を示す。
FIGS. 1, 2, and 3 illustrate improved one-bath, batch, and semi-batch type filtration devices, respectively, in accordance with the present invention. 1 is a unit formed by connecting filtration modules in series, 2 is a liquid sending pump, 3 is a bypass pipe, 4 is a processing liquid tank, and the arrows in the figure indicate the flow of liquid. FIG. 4 shows the improved Christmas tree type filtration device described in Example 2. 5 replenishes the liquid to be treated midway 7
This is a device part of the present invention, and in terms of content, it means the one-pass type shown in FIG. 6 shows a conventional one-pass type.

Claims (4)

【特許請求の範囲】[Claims] (1)選択性透過膜からなる濾過モジュールを直列に配
し、被処理液を濾過精製あるいは濾過濃縮する装置にお
いて、濾過モジュールを1本〜複数本からなる単位に分
け、各単位の被処理液供給配管に最初の濾過モジュール
単位へ被処理液を供給する配管から直結させたバイパス
配管を設け、各単位の濾過モジュールに入る非処理液を
供給速度が最初の濾過モジュール単位に入る被処理液の
供給速度の70〜100%の範囲で各々の濾過モジュー
ル単位に供給し濾過するようにしたことを特徴とする濾
過装置。
(1) In an apparatus in which filtration modules consisting of selectively permeable membranes are arranged in series and the liquid to be treated is purified or concentrated by filtration, the filtration module is divided into units consisting of one or more units, and the liquid to be treated in each unit is A bypass pipe is installed in the supply piping that is directly connected to the pipe that supplies the liquid to be treated to the first filtration module unit, and the supply rate of the untreated liquid that enters the filtration module of each unit is adjusted to that of the liquid to be treated that enters the first filtration module unit. A filtration device characterized by supplying and filtering to each filtration module unit at a rate of 70 to 100% of the supply rate.
(2)バイパス配管に、各単位の濾過モジュールに供給
する被処理液速度を調節するためのバルブをもうけた特
許請求の範囲第1項記載の濾過装置。
(2) The filtration device according to claim 1, wherein the bypass piping is provided with a valve for adjusting the speed of the treated liquid supplied to each unit of filtration module.
(3)単位濾過モジュールが2単位からなる特許請求の
範囲第1項記載の回分法濾過装置。
(3) The batch filtration device according to claim 1, wherein the unit filtration module consists of two units.
(4)単位濾過モジュールが2単位からなる特許請求の
範囲第3項記載の回分法濾過装置を直列に数個配列して
なる半回分法濾過装置。
(4) A semi-batch filtration device comprising several batch filtration devices arranged in series according to claim 3, each of which has two unit filtration modules.
JP62055322A 1987-03-12 1987-03-12 Filter Pending JPS63221805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62055322A JPS63221805A (en) 1987-03-12 1987-03-12 Filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62055322A JPS63221805A (en) 1987-03-12 1987-03-12 Filter

Publications (1)

Publication Number Publication Date
JPS63221805A true JPS63221805A (en) 1988-09-14

Family

ID=12995309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62055322A Pending JPS63221805A (en) 1987-03-12 1987-03-12 Filter

Country Status (1)

Country Link
JP (1) JPS63221805A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0444285A1 (en) * 1990-01-30 1991-09-04 Cpc Engineering Corporation Serial crossflow filtration assembly
EP1743689A1 (en) * 2005-07-13 2007-01-17 KRONES Aktiengesellschaft Crossflow filtration apparatus and process
WO2022196698A1 (en) * 2021-03-15 2022-09-22 旭化成株式会社 Method and system for reducing volume of raw material liquid

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0444285A1 (en) * 1990-01-30 1991-09-04 Cpc Engineering Corporation Serial crossflow filtration assembly
EP1743689A1 (en) * 2005-07-13 2007-01-17 KRONES Aktiengesellschaft Crossflow filtration apparatus and process
WO2022196698A1 (en) * 2021-03-15 2022-09-22 旭化成株式会社 Method and system for reducing volume of raw material liquid

Similar Documents

Publication Publication Date Title
AU2009339547B2 (en) Spiral-type seawater desalination system
US20100294718A1 (en) Liquid purification system using a medium pressure membrane
CA2556703C (en) Method for the diafiltration of a product and device for carrying out this method
JP3862816B2 (en) Reverse osmosis membrane separation method
JPH01101879A (en) Method for separating useful substance which is produced by bioengineering from culture solution
JPH0427485A (en) Method for defoaming pure water and reverse osmosis method for production of pure water
JPS63221805A (en) Filter
CN111530293B (en) Continuous flow-through membrane filtration device and method
CN212403567U (en) Reverse osmosis membrane purifier
JP2001078732A (en) Method for reverse osmosis concentration of tomato juice
JPH0334365B2 (en)
JP2002085941A (en) Fresh water making process and fresh water maker
EP0879634A2 (en) Process of purification of leachate from dumps via ultrafiltration and reverse osmosis
CN217119879U (en) Electrodialysis desalination system of purification glufosinate-ammonium
CN207102346U (en) A kind of reverse osmosis type sewage-treatment plant
KR101256704B1 (en) System and Method for Filtering
JP2852958B2 (en) Operating method of membrane module
JP3375070B2 (en) Membrane processing device and fresh water method
JPH0214810A (en) Treatment of aqueous suspension containing electrolyte of highly swellable laminar silicate
CN110436574A (en) A kind of inorganic salt solution concentrator and the continuous method for highly concentrating of inorganic salt solution
JPH0462768B2 (en)
CN215585694U (en) Special production line for natural pigment purification and concentration
JPS60129106A (en) Operation of ultrafiltration module
CN214059936U (en) Speed regulation water purification system based on water production circulation and water purifier
JPS63209786A (en) Waste water treatment apparatus