JPS63221136A - Polyester film - Google Patents

Polyester film

Info

Publication number
JPS63221136A
JPS63221136A JP5458487A JP5458487A JPS63221136A JP S63221136 A JPS63221136 A JP S63221136A JP 5458487 A JP5458487 A JP 5458487A JP 5458487 A JP5458487 A JP 5458487A JP S63221136 A JPS63221136 A JP S63221136A
Authority
JP
Japan
Prior art keywords
film
polyester
inorganic particles
biaxially oriented
inert inorganic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5458487A
Other languages
Japanese (ja)
Other versions
JPH089670B2 (en
Inventor
Koichi Abe
晃一 阿部
Satoshi Nishino
聡 西野
Hidesada Okasaka
秀真 岡阪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP62054584A priority Critical patent/JPH089670B2/en
Publication of JPS63221136A publication Critical patent/JPS63221136A/en
Publication of JPH089670B2 publication Critical patent/JPH089670B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/76Photosensitive materials characterised by the base or auxiliary layers
    • G03C1/795Photosensitive materials characterised by the base or auxiliary layers the base being of macromolecular substances
    • G03C1/7954Polyesters

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain a biaxially oriented polyester film excellent in chipping resistance and useful as a base film for videotapes, by molding a composition comprising a polyester and inert inorganic particles while controlling the relationship between the half-value widths of the Raman bands of the outermost layer and inside of a film. CONSTITUTION:0.05-1.0wt.%, based on the product, slurried inert inorganic particles of an average particle diameter of 0.1-1.0mu are dispersed in a diol component of a polyester (e.g., ethylene glycol), and an acid component [e.g., terephthalic acid (dimethyl ester)] is added to this diol component. The mixture is transesterified and polycondensed to obtain composition comprising a polyester and the inert inorganic particles. This composition is extruded at 270-330 deg.C with a draft ratio of 5-30 and the formed unoriented film is heat-treated and biaxially oriented at a speed of orientation of 1X10<3>-7X10<4>%/min and an orientation ratio of 3.0-5.0 and heat-treated for 0.5-60sec at 130-210 deg.C in an atmosphere of steam to obtain the title biaxially oriented film in at least either of which surfaces the half-value width of the Raman band ascribable to CO groups on the outermost layer is greater than that of the inside by at least 1cm<-1>.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は二軸配向ポリエステルフィルムに関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to biaxially oriented polyester films.

[従来の技術] 二軸配向ポリエステルフィルムとしては、ポリエステル
に不活性無機粒子を含有せしめたフィルムが知られてい
る(例えば、特開昭59−178224号公報)。
[Prior Art] As a biaxially oriented polyester film, a film made of polyester containing inert inorganic particles is known (for example, Japanese Patent Laid-Open No. 178224/1983).

[発明が解決しようとする問題点] しかし、上記従来の二軸配向ポリエステルフィルムは、
フィルムの加工工程、例えば包装用途における印刷工程
、磁気媒体用途における磁性層塗布、・カレンダ一工程
などの工程速度の増大にともない接触するロールなどで
フィルムの表面が削れることにより、加工工程上、製品
性能上のトラブルとなるという欠点が最近問題となって
きている。
[Problems to be solved by the invention] However, the above conventional biaxially oriented polyester film has the following problems:
As the process speed increases in film processing processes, such as printing processes for packaging applications, magnetic layer coating for magnetic media applications, and calendering processes, the surface of the film is abraded by contacting rolls, resulting in damage to the product during the processing process. The drawback of performance problems has recently become a problem.

本発明はかかる問題点を改善し、表面の「耐削れ性」の
優れたフィルムを提供することを目的とする。
The object of the present invention is to improve such problems and provide a film with excellent surface "scratching resistance."

[問題点を解決するための手段] ポリエステルと、少なくとも一種類の不活性無機粒子か
らなる組成物を主たる成分とする二軸配向フィルムであ
って、少なくとも片面のフィルムの極表層のカルボニル
基によるラマンバンドの半価幅が、フィルム内部の半価
幅より1cm−’以上大きいことを特徴とする二軸配向
ポリエステルフィルムとしたものである。
[Means for Solving the Problems] A biaxially oriented film whose main components are a composition consisting of polyester and at least one type of inert inorganic particle, which has a Raman oriented film based on a carbonyl group on the extreme surface layer of the film on at least one side. The biaxially oriented polyester film is characterized in that the half width of the band is 1 cm-' or more larger than the half width of the inside of the film.

本発明におけるポリエステルとは、エチレンテレフタレ
ート、エチレンα、β−ビス(2−クロルフェノキシ)
エタン−4,4−ジカルボキシレート、エチレン2,6
−ナフタレート単位から選ばれた少なくとも一種の構造
単位を主要構成成分とする。ただし、本発明を阻害しな
い範囲内、好ましくは5モル%以内でおれば他成分が共
重合されていてもよい。
Polyester in the present invention refers to ethylene terephthalate, ethylene α, β-bis(2-chlorophenoxy)
Ethane-4,4-dicarboxylate, ethylene 2,6
- Contains at least one structural unit selected from naphthalate units as a main constituent. However, other components may be copolymerized within a range that does not impede the present invention, preferably within 5 mol%.

また、エチレンテレフタレートを主要構成成分とするポ
リエステルの場合に耐削れ性がより一層良好となるので
特に望ましい。
In addition, polyester containing ethylene terephthalate as a main component is particularly desirable because it has even better abrasion resistance.

本発明における不活性無機粒子の種類は特に限定されな
いが、その結晶化促進係数が一5〜20℃、好ましくは
一5〜15℃、ざらに好ましくは0〜10℃の範囲であ
る場合に、本発明範囲のラマンバンド半価幅が極めて得
られやすくなるので特に望ましい。更にその中でも、コ
ロイド状シリカに起因する実質的に球形のシリカ、合成
炭酸カルシウム、酸化チタン、α−アルミナが特に望ま
しい。ここでいうコロイド状シリカとはケイ酸ナトリウ
ムを原料とし、アルカリ分を除去してゆく過程で生成し
た粒子であるのが望ましい。
The type of inert inorganic particles in the present invention is not particularly limited, but when the crystallization promotion coefficient is in the range of 15 to 20 °C, preferably 15 to 15 °C, more preferably 0 to 10 °C, This is particularly desirable since it becomes extremely easy to obtain a Raman band half width within the range of the present invention. Furthermore, among these, substantially spherical silica derived from colloidal silica, synthetic calcium carbonate, titanium oxide, and α-alumina are particularly desirable. It is desirable that the colloidal silica referred to here be particles produced in the process of removing alkali from sodium silicate.

本発明における不活性無機粒子の含有量は特に限定され
ないが、0.05〜1.0重量%、特に0.1〜0.8
重量%である場合に耐削れ性がより一層良好となるので
特に望ましい。
The content of inert inorganic particles in the present invention is not particularly limited, but is 0.05 to 1.0% by weight, particularly 0.1 to 0.8% by weight.
% by weight is particularly desirable because the abrasion resistance becomes even better.

本発明における不活性無機粒子の平均粒径は特に限定さ
れないが、0.1〜1.0μm、特に0゜15〜0.8
μmである場合に耐削れ性がより一層良好となるので特
に望ましい。
The average particle size of the inert inorganic particles in the present invention is not particularly limited, but is 0.1 to 1.0 μm, particularly 0°15 to 0.8 μm.
It is particularly desirable that the thickness is μm because the abrasion resistance becomes even better.

本発明における不活性無機粒子は2種類以上でもよいし
、また、同種類で平均粒径の異なる2種類以上のものを
組合せて用いても内部析出粒子と併用してもよい。本発
明フィルムは、上記組成物を主要成分とするが、本発明
の目的を阻害しない範囲内で、他種ポリマをブレンドし
てもよいし、また酸化防止剤、熱安定剤、滑剤、紫外線
吸収剤、核生成剤などの無機または有機添加剤が通常添
加される程度添加されていてもよい□。
In the present invention, two or more types of inert inorganic particles may be used, or two or more types of the same type with different average particle sizes may be used in combination, or they may be used in combination with internally precipitated particles. The film of the present invention has the above-mentioned composition as a main component, but other polymers may be blended within the range that does not impede the purpose of the present invention, and antioxidants, heat stabilizers, lubricants, ultraviolet absorbers, etc. Inorganic or organic additives such as additives, nucleating agents, etc. may be added to the extent that they are normally added.

本発明フィルムは上記組成物を二軸配向せしめたフィル
ムである。未延伸フィルム、−軸配向フィルムでは耐削
れ性が不良となるので好ましくない。
The film of the present invention is a film in which the above composition is biaxially oriented. An unstretched film or a -axis oriented film is not preferred because it has poor abrasion resistance.

また、その二軸配向の程度を表わす面配向指数は特に限
定されないが、0.935〜0.975、特に0.94
0〜0.970の範囲である場合に、耐削れ性がより一
層良好となるので特に望ましい。
In addition, the plane orientation index representing the degree of biaxial orientation is not particularly limited, but is 0.935 to 0.975, particularly 0.94
A range of 0 to 0.970 is particularly desirable because the abrasion resistance becomes even better.

本発明フィルムのフィルム極表層のカルボニル基の伸縮
振動に基づくラマンバンドの半価幅は、フィルム内部の
カルボニル基の伸縮振動に基づくラマンバンドの半価幅
よりも1CIW−1、好ましくは2CIII−1以上大
きいことが必要でおる。これらの半価幅の差が上記の範
囲より小さいと、フィルムの耐削れ性が不良となるので
好ましくない。なお、この差の上限は特に限定されない
が、通常Bcm’程度が製造上の限界である。ここで、
上記の半価幅は後述の方法で測定されるものであるが、
カルボニル基の伸縮振動に基づくラマンバンドの半価幅
はポリエステルの密度と反比例の関係があることは、A
、 J、 ne+vegerによって報告されているも
のである(J、Polymer 5cience 10
,317.1972 >。
The half-value width of the Raman band based on the stretching vibration of the carbonyl group in the extreme surface layer of the film of the present invention is 1CIW-1, preferably 2CIII-1, than the half-value width of the Raman band based on the stretching vibration of the carbonyl group inside the film. It needs to be bigger than that. If the difference in these half widths is smaller than the above range, the abrasion resistance of the film will be poor, which is not preferable. Note that the upper limit of this difference is not particularly limited, but usually about Bcm' is the manufacturing limit. here,
The above half width is measured by the method described below,
A: The half width of the Raman band based on the stretching vibration of carbonyl groups is inversely proportional to the density of polyester.
, J, ne+veger (J, Polymer 5science 10
, 317.1972 >.

また、本発明フィルムの極表層のカルボニル基のラマン
バンドの半価幅は特に限定されないが、15cm  以
上、好ましくは17cm−’以上である場合に、耐削れ
性がより一層良好となるので特に望ましい。
Further, the half-width of the Raman band of the carbonyl group in the extreme surface layer of the film of the present invention is not particularly limited, but it is particularly desirable if it is 15 cm or more, preferably 17 cm-' or more, because the abrasion resistance will be even better. .

本発明フィルムは、幅方向の表面平均粗ざRaが0.0
05〜0.030μm、特に0.007〜0.020μ
mの範囲である場合に、耐削れ性がより一層良好となる
ので特に望ましい。
The film of the present invention has an average surface roughness Ra of 0.0 in the width direction.
05-0.030μm, especially 0.007-0.020μm
A range of m is particularly desirable because the abrasion resistance becomes even better.

本発明フィルムは、290℃、200SeC”1テの溶
融粘度が1000〜10000ポイズ、特に2000〜
7000ボイズの範囲である場合に、耐削れ性がより一
層良好となるので特に望ましい。
The film of the present invention has a melt viscosity of 1,000 to 10,000 poise at 290°C and 200 SeC, particularly 2,000 to 10,000 poise.
A range of 7000 voids is particularly desirable because the abrasion resistance is even better.

次に本発明フィルムの製造方法について説明する。Next, a method for producing the film of the present invention will be explained.

まず、所定のポリエステルに不活性無機粒子を含有せし
める方法としては、重合前、重合中、重合後のいずれに
添加してもよいが、ポリエステルのジオール成分である
エチレングリコールに、スラリ−の形で混合、分散せし
めて添加する方法が本発明の関係式を満足させるのに有
効である。また、不活性無機粒子の含有量を調節する方
法としては、高濃度のマスターベレットを製膜時に希釈
する方法が本発明範囲のラマンバンド半価幅を得るのに
有効である。この場合、モース硬度が3以上の不活性無
機粒子を用いて、エチレングリコール分散時に、195
℃で2時間熱処理する方法、あるいは無機粒子に対し0
.5〜20重量%のリン酸アンモニウム塩を添加する方
法がフィルム極表層および内部のラマンバンド半価幅の
関係を本発明範囲とするのに極めて有効である。
First, as a method for incorporating inert inorganic particles into a given polyester, they may be added before, during, or after polymerization, but they can be added in the form of a slurry to ethylene glycol, which is the diol component of the polyester. A method of mixing, dispersing, and adding is effective in satisfying the relational expression of the present invention. Further, as a method for adjusting the content of inert inorganic particles, a method of diluting a highly concentrated master pellet during film formation is effective for obtaining a Raman band half width within the range of the present invention. In this case, using inert inorganic particles with a Mohs hardness of 3 or more, when dispersing in ethylene glycol, 195
A method of heat treatment at ℃ for 2 hours or 0% for inorganic particles.
.. The method of adding 5 to 20% by weight of ammonium phosphate salt is extremely effective in bringing the relationship between the Raman band half-width in the extreme surface layer and the inside of the film within the range of the present invention.

かくして、所定量の不活性無機粒子を含有するペレット
を十分乾燥したのち、公知の溶融押出機に供給し、27
0〜330℃でスリット状のダイからシート状に押出し
、キャスティングロール上で冷却固化せしめて未延伸フ
ィルムを作る。この場合、押出時のドラフト比(口金ス
リット間隙/未延伸フィルム厚さ)を5〜30、好まし
くは8〜20の範囲にすることが本発明のラマンバンド
半価幅を満足させるのに有効である。
After sufficiently drying the pellets containing a predetermined amount of inert inorganic particles, the pellets were fed to a known melt extruder and 27
It is extruded into a sheet through a slit-shaped die at 0 to 330°C, and cooled and solidified on a casting roll to produce an unstretched film. In this case, it is effective to set the draft ratio during extrusion (die slit gap/unstretched film thickness) in the range of 5 to 30, preferably 8 to 20, to satisfy the Raman band half width of the present invention. be.

次にこの未延伸フィルムを二軸延伸し、二軸配向せしめ
る。延伸方法としては、逐次二軸延伸法または同時二輪
延伸法を用いることができる。
Next, this unstretched film is biaxially stretched and biaxially oriented. As the stretching method, a sequential biaxial stretching method or a simultaneous two-wheel stretching method can be used.

逐次二輪延伸法の場合は長手方向、幅方向の順に延伸す
るのが一般的であるが、この順を逆にして延伸してもよ
い。二輪延伸の条件は延伸方法、ポリマの種類などによ
って必ずしも一定ではないが、通常、長手方向、幅方向
ともに80〜160℃、好ましくは90〜150℃の範
囲で、延伸倍率はそれぞれ3.0〜5.0倍、好ましく
は3゜2〜4.5倍の範囲が好適である。また、延伸速
度は1X103〜7X104%/分の範囲が好ましい。
In the case of the sequential two-wheel stretching method, it is common to stretch in the longitudinal direction and then in the width direction, but this order may be reversed. The conditions for two-wheel stretching are not necessarily constant depending on the stretching method, the type of polymer, etc., but are usually in the range of 80 to 160°C, preferably 90 to 150°C in both the longitudinal and width directions, and the stretching ratio is 3.0 to 3.0°C, respectively. A range of 5.0 times, preferably 3.2 to 4.5 times is suitable. Further, the stretching speed is preferably in the range of 1.times.10.sup.3 to 7.times.10.sup.4%/min.

ここで、延伸する前に未延伸フィルムを100〜170
℃で、0.1〜60秒間熱処理することは、本発明のラ
マンバンド半価幅を満足させるのに有効である。
Here, before stretching, the unstretched film was
C. for 0.1 to 60 seconds is effective in satisfying the Raman band half width of the present invention.

次にこの延伸フィルムを熱処理するが、この時の熱処理
条件としては、水蒸気などの雰囲気下で、130〜21
0℃、特に130〜180℃の温度範囲での熱処理、ま
たはマイクロ波による加熱処理が本発明のラマンバンド
幅を満足させるのに極めて有効である。時間は、0.5
〜60秒間、定長下での処理が好適である。
Next, this stretched film is heat treated, and the heat treatment conditions at this time are as follows: 130 to 21
Heat treatment at a temperature range of 0° C., especially 130 to 180° C., or heat treatment using microwaves is extremely effective in satisfying the Raman band width of the present invention. The time is 0.5
Processing at a constant length for ~60 seconds is preferred.

[作用] 本発明は、特殊な方法によって検出されるフィルム極表
層のラマンバンド半価幅とフィルム内部の半価幅の関係
、すなわちフィルム極表層の密度とフィルム内部の密度
の関係を特定範囲としたので、フィルム表面に外からの
剪断力が加わった時の衝撃吸収力の大きいフィルムとで
きた結果、本発明の効果が得られたものと推定される。
[Function] The present invention detects the relationship between the half-width of the Raman band of the extreme surface layer of the film and the half-width of the inside of the film, which is detected by a special method, that is, the relationship between the density of the extreme surface layer of the film and the density of the inside of the film, within a specific range. Therefore, it is presumed that the effects of the present invention were obtained as a result of the film being able to have a large impact absorption capacity when an external shearing force is applied to the film surface.

[物性の測定方法ならびに効果の評価方法]本発明の特
性値の測定方法並びに効果の評価方法は次の通りである
[Method of Measuring Physical Properties and Evaluating Effects] The methods of measuring the characteristic values and evaluating the effects of the present invention are as follows.

(1〉  無機微粒子の平均粒径 フィルムからポリエステルをプラズマ灰化処理法あるい
はO−クロルフェノール溶解法で除去し、これをエタノ
ールに分散させ、遠心沈降法(堀場製作所、CAPA5
00使用)で測定した体積平均径である。
(1) Polyester was removed from the average particle diameter film of inorganic fine particles by plasma ashing treatment or O-chlorophenol dissolution method, and this was dispersed in ethanol and centrifugal sedimentation method (Horiba, CAPA5
00) is the volume average diameter measured.

(2)  無機微粒子の含有量 ポリエステル100gにO−クロルフェノール1゜00
を加え120℃で3時間加熱した後、日立1機(株)製
餡遠心機55P−72を用い、30゜o o o rp
n+で40分間延伸分離を行ない、得られた粒子を10
0℃で真空乾燥する。微粒子を走査型差動熱量計にて測
定した時、ポリマに相当する融解ピークが認められる場
合には微粒子にO−クロルフェノールを加熱冷却後再び
延伸分離操作を行なう。融解ピークが認められなくなっ
た時、微粒子を析出粒子とする。通常延伸分離操作は2
回で足りる。
(2) Content of inorganic fine particles: O-chlorophenol 1°00 per 100g of polyester
was added and heated at 120°C for 3 hours, and then centrifuged at 30°C using a bean centrifuge 55P-72 manufactured by Hitachi Ichiki Co., Ltd.
Stretch separation was carried out for 40 minutes at n+, and the obtained particles were
Vacuum dry at 0°C. When the fine particles are measured using a scanning differential calorimeter, if a melting peak corresponding to the polymer is observed, the fine particles are heated and cooled with O-chlorophenol, and then the stretching separation operation is performed again. When the melting peak is no longer observed, the fine particles are considered to be precipitated particles. Normally the stretching separation operation is 2
times is enough.

(3)  フィルム極表層ラマンバンド半価幅JObi
n−YVOn社製RamanOr U−1000ラマン
システムにより、全反射ラマンスペクトルを測定し、カ
ルボニル基の伸縮撮動である1 730cm”の半価幅
を求めた。測定条件は次の通りである。測定深さは、表
面から500〜1000人。
(3) Film extreme surface layer Raman band half width JObi
The total reflection Raman spectrum was measured using a RamanOr U-1000 Raman system manufactured by n-YVOn, and the half-value width of 1730 cm, which is a stretching image of a carbonyl group, was determined.The measurement conditions are as follows.Measurement The depth is 500-1000 people from the surface.

■ 光源 アルゴンイオンレーザ−(5145人)■ 試料のセツ
ティング レーザー偏光方向(S偏光)とフィルム長手方向が平行
となるようにフィルム表面を全反射プリズムに圧着させ
、レーザのプリズムへの入射角(フィルム厚さ方向との
角度)は60’とした。
■ Light source Argon ion laser (5145 people) ■ Setting the sample Press the film surface onto a total reflection prism so that the laser polarization direction (S polarization) and the film longitudinal direction are parallel, and set the laser incidence angle to the prism ( The angle with respect to the film thickness direction was 60'.

■ 検出器 P)1:RCA31034/Proton Count
ing S ystem(Hamamatsu c12
30) (SUPPLY 1600V)■ 測定条件 5LIT  1000μm LASER100mW GATE TIHE  1 、0secSCAN 5P
EED  12Cm−’/m1nSA)IPLING 
INTERVAL  0.2cm−’REPEAT T
IME  6 (4)  フィルム内部(バルク)ラマンバンド半価幅 上記(3)と同じラマンシステムを用いた。ただし、全
反射プリズムを使用せず、またレーザーの入射角を70
0とすることにより、正反射光は逃がし、ラマン散乱光
のみを検出した。すなわち、上記(3)の測定は光が全
反射する時にわずかにフィルム表面にしみこむことを利
用し、極表層の情報を得ているのに対し、ここでは、全
反射をさせないでフィルム内部のラマン散乱光からの情
報を得ているものである。その他の条件は、REPEA
T・TI)IEが4回である以外は上記(3)と同じで
ある。
■ Detector P) 1: RCA31034/Proton Count
ing System (Hamamatsu c12
30) (SUPPLY 1600V)■ Measurement conditions 5LIT 1000μm LASER100mW GATE TIHE 1, 0secSCAN 5P
EED 12Cm-'/m1nSA)IPLING
INTERVAL 0.2cm-'REPEAT T
IME 6 (4) Film internal (bulk) Raman band half width The same Raman system as in (3) above was used. However, a total reflection prism is not used, and the incident angle of the laser is set to 70°.
By setting it to 0, specularly reflected light was allowed to escape and only Raman scattered light was detected. In other words, whereas the measurement in (3) above takes advantage of the fact that light slightly penetrates the film surface during total reflection and obtains information about the extreme surface layer, here we measure the Raman inside the film without total reflection. Information is obtained from scattered light. Other conditions are REPEA
T・TI) Same as (3) above except that IE is 4 times.

(5)  面配向指数 ナトリウムD線(波長589nlll)を光源としてア
ラへ屈折率計を用いて、二軸配向フィルムの厚さ方向の
屈折率(Aとする)および溶融プレス後10℃の水中へ
急冷して作った無配向(アモルファス)フィルムの厚さ
方向の屈折率(Bとする)を測定し、A/Bをもって面
配向指数とした。マウント液にはヨウ化メチレンを用い
、25℃、65%RHにて測定した。
(5) Planar orientation index Using a refractometer with sodium D line (wavelength 589nll) as a light source, measure the refractive index in the thickness direction of the biaxially oriented film (referred to as A) and place it in water at 10°C after melt pressing. The refractive index (referred to as B) in the thickness direction of the non-oriented (amorphous) film produced by rapid cooling was measured, and A/B was taken as the plane orientation index. Methylene iodide was used as the mounting solution, and the measurement was performed at 25° C. and 65% RH.

(6)  溶融粘度 高化式フローテスターを用いて、温度290℃、ずり速
度200sec”で測定した。
(6) Measurement was performed using a melt viscosity enhancement type flow tester at a temperature of 290°C and a shear rate of 200 seconds.

(7)  表面平均粗ざRa 触針式表面粗さ計を用い、JIS−8−0601にした
がって測定した。ただし、カットオフはo、osmm、
測定長ハ11IIIIlとシタ。
(7) Surface average roughness Ra Measured using a stylus type surface roughness meter according to JIS-8-0601. However, the cutoff is o, osmm,
Measurement length is 11III1 and 11.

(8)  ガラス転移点Tg、冷結晶化温度TCCパー
キンエルマー社製のDSC(示差走査熱量計)■型を用
いて測定した。DSCの測定条件は次の通りである。す
なわち、試料10m0をDSC装置にセットし、300
℃の温度で5分間溶融した後、液体窒素中に急冷する。
(8) Glass transition point Tg, cold crystallization temperature TCC Measured using a DSC (differential scanning calorimeter) model 2 manufactured by PerkinElmer. The DSC measurement conditions are as follows. That is, 10m0 of the sample was set in the DSC device, and 300m
After melting for 5 minutes at a temperature of °C, it is quenched into liquid nitrogen.

この急冷試料を10℃/分で昇温し、ガラス転移点Tg
を検知する。
This rapidly cooled sample was heated at a rate of 10°C/min, and the glass transition point Tg
Detect.

ざらに昇温を続け、ガラス状態からの結晶化発熱ピーク
温度をもって冷結晶化温度Tccとした。
The temperature was continued to be gradually raised, and the exothermic peak temperature of crystallization from the glass state was defined as the cold crystallization temperature Tcc.

ここでTCCとTgの差(Tcc−Tg)をΔTcgと
定義する。
Here, the difference between TCC and Tg (Tcc-Tg) is defined as ΔTcg.

(9)  結晶化促進係数(単位は℃)上記方法で1重
量%の不活性無機粒子を含有するポリエステルのΔTC
g(I)、およびこれと同粘度の不活性無機粒子を含有
しないポリエステルのΔTcg(II)を測定し、△T
Cg(II)とΔTCII>の差[△TCCI (II
)−八TCCI(■)]をもって、その不活性無機粒子
の結晶化促進係数とした。
(9) Crystallization promotion coefficient (unit: °C) ΔTC of polyester containing 1% by weight of inert inorganic particles by the above method
g(I) and ΔTcg(II) of a polyester containing no inert inorganic particles having the same viscosity as this, and ΔTcg(II).
The difference between Cg(II) and ΔTCII> [ΔTCCI (II
)-8TCCI(■)] was taken as the crystallization promotion coefficient of the inert inorganic particles.

(イ)) 耐削れ性 フィルムを幅1/2インチにテープ状にスリットしたも
のに片刃を垂直に押しあて、さらに0゜5mm押し込ん
だ状態で20cm走行させる(走行張力500g、走行
速度5.7cm/秒)。コ(7)R1片刃の先に付着し
たフィルム表面の削れ物の高さを顕微鏡で読みとり、削
れ量とした(単位はμm)。この削れ量(両面の平均値
)が15μm以下の場合は耐削れ性:良好、15μmを
越える場合は耐削れ性:不良と判定した。この削れ量:
15μmという値は、印刷工程やカレンダ一工程などの
加工工程で、フィルム表面が削れることによって、工程
上、製品性能上のトラブルが起るか否かの臨界点である
(b)) Press one blade vertically against a tape-like slit of abrasion-resistant film 1/2 inch wide, push it further 0°5 mm, and run it 20 cm (running tension 500 g, running speed 5.7 cm) /second). (7) The height of the scraped material on the film surface attached to the tip of the R1 single blade was read using a microscope and was defined as the amount of scraped material (unit: μm). When the amount of abrasion (average value on both surfaces) was 15 μm or less, the abrasion resistance was determined to be good, and when it exceeded 15 μm, the abrasion resistance was determined to be poor. This amount of wear:
The value of 15 .mu.m is the critical point in determining whether or not troubles in the process and product performance will occur due to the film surface being scraped during processing steps such as the printing process and the calendering process.

[実施例コ 本発明を実施例に基づいて説明する。[Example code] The present invention will be explained based on examples.

実施例1 平均粒径0.3μmの酸化チタンを濃度1重量%でエチ
レングリコールにスラリーの形で分散させた。この時、
酸化チタンに対し、1重量%のテトラエチルアンモニウ
ムリン酸塩(リン酸とテトラエチルアンモニウムハイド
ロオキサイドをモル比1:1で混合)を添加し、50μ
m径のガラスピースをメディアとして分散させたのち、
ガラスピースを;濾過して除いてスラリーを調製した。
Example 1 Titanium oxide having an average particle size of 0.3 μm was dispersed in ethylene glycol in the form of a slurry at a concentration of 1% by weight. At this time,
1% by weight of tetraethylammonium phosphate (phosphoric acid and tetraethylammonium hydroxide mixed at a molar ratio of 1:1) was added to titanium oxide, and 50μ
After dispersing m-diameter glass pieces as media,
The glass pieces were filtered off to prepare a slurry.

このエチレングリコールとテレフタル酸ジメチルをエス
テル交換反応後重縮合して、酸化チタン粒子を1重量%
含有するポリエチレンテレフタレートを作った。この酸
化チタンの結晶化促進係数は2゜5℃であった。
This ethylene glycol and dimethyl terephthalate are transesterified and then polycondensed to produce 1% by weight of titanium oxide particles.
A polyethylene terephthalate containing polyethylene terephthalate was made. The crystallization promotion coefficient of this titanium oxide was 2.5°C.

このポリエチレンテレフタレートのペレットと無機粒子
を含有しないポリエチレンテレフタレートのペレットと
を、酸化チタン含有量が0.4重量%となるように混合
した。この混合ペレットを180℃で3時間減圧乾燥(
3TOrr) シた。このペレットを押出機に供給し、
300℃で溶融押出し、ドラフト比を15として、静電
印加キャスト法を用いて表面温度30℃のキャスティン
グ・ドラムに巻きつけて冷却固化し、厚さ約180.#
mの未延伸フィルムを作った。この未延伸フィルムを1
30’Cで1分間熱処理したのち、90℃にて長手方向
に3.4倍延伸した。
These polyethylene terephthalate pellets and polyethylene terephthalate pellets containing no inorganic particles were mixed so that the titanium oxide content was 0.4% by weight. This mixed pellet was dried under reduced pressure at 180°C for 3 hours (
3 TOrr) Shita. Feed this pellet to the extruder,
It was melt-extruded at 300°C, the draft ratio was set to 15, and the electrostatic casting method was used to wind it around a casting drum with a surface temperature of 30°C, which was then cooled and solidified to a thickness of about 180. #
An unstretched film of m was made. This unstretched film
After heat treatment at 30'C for 1 minute, it was stretched 3.4 times in the longitudinal direction at 90C.

この延伸は2組のロールの周速差で行なわれ、延伸速度
10000%/分であった。この−軸フィルムをステン
タを用いて延伸速度2000%/分で100℃で幅方向
に3.6倍延伸した。このフィルムを水蒸気中で、14
0℃で20秒間熱処理して厚さ15μmの二軸配向フィ
ルムを得た。
This stretching was carried out using a difference in peripheral speed between two sets of rolls, and the stretching speed was 10,000%/min. This -axis film was stretched 3.6 times in the width direction at 100°C at a stretching rate of 2000%/min using a stenter. This film was heated in water vapor for 14 hours.
A biaxially oriented film with a thickness of 15 μm was obtained by heat treatment at 0° C. for 20 seconds.

このフィルムの極表層のラマンバンド半価幅は両面とも
18Cm’、フィルム内部のラマンバンド半価幅は16
cm−1と、その差は2 C11l−1でおり本発明の
関係を満足するものであった。このフィルムの表面の削
れ性を調べた結果、削れ量は4μmであり、耐削れ性は
良好であった。
The Raman band half width of the extreme surface layer of this film is 18 cm' on both sides, and the Raman band half width of the inside of the film is 16 Cm'.
cm-1, and the difference therebetween was 2 C11l-1, which satisfied the relationship of the present invention. As a result of examining the abrasion resistance of the surface of this film, the amount of abrasion was 4 μm, and the abrasion resistance was good.

実施例2〜4、比較例1〜3 平均粒径0.5μmの各種無機粒子を分散方法を種々変
更してエチレングリコールにスラリーの形で分散させた
(無機粒子の濃度は1重量%)。
Examples 2 to 4, Comparative Examples 1 to 3 Various inorganic particles having an average particle diameter of 0.5 μm were dispersed in ethylene glycol in the form of a slurry by changing the dispersion method (the concentration of the inorganic particles was 1% by weight).

このエチレングリコールとテレフタル酸ジメチルをエス
テル交換反応後重縮合して、無機粒子を1重量%含有す
るポリエチレンテレフタレートを作った。これらの無機
粒子の結晶化促進係数は第1表に示したとおりでめった
This ethylene glycol and dimethyl terephthalate were transesterified and then polycondensed to produce polyethylene terephthalate containing 1% by weight of inorganic particles. The crystallization promotion coefficients of these inorganic particles were as shown in Table 1.

これらのポリエチレンテレフタレートのペレットと無機
粒子を含有しないポリエチレンテレフタレートのペレッ
トを無機粒子含有量が0.25重量%となるように混合
した。この混合ペレットを180℃で3時間減圧乾燥(
3Torr) L/た。このペレットを押出機に供給し
、300℃で溶融押出し、ドラフト比を15として、静
電印加キャスト法を用いて表面温度30℃のキャスティ
ング・ドラムに巻きつけて冷却固化し、厚さ約180μ
mの未延伸フィルムを作った。この未延伸フィルムを各
種処理をしたのち、90℃にて長手方向に3゜4倍延伸
した。
These polyethylene terephthalate pellets and polyethylene terephthalate pellets containing no inorganic particles were mixed so that the inorganic particle content was 0.25% by weight. The mixed pellets were dried under reduced pressure at 180°C for 3 hours (
3 Torr) L/Ta. The pellets were fed into an extruder and melt-extruded at 300°C, with a draft ratio of 15, wound around a casting drum with a surface temperature of 30°C using the electrostatic casting method, and cooled and solidified to a thickness of approximately 180μ.
An unstretched film of m was made. This unstretched film was subjected to various treatments and then stretched 3° to 4 times in the longitudinal direction at 90°C.

この延伸は2組のロールの周速差で行なわれ、延伸速度
10000%/分であった。この−軸フィルムをステン
タを用いて延伸速度2000%/分で100°Cで幅方
向に3.6倍延伸した。このフィルムを各種方法にて1
0秒間熱処理して厚さ15μmのフィルムを得た。
This stretching was carried out using a difference in peripheral speed between two sets of rolls, and the stretching speed was 10,000%/min. This -axis film was stretched 3.6 times in the width direction at 100°C at a stretching rate of 2000%/min using a stenter. This film is processed by various methods.
Heat treatment was performed for 0 seconds to obtain a film with a thickness of 15 μm.

これらのフィルムの極表層のラマンバンド半価幅、フィ
ルム内部のラマンバンド半価幅、フィルムの耐削れ性は
第1表に示したとおりであり、ラマンバンド半価幅が本
発明範囲内の場合は耐削れ性が良好であったが、そうで
ない場合は不良であった。不活性無機粒子の種類は同じ
でも、そのフィルムのラマンバンド半価幅の関係により
、耐削れ性が大きく異なることがわかる。
The Raman band half width of the extreme surface layer of these films, the Raman band half width of the inside of the film, and the abrasion resistance of the film are as shown in Table 1, and when the Raman band half width is within the range of the present invention. The abrasion resistance was good in some cases, but it was poor in other cases. It can be seen that even if the type of inert inorganic particles are the same, the scratch resistance differs greatly depending on the relationship between the half width of the Raman band of the film.

L発明の効果] 本発明は、特殊な方法によって検出されるフィルム極表
層のラマンバンド半価幅とフィルム内部の半価幅の関係
、すなわち、フィルム極表層の密度と内部の密度の関係
をコントロールできた結果、表面の耐削れ性を向上させ
ることができ、加工工程が高速化されても、加工工程上
、製品性能上のトラブルの原因となるフィルム表面の削
れが起らないフィルムが得られたものである。
Effects of the invention] The present invention controls the relationship between the Raman band half-width of the extreme surface layer of the film and the half-width inside the film, which is detected by a special method, that is, the relationship between the density of the extreme surface layer of the film and the density inside the film. As a result, the abrasion resistance of the surface can be improved, and even if the processing process is sped up, the film surface will not be abraded, which can cause problems in the processing process and product performance. It is something that

本発明フィルムの用途は特に限定されないが、フィルム
の削れが製品性能のトラブルとなりやすい磁気記録媒体
、特にビデオテープ用ベースフィルムとして有用である
The use of the film of the present invention is not particularly limited, but it is useful as a base film for magnetic recording media, especially video tapes, where film abrasion tends to cause problems in product performance.

Claims (1)

【特許請求の範囲】[Claims] ポリエステルと、少なくとも一種類の不活性無機粒子か
らなる組成物を主たる成分とする二軸配向フィルムであ
って、少なくとも片面のフィルムの極表層のカルボニル
基によるラマンバンドの半価幅が、フィルム内部の半価
幅より1cm^−^1以上大きいことを特徴とする二軸
配向ポリエステルフィルム。
A biaxially oriented film mainly composed of a composition consisting of polyester and at least one type of inert inorganic particle, in which the half-width of the Raman band due to the carbonyl group on the extreme surface layer of the film on at least one side is equal to that of the inside of the film. A biaxially oriented polyester film having a width at half maximum of 1 cm or more.
JP62054584A 1987-03-10 1987-03-10 Polyester film Expired - Fee Related JPH089670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62054584A JPH089670B2 (en) 1987-03-10 1987-03-10 Polyester film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62054584A JPH089670B2 (en) 1987-03-10 1987-03-10 Polyester film

Publications (2)

Publication Number Publication Date
JPS63221136A true JPS63221136A (en) 1988-09-14
JPH089670B2 JPH089670B2 (en) 1996-01-31

Family

ID=12974754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62054584A Expired - Fee Related JPH089670B2 (en) 1987-03-10 1987-03-10 Polyester film

Country Status (1)

Country Link
JP (1) JPH089670B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010070581A (en) * 2008-09-16 2010-04-02 Toray Ind Inc Polyester film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6168727A (en) * 1984-09-12 1986-04-09 Teijin Ltd Biaxially stretched polyester film
JPS61254328A (en) * 1985-05-08 1986-11-12 Teijin Ltd Biaxially oriented polyester film for magnetic recording

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6168727A (en) * 1984-09-12 1986-04-09 Teijin Ltd Biaxially stretched polyester film
JPS61254328A (en) * 1985-05-08 1986-11-12 Teijin Ltd Biaxially oriented polyester film for magnetic recording

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010070581A (en) * 2008-09-16 2010-04-02 Toray Ind Inc Polyester film

Also Published As

Publication number Publication date
JPH089670B2 (en) 1996-01-31

Similar Documents

Publication Publication Date Title
WO1999017931A1 (en) Biaxially oriented polyester film
JPH0780282B2 (en) Biaxially oriented thermoplastic resin film
KR100241146B1 (en) Biaxially oriented thermoplastic resin film
JP2621461B2 (en) Biaxially oriented polyester film
JPS63230741A (en) Biaxially oriented polyester film
JPS63221136A (en) Polyester film
JPH02214733A (en) Biaxially oriented polyester film
JP2513826B2 (en) Biaxially oriented polyester film
JP2734601B2 (en) Biaxially oriented polyester film
JPH06279599A (en) Biaxially oriented polyester film
JPH01198350A (en) Biaxially oriented polyester film
JP2555717B2 (en) Biaxially oriented polyester film and method for producing the same
JPS63230740A (en) Biaxially oriented polyester film
JPH0751637B2 (en) Biaxially oriented polyester film
JP2525441B2 (en) Biaxially oriented polyester film
JP2525396B2 (en) Biaxially oriented thermoplastic resin film
JPH0198634A (en) Biaxially oriented polyester film
JP2555700B2 (en) Biaxially oriented polyester film
JP2515782B2 (en) Biaxially oriented polyester film
JPH01230641A (en) Biaxially oriented polyester film
JP2625686B2 (en) Base film for magnetic recording media
JPH01299833A (en) Biaxially oriented polyester film
JPS63221137A (en) Biaxially oriented polyester film
JP2517562B2 (en) Polyester film roll
JPH01247428A (en) Biaxially oriented polyester film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees