JPS6322047B2 - - Google Patents

Info

Publication number
JPS6322047B2
JPS6322047B2 JP55076344A JP7634480A JPS6322047B2 JP S6322047 B2 JPS6322047 B2 JP S6322047B2 JP 55076344 A JP55076344 A JP 55076344A JP 7634480 A JP7634480 A JP 7634480A JP S6322047 B2 JPS6322047 B2 JP S6322047B2
Authority
JP
Japan
Prior art keywords
film
specular gloss
less
thickness
gloss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55076344A
Other languages
Japanese (ja)
Other versions
JPS572513A (en
Inventor
Kazuo Matsukura
Kunio Murakami
Tsugio Nagasawa
Tadashi Hayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP7634480A priority Critical patent/JPS572513A/en
Publication of JPS572513A publication Critical patent/JPS572513A/en
Publication of JPS6322047B2 publication Critical patent/JPS6322047B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Organic Insulating Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、メタライズドフイルムコンデンサに
適したポリエチレンテレフタレートフイルムに関
するものである。更に詳しくは、蒸着適性の秀れ
た2軸延伸ポリエチレンテレフタレートフイルム
に関するものである。 ポリエチレンテレフタレート(以下PETと略
称する)樹脂の2軸延伸フイルムは、その優れた
特性からフイルムコンデンサにも用いられてお
り、主に9〜5μの厚さのものがよく使用されて
いるが、最近、小型化を計るために4μ以下の極
薄フイルムも使われるようになつてきた。 本発明者等は、特に3μ以下の極薄フイルムに
ついて研究を重ねた結果、次のようなフイルムを
用いると蒸着特性の優れたフイルムコンデンサを
製造し得ることを見い出した。すなわち、厚さ
3μ以下で鏡面光沢度30%以上150%以下であるこ
とを特徴とするフイルムコンデンサ用2軸延伸
PETフイルムである。 一般にメタライズドフイルムコンデンサは、プ
ラスチツクフイルムの片面あるいは両面にアルミ
ニウムあるいは亜鉛を真空蒸着した後、巻回して
得られるが、真空蒸着時に皺が入り易く作業性に
問題があつた。この皺の真空蒸着機のクーリング
キヤンとフイルムとのスリツプ性が悪いと発生し
易く、特に蒸着速度を上げた場合に起こり易い。 普通、スリツプ性を改良するにはフイルム表面
に凹凸をつける方法が採られるが、フイルム厚さ
が3μ以下の場合フイルムに腰がないため通常の
凹凸ではあまり改良されず、通常の範囲を越えて
極端に凹凸をつける必要がある。本発明者等は、
スリツプ性を改良するのに最も効果のある表面凹
凸の形状について研究を重ねた結果、鏡面光沢度
を用いて表わす方法が最も表面形状を適確に表現
し得ることを見い出した。表面形状を表現するの
に、従来から凹凸の山の高さや山の直径等を用い
る方法が採られてきたが、本発明者等は表面形状
をこれらの幾何学的数値で表わすことは非常に困
難であるとの結論に至り、むしろ鏡面光沢度の方
が表面形状を適確に反映していることを知つた。
本来、スリツプ性は一部の大きな表面凹凸だけで
左右されるものではなく、表面凹凸の総合的な形
状により決まるものであるので、表面の一部の山
の高さや直径のみを規定してもスリツプ性との完
全な対比を求めることは不可能である。また、表
面凹凸の幾何学的な寸法を測定することも非常に
困難であり、電子顕微鏡写真や表面粗さ計等によ
り測定する方法もあるが、これらの方法はフイル
ム表面の極く一部分の形状を表わしているにすぎ
ず、しかも測定誤差は極めて大きく、真の姿を捕
えることは困難である。これに対し、鏡面光沢度
は光学的に表面の凹凸を表現するものであり、フ
イルム表面の平均的粗さを的確に表わすものであ
る。本発明でいう鏡面光沢度とはJIS Z−8741光
沢度測定法に規定されている鏡面光沢度を意味し
ている。すなわち、規定された入射角θに対して
試料面からの鏡面反射光束〓の同一条件における
屈折率1567のガラス表面からの鏡面反射光束〓o
に対する比を云い次式で表わされるものである。 鏡面光沢度(%)=(〓/〓o)×100 尚、JIS Z−8741ではフイルムの光沢度により
入射角を変えているが、本発明では全て入射角
20゜の場合の測定値を鏡面光沢度と規定する。一
般にプラスチツクフイルムの場合は透明であるた
めに入射光の一部がフイルム内部に入り、裏面で
反射されて再び表側に出てくるので、鏡面光沢度
は表面反射と裏面反射の和となる。フイルムが完
全に透明な場合は表面反射と裏面反射がほぼ等し
くなるが、一般にはフイルム内部の粒子等による
散乱のために裏面反射の方が小さくなる。また、
フイルムの厚さによる影響もあり、フイルムが薄
いほど裏面反射が大きくなり、鏡面光沢度は増加
する。いずれにしてもフイルム表面(裏面も含
む)の凹凸が増加すると、フイルム表面の散乱に
より鏡面光沢度は減少するので、鏡面光沢度を測
定することによりフイルム表面の凹凸を知ること
ができる。鏡面光沢度は極めて精度よく測定でき
るので、電子顕微鏡写真や表面粗さ計等による測
定よりもはるかに適確に表面粗さを観測すること
ができる。 光沢度測定法により、従来のPETフイルムを
測定すると180%〜210%であり、表面の凹凸が小
さく、従つて真空蒸着時に皺が入り易く、均一な
蒸着をすることができない。本願発明者等は比較
実施例にも述べる如く、鏡面光沢度の異なるフイ
ルムを作り実験を重ねた結果、鏡面光沢度が150
%以下、好ましくは120%以下の場合良好なスリ
ツプ性を示し、均一に真空蒸着できることを見い
出した。真空蒸着時の皺はクーリングキヤンとフ
イルムとの密着を妨げ、フイルムが冷却されずに
加熱され、収縮して蒸着後に波状の皺が残る。鏡
面光沢度が150%以下の場合はクーリングキヤン
上でフイルムがうまく滑るため皺になることがな
く、均一に蒸着することができる。 一方、鏡面光沢度が著しく小さくなると、蒸着
時の皺はないものの、コンデンサにした場合良好
な電気特性を得ることができない。鏡面光沢度が
小さくなる、すなわちフイルム表面の凹凸が大き
くなり過ぎると、絶縁欠陥が多くなつて耐電圧特
性が低下してしまう。本願発明者等は比較実験例
にも述べる如く種々の実験を重ねた結果、鏡面光
沢度が30%未満の場合、耐電圧特性が不良になる
ことも見い出した。 鏡面光沢度を変える、すなわち表面に凹凸をつ
けるには、添加物、特に無機不活性粒子を混合さ
せる方法が一般的であるが、有機化合物は電気的
特性に悪い影響を与えるので好ましくない。無機
不活性粒子の添加はエチレングリコールに予め分
散させてスラリー状にした後、重合時に添加する
方法が一般的である。 比較実施例 1 重合時にスリツプ剤としてシリカ粉末を1wt%
添加したPET樹脂チツプと無添加のPET樹脂と
を適当に混合させ、400mm押出成膜機を使用して
厚さ25μの添加剤濃度の異なる未延伸フイルムを
成膜した。この未延伸フイルム同時2軸延伸機に
より90℃で縦、横3×3.5倍2軸延伸し、220℃で
熱セツトを行つた。 延伸フイルム真空蒸着機に掛け、幅20mm、厚さ
約500Åのアルミニウム蒸着膜を多数形成させた
後捲取り、皺の発生状況を調べた。マージン幅は
3mmであつた。また、蒸着フイルムをマイクロス
リツトし、アルミニウム端面が交互に外側にくる
ようにして巻回き、メタリコンを施してフイルム
コンデンサを作つた。フイルムコンデンサの耐電
圧を測定して電気的特性の評価を行つた。結果は
表1の如くであり、皺の発生は鏡面光沢度が150
%以下の時に見られず、また、耐電圧特性は鏡面
光沢度が30%以上の場合のみ良好であつた。尚、
耐電圧特性は300v/μ以上の場合を合格とした。
The present invention relates to a polyethylene terephthalate film suitable for metallized film capacitors. More specifically, the present invention relates to a biaxially oriented polyethylene terephthalate film with excellent vapor deposition suitability. Biaxially stretched films of polyethylene terephthalate (hereinafter abbreviated as PET) resin are also used in film capacitors due to their excellent properties, and films with a thickness of 9 to 5 μm are often used, but recently In order to achieve miniaturization, ultra-thin films with a thickness of 4μ or less have come into use. The inventors of the present invention have conducted extensive research on ultra-thin films of 3 μm or less in particular, and have discovered that a film capacitor with excellent vapor deposition characteristics can be manufactured by using the following film. i.e. thickness
Biaxial stretching for film capacitors characterized by a specular gloss of 30% or more and 150% or less at 3 μ or less
It is PET film. Generally, metallized film capacitors are obtained by vacuum-depositing aluminum or zinc on one or both sides of a plastic film and then winding the film, but wrinkles tend to form during the vacuum-deposition process, which poses problems in workability. This wrinkling is likely to occur if the slipping property between the cooling can of the vacuum evaporation machine and the film is poor, and it is particularly likely to occur when the evaporation speed is increased. Normally, to improve the slip property, a method is used to add unevenness to the film surface, but if the film thickness is less than 3μ, the film has no stiffness, so normal unevenness will not improve it much, and it will exceed the normal range. It is necessary to make it extremely uneven. The inventors,
As a result of repeated research on the shape of the surface irregularities that is most effective in improving slip resistance, it was discovered that the method of expressing the surface shape using specular glossiness is the most accurate way to express the surface shape. Conventionally, methods have been used to express the surface shape using the height and diameter of the peaks of the unevenness, but the present inventors believe that it is extremely difficult to express the surface shape using these geometric values. I came to the conclusion that it was difficult, and learned that specular gloss reflects the surface shape more accurately.
Originally, slip resistance is determined not only by some large surface irregularities, but also by the overall shape of the surface irregularities, so even if only the height and diameter of some peaks on the surface are specified It is impossible to obtain a complete contrast with slipperiness. In addition, it is extremely difficult to measure the geometric dimensions of surface irregularities, and there are methods to measure them using electron micrographs or surface roughness meters, but these methods only measure the shape of a small portion of the film surface. Furthermore, the measurement error is extremely large, making it difficult to capture the true picture. On the other hand, specular gloss optically expresses the unevenness of the surface and accurately represents the average roughness of the film surface. The specular gloss as used in the present invention means the specular gloss specified in JIS Z-8741 gloss measurement method. In other words, the specularly reflected light beam from the glass surface with a refractive index of 1567 under the same conditions as the specularly reflected light beam from the sample surface 〓 o for a specified incident angle θ
The ratio is expressed by the following equation. Specular gloss (%) = (〓/〓o) × 100 In JIS Z-8741, the incident angle is changed depending on the gloss of the film, but in the present invention, the incident angle is
The measured value at 20° is defined as specular gloss. Generally, plastic film is transparent, so some of the incident light enters the film, is reflected on the back surface, and then comes out again on the front side, so the specular gloss is the sum of the front surface reflection and the back surface reflection. If the film is completely transparent, the front reflection and the back reflection will be approximately equal, but generally the back reflection will be smaller due to scattering by particles inside the film. Also,
There is also an effect of the thickness of the film; the thinner the film, the greater the back reflection and the higher the specular gloss. In any case, as the unevenness of the film surface (including the back surface) increases, the specular gloss decreases due to scattering on the film surface, so the unevenness of the film surface can be determined by measuring the specular gloss. Since specular gloss can be measured with extremely high precision, surface roughness can be observed much more accurately than measurements using electron micrographs or surface roughness meters. When conventional PET film is measured using a gloss measurement method, it is 180% to 210%, and the surface has small irregularities, so wrinkles easily appear during vacuum deposition, making it impossible to achieve uniform deposition. As described in the comparative examples, the inventors of the present application made films with different specular gloss levels and repeated experiments, and found that the specular gloss level was 150.
% or less, preferably 120% or less, it has been found that good slip properties are exhibited and uniform vacuum deposition can be performed. Wrinkles during vacuum deposition prevent the film from adhering to the cooling can, and the film is heated without being cooled, shrinking and leaving wavy wrinkles after deposition. When the specular gloss is 150% or less, the film slides well on the cooling can, so it does not wrinkle and can be deposited uniformly. On the other hand, if the specular gloss is extremely low, even though there will be no wrinkles during vapor deposition, it will not be possible to obtain good electrical properties when used as a capacitor. If the specular gloss becomes small, that is, if the unevenness of the film surface becomes too large, insulation defects will increase and the withstand voltage characteristics will deteriorate. As a result of various experiments as described in the comparative experiment examples, the inventors of the present application have also found that when the specular gloss is less than 30%, the withstand voltage characteristics become poor. To change the specular gloss, that is, to make the surface uneven, it is common to mix additives, especially inorganic inert particles, but organic compounds are not preferred because they have a negative effect on the electrical properties. The general method for adding inorganic inert particles is to disperse the particles in ethylene glycol in advance to form a slurry, and then add the slurry during polymerization. Comparative Example 1 1wt% of silica powder was added as a slip agent during polymerization.
The added PET resin chips and additive-free PET resin were mixed appropriately, and unstretched films having a thickness of 25 μm and having different additive concentrations were formed using a 400 mm extrusion film forming machine. This unstretched film was biaxially stretched at 90° C. by a factor of 3×3.5 in the horizontal direction and heat set at 220° C. After applying a stretched film vacuum evaporation machine to form a large number of aluminum evaporated films with a width of 20 mm and a thickness of about 500 Å, the film was rolled up and the occurrence of wrinkles was examined. The margin width was 3 mm. In addition, a film capacitor was made by micro-slitting a vapor-deposited film, winding it so that the aluminum end faces were alternately on the outside, and applying metallization. We measured the withstand voltage of the film capacitor and evaluated its electrical characteristics. The results are shown in Table 1, and wrinkles occur when the specular gloss is 150.
% or less, and the voltage resistance characteristics were good only when the specular gloss was 30% or more. still,
The withstand voltage characteristic was considered to be passed if it was 300v/μ or more.

【表】【table】

【表】 比較実施例 2 重合時にスリツプ剤として炭酸カルシウム粉末
を2wt%添加したPET樹脂チツプと、無添加の
PET樹脂とを混合させ、比較実施例1と同じ方
法で厚さ15μの添加剤濃度の異なる未延伸フイル
ムを成膜し、同様にして延伸、熱セツトを行つ
た。 延伸フイルムを比較実施例1と同様にして真空
蒸着して皺の発生状況を調でた後、フイルムコン
デンサを作り、耐電圧特性を評価した。結果は表
2の通りであつた。
[Table] Comparative Example 2 PET resin chips with 2wt% of calcium carbonate powder added as a slip agent during polymerization and those without additives.
PET resin was mixed, and unstretched films having a thickness of 15 μm with different additive concentrations were formed in the same manner as in Comparative Example 1, and stretched and heat set in the same manner. A stretched film was vacuum-deposited in the same manner as in Comparative Example 1, and the occurrence of wrinkles was observed, and then a film capacitor was produced and its withstand voltage characteristics were evaluated. The results were as shown in Table 2.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 厚さ3μ以下で鏡面光沢度が30%以上150%以
下であることを特徴とするフイルムコンデンサ用
2軸延伸ポリエチレンテレフタレートフイルム。
1. A biaxially oriented polyethylene terephthalate film for film capacitors, which has a thickness of 3μ or less and a specular gloss of 30% or more and 150% or less.
JP7634480A 1980-06-05 1980-06-05 Biaxially oriented polyethylene telephthalate film for film capacitor Granted JPS572513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7634480A JPS572513A (en) 1980-06-05 1980-06-05 Biaxially oriented polyethylene telephthalate film for film capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7634480A JPS572513A (en) 1980-06-05 1980-06-05 Biaxially oriented polyethylene telephthalate film for film capacitor

Publications (2)

Publication Number Publication Date
JPS572513A JPS572513A (en) 1982-01-07
JPS6322047B2 true JPS6322047B2 (en) 1988-05-10

Family

ID=13602737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7634480A Granted JPS572513A (en) 1980-06-05 1980-06-05 Biaxially oriented polyethylene telephthalate film for film capacitor

Country Status (1)

Country Link
JP (1) JPS572513A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62219608A (en) * 1986-03-20 1987-09-26 旭化成株式会社 Film capacitor
JPH0639977Y2 (en) * 1986-11-05 1994-10-19 富士通株式会社 Printer device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50161592A (en) * 1974-06-20 1975-12-27
JPS5136779A (en) * 1974-09-13 1976-03-27 Hitachi Ltd DATSUSUISENTAKUKI
JPS5161594A (en) * 1974-11-27 1976-05-28 Toray Industries Horiesuteruno seizoho
JPS5314753A (en) * 1976-07-24 1978-02-09 Hoechst Ag Polyethylene terephthalate compound and its producing method
JPS5336877A (en) * 1976-09-13 1978-04-05 Seiko Epson Corp Line type conveying device
JPS5444040A (en) * 1977-09-15 1979-04-07 Mimatsu Yushi Kk Cosmetics
JPS5521157A (en) * 1978-08-02 1980-02-15 Daiafoil Biaxially oriented polyester film for capacitor
JPS5522826A (en) * 1978-08-04 1980-02-18 Daiafoil Polyester film for capacitor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50161592A (en) * 1974-06-20 1975-12-27
JPS5136779A (en) * 1974-09-13 1976-03-27 Hitachi Ltd DATSUSUISENTAKUKI
JPS5161594A (en) * 1974-11-27 1976-05-28 Toray Industries Horiesuteruno seizoho
JPS5314753A (en) * 1976-07-24 1978-02-09 Hoechst Ag Polyethylene terephthalate compound and its producing method
JPS5336877A (en) * 1976-09-13 1978-04-05 Seiko Epson Corp Line type conveying device
JPS5444040A (en) * 1977-09-15 1979-04-07 Mimatsu Yushi Kk Cosmetics
JPS5521157A (en) * 1978-08-02 1980-02-15 Daiafoil Biaxially oriented polyester film for capacitor
JPS5522826A (en) * 1978-08-04 1980-02-18 Daiafoil Polyester film for capacitor

Also Published As

Publication number Publication date
JPS572513A (en) 1982-01-07

Similar Documents

Publication Publication Date Title
JP3979688B2 (en) Manufacturing method of polarizing film
JPS605183B2 (en) polyester film
EP0493008B1 (en) Polyester film and photosensitive material
JP3270135B2 (en) Syndiotactic polystyrene biaxially stretched film for condenser
JPS6322047B2 (en)
JP3287417B2 (en) Syndiotactic polystyrene biaxially stretched film
JP3287419B2 (en) Syndiotactic polystyrene biaxially stretched film
US5270160A (en) Polyester film and photosensitive material
JPS5838158A (en) Polyester film
JP3254930B2 (en) Polyester film
JPH11157021A (en) Gas barrier film
JP5593627B2 (en) Laminated polyester film and method for producing the same
JPH021005B2 (en)
JPS6270046A (en) Compounded biaxially oriented polyester film having excellent transparency
JP3254915B2 (en) Polyester film
JPH0114580B2 (en)
JPS6328097B2 (en)
JPS6260214A (en) Capacitor
JPH071643A (en) Polystyrenic film
KR0133221B1 (en) Multi-layered polyester film
JP3236114B2 (en) Film for photographic photosensitive materials
JP3317411B2 (en) Polystyrene film
JPS6050151B2 (en) Polyester film for magnetic recording media
JPH08143727A (en) Biaxially oriented polystyrene film
JPH03131633A (en) Biaxially orientated polyester film