JPS63219842A - Air-fuel ratio controlling method - Google Patents

Air-fuel ratio controlling method

Info

Publication number
JPS63219842A
JPS63219842A JP5002887A JP5002887A JPS63219842A JP S63219842 A JPS63219842 A JP S63219842A JP 5002887 A JP5002887 A JP 5002887A JP 5002887 A JP5002887 A JP 5002887A JP S63219842 A JPS63219842 A JP S63219842A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
control
air fuel
feedback gain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5002887A
Other languages
Japanese (ja)
Other versions
JP2753223B2 (en
Inventor
Teruji Sekosawa
瀬古沢 照治
Makoto Shiotani
塩谷 真
Seiju Funabashi
舩橋 誠壽
Mikihiko Onari
大成 幹彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62050028A priority Critical patent/JP2753223B2/en
Publication of JPS63219842A publication Critical patent/JPS63219842A/en
Application granted granted Critical
Publication of JP2753223B2 publication Critical patent/JP2753223B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To trace the appropriately set target of air fuel ratio and maintain it in the air fuel ratio feedback control system by calculating a feedback gain by an I-PD control mechanism. CONSTITUTION:A reference fuel calculator 2 calculates a reference fuel injection amount Tp according to an intake air quantity Q3 and a revolution number N using a formula of K1Q3/N (K1 meaning a constant) and also calculates an injection pulse width T1 according to both feedback gain alpha from an I-PD control mechanism 3 and battery compensating pulse width TS using a formula of T1=KQ3/N.alpha+TS. Using an error between both value (c) obtained by dividing the counted air fuel ratio by a theory air fuel ratio and a value (r) obtained by dividing the target air fuel ratio by the theory air fuel ratio, the I-PD control mechanism 3 arithmetically operates an I control element Ialpha via an I operation element 31, also arithmetically operates both the P control element Palpha and the D control element PD via the P operation part 32 and the D operation part 33, and generates a feedback gain (alpha).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電子燃料噴射制御装置に係り、特に全運転領
域に関し、空燃比のフィードバック制御を行うのに好適
な空燃比制御方式に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electronic fuel injection control device, and particularly to an air-fuel ratio control method suitable for performing feedback control of the air-fuel ratio over the entire operating range.

〔従来の技術〕[Conventional technology]

従来の空燃比フィードバック補正は、トヨタコロナ新型
車解説書(昭和58年10月)3−71〔発明が解決し
ようとする問題点〕 上記従来技術は、空燃比を理論空燃比近辺に制御すべき
ときにはよいが、暖機中、加速中、フューエルカット中
などに、空燃比の目標値を理論空燃比ばかりでなく任意
な値に設定して、トルク出力や燃費をも制桿するように
は配慮されておらず、目標空燃比が任意に設定されたと
きのフィードバック補正が適切にできないという問題が
あった。
The conventional air-fuel ratio feedback correction is as follows: Toyota Corona New Model Car Manual (October 1982) 3-71 [Problems to be Solved by the Invention] The above conventional technology requires that the air-fuel ratio be controlled to be close to the stoichiometric air-fuel ratio. This is good sometimes, but consider setting the target value of the air-fuel ratio not only to the stoichiometric air-fuel ratio but also to an arbitrary value during warm-up, acceleration, fuel cut, etc. to control torque output and fuel consumption. Therefore, there was a problem that feedback correction could not be performed appropriately when the target air-fuel ratio was set arbitrarily.

空燃比センサは排ガス中の酸素濃度を計測しているので
、燃料が噴射されてがら空燃比が計測されるまでには遅
れがある。この遅れは、エンジンの運転状態で変化する
。従って、フィードバックゲイン(パラメータ)は、エ
ンジンの運転状態に応じて変える必要がある。
Since the air-fuel ratio sensor measures the oxygen concentration in exhaust gas, there is a delay between when fuel is injected and when the air-fuel ratio is measured. This delay changes depending on the operating condition of the engine. Therefore, the feedback gain (parameter) needs to be changed depending on the operating state of the engine.

空燃比のフィードバック補正は、計測される空燃比を目
標空燃比に維持安定化させることが主な目的である。従
来プロセス制御で多く用いられている通常のPID制御
では、目標空燃比の設定変更に伴って、操作量である燃
料噴射量に飛躍が起ることがあり、空燃比制御には何ら
かの工夫が必要である。
The main purpose of the air-fuel ratio feedback correction is to maintain and stabilize the measured air-fuel ratio at the target air-fuel ratio. In normal PID control, which is often used in conventional process control, there may be a jump in the fuel injection amount, which is the manipulated variable, when the target air-fuel ratio setting is changed, so some kind of ingenuity is required for air-fuel ratio control. It is.

更に、PID制御を行なうときに必要となるP動作、工
動作、D動作の各々パラメータを何らかの方法で設定し
なければならないという問題がある。
Furthermore, there is a problem in that the parameters of each of the P action, the mechanical action, and the D action required when performing PID control must be set in some way.

本発明の目的は、排ガスの広域線形空燃比センサを用い
た場合の空燃比フィードバック補正制御方式を提供する
ことにある。
An object of the present invention is to provide an air-fuel ratio feedback correction control system when using a wide-range linear air-fuel ratio sensor for exhaust gas.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するために、I−PD制御方式に基づい
てフィードバックゲインを算出し、それを基本燃料噴射
パルス幅に乗算して空燃比フィードバック補正を行う。
In order to achieve the above object, a feedback gain is calculated based on the I-PD control method, and the basic fuel injection pulse width is multiplied by the feedback gain to perform air-fuel ratio feedback correction.

前記I−PD制御方式において、ノイズによるD動作の
影響を軽減するため、制御量の勾配を平均値化する方式
を用いる。
In the I-PD control method, in order to reduce the influence of noise on the D operation, a method is used in which the slope of the control amount is averaged.

さらに、P、I、D動作のパラメータを、通常運転状態
から、目標空燃比をステップ入力変化させ、これに対応
した空燃比の応答から、設定する方法を提供する。
Furthermore, a method is provided in which the parameters of the P, I, and D operations are set by changing the target air-fuel ratio in steps from the normal operating state and from the corresponding air-fuel ratio response.

〔作用〕[Effect]

空燃比のフィードバックゲインを計算するときに、I動
作だけを主ループに残し、P動作とD動作を別ループと
して形成したI−PD制御機構により求め、得られたフ
ィードバックゲインにより次のように補正する。
When calculating the feedback gain of the air-fuel ratio, it is determined by an I-PD control mechanism that leaves only the I operation in the main loop and forms the P operation and D operation as separate loops, and corrects it as follows using the obtained feedback gain. do.

Q& T1=KX−・α+Ts       ・・・(1)こ
こで、Q暑 :吸入空気量 N :エンジン回転数 KI :インジエクタの特性によって定まる定数 α :フィードバックゲイン Ts:バッテリー補正パルス幅 T1 :噴射パルス幅 TP :基本燃料噴射パルス幅 これによって、空燃比の目標値は、基本噴射パルス幅に
影響せずフィードバックゲインαに反映され、フィード
バックゲインαはI−PD制御機構により形成されるの
で、安定化の機能を受は持つことができる。
Q&T1=KX-・α+Ts...(1) Here, Q heat: Intake air amount N: Engine speed KI: Constant α determined by injector characteristics: Feedback gain Ts: Battery correction pulse width T1: Injection pulse width TP: Basic fuel injection pulse width As a result, the target value of the air-fuel ratio is reflected in the feedback gain α without affecting the basic injection pulse width, and since the feedback gain α is formed by the I-PD control mechanism, stabilization Uke can have a function.

〔実施例〕〔Example〕

以下1本発明の一実施例を説明する。まず、実施例の構
成と動作の概要を第1図により説明する。
An embodiment of the present invention will be described below. First, an overview of the configuration and operation of the embodiment will be explained with reference to FIG.

測定した吸入空気量Q&とエンジン回転数Nとから次の
ように基本燃料噴射パルス幅を決定する。
The basic fuel injection pulse width is determined from the measured intake air amount Q& and engine speed N as follows.

a T p = K r−・・・(2) ここで、Krはインジェクタの特性などで決まる定数で
あり、理論空燃比(A/F)になるよう算出した係数も
含まれる。第1図において、ニーPD制御機構3は次の
ように動作する。計測した空燃比A/Fを理論空燃比(
A/F)で割算し制御量を次のように正規化する。
a T p = K r - (2) Here, Kr is a constant determined by the characteristics of the injector, and also includes a coefficient calculated to achieve the stoichiometric air-fuel ratio (A/F). In FIG. 1, the knee PD control mechanism 3 operates as follows. The measured air-fuel ratio A/F is calculated as the stoichiometric air-fuel ratio (
A/F) and normalize the control amount as follows.

目標空燃比(A/F)rを理論空燃比で割算した値を次
のようr(以下、目標値と呼ぶことにする)として求め
る。
The value obtained by dividing the target air-fuel ratio (A/F) r by the stoichiometric air-fuel ratio is determined as r (hereinafter referred to as target value) as follows.

目標値rとCの偏差から、第1図の工動作31を通して
、■制御成分を次のように算出する。
From the deviation between the target value r and C, the control component (1) is calculated as follows through the machining operation 31 in FIG.

工α(k)=Iα(k−1)+Iに(k)・E(k)・
・・(5) ここで、工α(k):に時刻におけるI成分(第1図の
I動作部31よりに 時刻に算出されるI成分値) E(k)=r(k)−c(k) エに(k):I動作パラメータ 第1図のP動作部32では、P動作を次のように行う。
E(k)=Iα(k-1)+I(k)・E(k)・
...(5) Here, E(k): I component at time (I component value calculated at time by I operation unit 31 in FIG. 1) E(k)=r(k)-c (k) (k): I operation parameters The P operation unit 32 in FIG. 1 performs the P operation as follows.

Pα(k)=Px(k)・C(k)        ・
・・(6)ここで、Pα(k):に時刻におけるP成分
Pg(k):P動作パラメータ 第1図のD動作部33では、D動作を次のように行う。
Pα(k)=Px(k)・C(k)・
(6) Here, Pα(k): P component at time Pg(k): P operation parameter The D operation unit 33 in FIG. 1 performs the D operation as follows.

Dα(k)=Dに(C(k) −〇(k−1))   
 ・・・(7)ここで、Dα(k):に時刻におけるD
成分Dsc(k)  : D動作パラメータ以上で得ら
れた工α(k)、Pα(k)、Dα(k)により、フィ
ードバックゲインα(k)を次のように得る。
Dα(k) = D(C(k) −〇(k−1))
...(7) Here, Dα(k): D at time
Component Dsc(k): Feedback gain α(k) is obtained as follows from the components α(k), Pα(k), and Dα(k) obtained above the D operating parameter.

α(k)=Iα(k)−(Pα(k)+Dα(k))・
・・(8) このようにI−PD制御機構では、工動作を主ループに
して、残りP動作り動作が副ループの形をとっている。
α(k)=Iα(k)−(Pα(k)+Dα(k))・
(8) In this way, in the I-PD control mechanism, the machining operation is the main loop, and the remaining P operations are in the form of a sub-loop.

第1図のI−PD制御機@3で得られたフィードバック
ゲインα(k)により、基本燃料噴射パルス幅を次のよ
うに補正し、噴射パルス幅を決定する。
Using the feedback gain α(k) obtained by the I-PD controller @3 in FIG. 1, the basic fuel injection pulse width is corrected as follows to determine the injection pulse width.

T*=Tp・a 十Ts         −(9)前
記したように、制御性能を向上させるために1−PD制
御機構3内のI、P、D動作パラメータをそれぞれ第2
図(a)、(b)、(c)のようにエンジン運転状態を
表わすテーブルの形で、あらかじめ保持しておく、テー
ブルの軸は1本実施例ではエンジン回転数Nと吸入空気
量Q&である。
T*=Tp・a 10Ts - (9) As mentioned above, in order to improve the control performance, 1-I, P, and D operating parameters in the PD control mechanism 3 are set to the second
As shown in Figures (a), (b), and (c), the table is maintained in advance in the form of a table representing engine operating conditions.In this embodiment, the axis of the table is the engine speed N and the intake air amount Q&. be.

k時刻で運転されているエンジンの回転数N(k)と吸
入空気量Q、(k)からテーブルを検索し、各各、時刻
にのI、P、D動作パラメータの工に(k)。
Search the table from the engine rotational speed N(k) and intake air amount Q,(k) operating at time k, and calculate the I, P, and D operating parameters at each time (k).

PK(k)、DK(k)を得る。Obtain PK(k) and DK(k).

次に、I、P、D動作パラメータの値をどのように決定
するかを説明する。第3図に示すように、0時刻までr
=1.0  を目標値とし、k=oで目標値をステップ
変化させる。このときに計測した空燃比の変化において
、ステップ応答C(k)のΔC(k)=C:(k)−C
(k−1)    ・・・(10)変化の中での最大値
ΔC,taaxを求め、勾配RをR:!:ΔCmax 
/ t          −(11)ここで、τ:サ
ンプリング同期 として得る。また、勾配Rの直線を第3図のように左へ
延長して、r=1.0 の線と交わる点により遅れLを
得る。
Next, how to determine the values of the I, P, and D operating parameters will be explained. As shown in Figure 3, until time 0, r
=1.0 is set as the target value, and the target value is changed in steps at k=o. In the change in air-fuel ratio measured at this time, ΔC(k) of step response C(k) = C:(k)-C
(k-1) ... (10) Find the maximum value ΔC, tax among the changes, and calculate the slope R as R:! :ΔCmax
/t-(11) where τ: obtained as sampling synchronization. Further, by extending the straight line of slope R to the left as shown in Fig. 3, a delay L is obtained at the point where it intersects with the line of r=1.0.

このように、すべてのエンジン状態(Q、とNの全ての
組合せ)においてこのステップ応答を計測し、R,Lを
求めておく。
In this way, this step response is measured under all engine conditions (all combinations of Q and N), and R and L are determined.

次に、得られたRとLから、次のようにI、P。Next, from the obtained R and L, I and P are obtained as follows.

D動作パラメータを算出する。D Calculate operating parameters.

Rτ 以上のようにして、第2図の3つのテーブルの値が求め
られる。
Rτ In the manner described above, the values of the three tables shown in FIG. 2 are determined.

センサで計測される空燃比にノイズが付加されて、D動
作が制御性を乱すことがある。その対策として、(7)
式の制御量C(k)とC(k−1)の差を求めるときに
、次のような4点の差の平均値を利用する。
Noise is added to the air-fuel ratio measured by the sensor, and the D operation may disturb controllability. As a countermeasure, (7)
When determining the difference between the control amounts C(k) and C(k-1) in the equation, the average value of the differences at the following four points is used.

ΔC(k) =C(k)−C:(k−1)ここで、て=
−(c(k)+c(k−1)+C(k−2)+C(k−
3)) 〔発明の効果〕 本発明によれば、空燃比の目標値を変化させても、I−
PD@御機構のフィードバック補正により目標となる空
燃比を達成させることができるので、目標空燃比が任意
に設定できる効果がある。
ΔC(k) = C(k)-C: (k-1) where, te=
-(c(k)+c(k-1)+C(k-2)+C(k-
3)) [Effects of the Invention] According to the present invention, even if the target value of the air-fuel ratio is changed, the I-
Since the target air-fuel ratio can be achieved through feedback correction of the PD@control mechanism, there is an effect that the target air-fuel ratio can be set arbitrarily.

これは、トルクを出したい運転領域では、目標空燃比を
濃くしてトルク出力を増加させたり、トルクのいらない
減速時には、目標空燃比を薄くして燃費をかせぐことが
できるという効果が生まれる。
This has the effect of increasing the target air-fuel ratio to increase torque output in driving ranges where torque output is desired, and reducing the target air-fuel ratio during deceleration when no torque is needed to improve fuel efficiency.

I−PD制御機構を用いたことにより、空燃比の維持安
定化が図れるので、定常走行時の排ガス性能が向上し、
1−ルクのばらつきなどが少なくなるので運転性が向上
するという効果がある。
By using the I-PD control mechanism, the air-fuel ratio can be maintained and stabilized, improving exhaust gas performance during steady driving.
This has the effect of improving drivability because variations in 1-lux are reduced.

同様に、I、P、Dの各動作パラメータを運転状態によ
り検索し用いているので、各種の運転モードにマツチし
た空燃比が得られる。
Similarly, since the I, P, and D operating parameters are searched and used according to the operating conditions, air-fuel ratios matching various operating modes can be obtained.

また、空燃比に計測ノイズが付加されていてもそのノイ
ズの影響を少なくするよう動作させているので、ノイズ
による制御性劣化を抑え得る効果がある。
Further, even if measurement noise is added to the air-fuel ratio, the operation is performed to reduce the influence of the noise, which has the effect of suppressing deterioration of controllability due to noise.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すブロック図。 第2図はI、P、D動作パラメータを保持しておくテー
ブルの一例を示す図、第3図はI、P、D動作パラメー
タを求めるためのステップ応答を示す図である。 茅/図
FIG. 1 is a block diagram showing one embodiment of the present invention. FIG. 2 is a diagram showing an example of a table holding I, P, and D operating parameters, and FIG. 3 is a diagram showing a step response for determining the I, P, and D operating parameters. Kaya/Figure

Claims (1)

【特許請求の範囲】 1、空燃比センサを有するエンジン電子制御システムに
おいて、フィードバックゲインを任意に設定された目標
空燃比に追従し安定維持させるように決定することを特
徴とする空燃比制御方式。 2、上記フィードバックゲインをI−PD制御機構によ
り算出することを特徴とする第1項の空燃比制御方式。 3、上記I−PD制御機構におけるI動作、P動作、D
動作の各パラメータをエンジン状態によつて変化させる
ようにしたことを特徴とする第2項の空燃比制御方式。 4、上記D動作における制御量の差を算出するのに、制
御量の4点差の平均値を用いることを特徴とする第3項
の空燃比制御方式。
[Scope of Claims] 1. An air-fuel ratio control method in an engine electronic control system having an air-fuel ratio sensor, characterized in that a feedback gain is determined to follow and stably maintain an arbitrarily set target air-fuel ratio. 2. The air-fuel ratio control method according to item 1, wherein the feedback gain is calculated by an I-PD control mechanism. 3. I operation, P operation, and D in the above I-PD control mechanism
2. The air-fuel ratio control method according to item 2, wherein each operating parameter is changed depending on the engine state. 4. The air-fuel ratio control method according to item 3, characterized in that an average value of four-point differences in control amounts is used to calculate the difference in control amounts in the D operation.
JP62050028A 1987-03-06 1987-03-06 Air-fuel ratio control method Expired - Fee Related JP2753223B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62050028A JP2753223B2 (en) 1987-03-06 1987-03-06 Air-fuel ratio control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62050028A JP2753223B2 (en) 1987-03-06 1987-03-06 Air-fuel ratio control method

Publications (2)

Publication Number Publication Date
JPS63219842A true JPS63219842A (en) 1988-09-13
JP2753223B2 JP2753223B2 (en) 1998-05-18

Family

ID=12847543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62050028A Expired - Fee Related JP2753223B2 (en) 1987-03-06 1987-03-06 Air-fuel ratio control method

Country Status (1)

Country Link
JP (1) JP2753223B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52114823A (en) * 1976-03-24 1977-09-27 Nissan Motor Co Ltd Air fuel ratio controller
JPS5875207A (en) * 1981-10-29 1983-05-06 Toshiba Corp Pid controller
JPS59167707A (en) * 1983-03-14 1984-09-21 Toshiba Corp Sample value controller
JPS61104137A (en) * 1984-10-27 1986-05-22 Mazda Motor Corp Control device for air-fuel ratio of engine
JPS61190602A (en) * 1985-02-19 1986-08-25 Toshiba Corp Regulator
JPS61190601A (en) * 1985-02-19 1986-08-25 Toshiba Corp Regulator
JPS61196302A (en) * 1985-02-27 1986-08-30 Toshiba Corp Controller
JPS62139942A (en) * 1985-12-16 1987-06-23 Toyota Motor Corp Air-fuel ratio control method for internal combustion engine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52114823A (en) * 1976-03-24 1977-09-27 Nissan Motor Co Ltd Air fuel ratio controller
JPS5875207A (en) * 1981-10-29 1983-05-06 Toshiba Corp Pid controller
JPS59167707A (en) * 1983-03-14 1984-09-21 Toshiba Corp Sample value controller
JPS61104137A (en) * 1984-10-27 1986-05-22 Mazda Motor Corp Control device for air-fuel ratio of engine
JPS61190602A (en) * 1985-02-19 1986-08-25 Toshiba Corp Regulator
JPS61190601A (en) * 1985-02-19 1986-08-25 Toshiba Corp Regulator
JPS61196302A (en) * 1985-02-27 1986-08-30 Toshiba Corp Controller
JPS62139942A (en) * 1985-12-16 1987-06-23 Toyota Motor Corp Air-fuel ratio control method for internal combustion engine

Also Published As

Publication number Publication date
JP2753223B2 (en) 1998-05-18

Similar Documents

Publication Publication Date Title
JP4184058B2 (en) Control device
RU2383758C2 (en) Engine control system and method to control said system
EP0511701A1 (en) Method and apparatus for regulating engine intake air flow
US6789534B2 (en) Air-fuel ratio control system and method and engine control unit for internal combustion engine
JPS6118665B2 (en)
US5690087A (en) EGO based adaptive transient fuel compensation for a spark ignited engine
JPH0635844B2 (en) Fuel supply control method for internal combustion engine
JP2008128123A (en) Air volume calculating unit and fuel control unit for internal combustion engine
JPH09287513A (en) Torque controller for engine
JPH01125533A (en) Fuel injection controller for internal combustion engine
US20090157282A1 (en) Air-Fuel Ratio Control Apparatus by Sliding Mode Control of Engine
CA1272648A (en) Method of controlling air-fuel ratio
US4730590A (en) Air-fuel ratio control system for an engine
US5762054A (en) Ego based adaptive transient fuel compensation for a spark ignited engine
US4770147A (en) Air-fuel ratio control system for an engine
JPS63219842A (en) Air-fuel ratio controlling method
JPH051368B2 (en)
JPS6045743A (en) Fuel controller for engine
JPS6043137A (en) Fuel control apparatus for engine
JPH025729A (en) Engine air-fuel ratio control device
JP4044978B2 (en) Engine air-fuel ratio control device
JPH05231220A (en) Idle rotational speed controller of internal combustion engine
JP4368928B2 (en) Control device for internal combustion engine
JPH04231636A (en) Air-fuel ratio control method for internal combustion engine
JPH11190243A (en) Air-fuel ratio learning control device for engine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees