JPS63219376A - Production of protease - Google Patents

Production of protease

Info

Publication number
JPS63219376A
JPS63219376A JP5314287A JP5314287A JPS63219376A JP S63219376 A JPS63219376 A JP S63219376A JP 5314287 A JP5314287 A JP 5314287A JP 5314287 A JP5314287 A JP 5314287A JP S63219376 A JPS63219376 A JP S63219376A
Authority
JP
Japan
Prior art keywords
protease
culture solution
culture
liquid medium
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5314287A
Other languages
Japanese (ja)
Inventor
Harumichi Ito
伊藤 晴通
Tetsuro Fukase
哲朗 深瀬
Yaichi Fukushima
弥一 福島
Hiroshi Motai
茂田井 宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japanese Res & Dev Assoc Bio Reactor Syst Food Ind
Original Assignee
Japanese Res & Dev Assoc Bio Reactor Syst Food Ind
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japanese Res & Dev Assoc Bio Reactor Syst Food Ind filed Critical Japanese Res & Dev Assoc Bio Reactor Syst Food Ind
Priority to JP5314287A priority Critical patent/JPS63219376A/en
Publication of JPS63219376A publication Critical patent/JPS63219376A/en
Pending legal-status Critical Current

Links

Landscapes

  • Enzymes And Modification Thereof (AREA)

Abstract

PURPOSE:To efficiently produce protease having high titer, by maintaining >=2.0mg/l dissolved oxygen concentration of culture solution after end stage of mold multiplication, adding a liquid medium containing soybean flour to the mold and cultivating the mold. CONSTITUTION:In cultivating a mold capable of producing protease in a liquid medium, dissolved oxygen concentration of the culture solution is maintained at >=2.0mg/l at the end stage of the multiplication, a liquid medium containing soybean flour is continuously or intermittently added to the mold and the mold is cultivated to produce protease. The dissolved oxygen concentration of the culture solution in and after the end stage of the multiplication is preferably maintained at >=2.0mg/l by the use of pure oxygen or oxygen enriched air. In and after the end stage of the multiplication, the mold is preferably cultivated while keeping nitrogen concentration in the culture solution at 0.05-0.30% (W/V) and saccharide concentration at <=0.10% (W/V).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、プロテアーゼ生産能を有する糸状菌を用いて
高力価のプロテアーゼを効率良く製造する方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for efficiently producing high-titer protease using filamentous fungi capable of producing protease.

〔従来の技術〕[Conventional technology]

、  プロテアーゼは蛋白質又はその部分加水分解物に
作用してペプチド結合を分解する加水分解酵素であって
、医薬、醸造食品、洗剤等に広く利用さている。
Protease is a hydrolase that acts on proteins or partially hydrolyzed products thereof to break down peptide bonds, and is widely used in medicines, brewed foods, detergents, etc.

従来、微生物によるプロテアーゼの生産に関する研究は
、プロテアーゼ生産能の高い微生物のスクリーニング法
もしくはその育種法に主眼がおかれていた。又培養条件
に関する研究も、その多くは培地の組成、特に培地に無
機塩を添加するもの(例えば特公昭50−22111号
公報等)や培地中の窒素源の種類(例えば特開昭51−
95180号公報等)、炭素源の種類(例えば特公昭5
2−12797号公報等)等や、培養方法、特に酸素移
動速度を制御するもの(特公昭52−43916)や、
溶存酸素分圧を0.20atm以上に制御するもの(特
公昭53−27789)等に限られており、しかもこれ
らは何れも回分式製造法に限られていた。
Conventionally, research on the production of protease by microorganisms has focused on screening methods for microorganisms with high protease-producing ability or methods for breeding them. In addition, many of the studies on culture conditions have focused on the composition of the culture medium, especially those that add inorganic salts to the culture medium (for example, Japanese Patent Publication No. 50-22111), and the type of nitrogen source in the culture medium (for example, Japanese Patent Publication No. 50-22111).
95180, etc.), the type of carbon source (for example, Japanese Patent Publication No. 5
2-12797, etc.), culture methods, especially those that control the oxygen transfer rate (Japanese Patent Publication No. 52-43916),
These methods are limited to those that control the dissolved oxygen partial pressure to 0.20 atm or higher (Japanese Patent Publication No. 53-27789), and all of these methods are limited to batch production methods.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来のプロテアーゼ製造に関する提案方法では、何れも
回分式製造法であったことに主として起因して、プロテ
アーゼ産生期は菌体が増殖した後の定常期に限られてお
り、しかも定常期において培地中の炭素源、窒素源を制
御することが著しく困難であったため、プロテアーゼの
工業的採取期が短く、しかも得られるプロテアーゼ力価
も比較的低いものであると言う問題点があった。
In the conventional methods proposed for protease production, mainly due to the batch production method, the protease production period is limited to the stationary phase after the bacterial cells have proliferated, and moreover, during the stationary phase, there is no Since it is extremely difficult to control the carbon source and nitrogen source, there are problems in that the industrial harvest period for protease is short and the protease titer obtained is relatively low.

また、前記の酸素移動速度を制御する方法においては、
単位菌体当りの菌体呼吸速度(酸素吸収速度)が増加し
て培養条件の酸素供給速度を上回り、菌体増殖が酸素供
給速度の制限を受ける結果、プロテアーゼ生産性が低下
するという問題点があった。更に、溶存酸素分圧のみを
制御する方法においても、プロテアーゼ活性が一定の所
でとどまり、さらに高活性を求めることができないとい
う問題点があった。
Further, in the method of controlling the oxygen transfer rate,
The problem is that the bacterial respiration rate (oxygen absorption rate) per unit bacterial cell increases and exceeds the oxygen supply rate of the culture conditions, and bacterial cell growth is limited by the oxygen supply rate, resulting in a decrease in protease productivity. there were. Furthermore, even in the method of controlling only the dissolved oxygen partial pressure, there is a problem that the protease activity remains at a certain point and it is not possible to obtain even higher activity.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、これらの先願及び従来方法の持つ問題点を克
服するために研究が成された結果、完成されたものであ
る。
The present invention was completed as a result of research conducted to overcome the problems of these prior applications and conventional methods.

本発明は、プロテアーゼ生産能を有する糸状菌を液体培
地に培養してプロテアーゼを製造するに際し、増殖末期
以降において培養液の溶存酸素濃度を2.0■71以上
に維持すると共に、大豆粉を含む液体培地を連続的又は
断続的に加えて培養することを特徴とするプロテアーゼ
の製法である。
When producing protease by culturing filamentous fungi capable of producing protease in a liquid medium, the present invention maintains the dissolved oxygen concentration of the culture solution at 2.0x71 or higher after the final stage of growth, and contains soybean flour. This is a method for producing protease, which is characterized by culturing by continuously or intermittently adding a liquid medium.

本発明において用いられる微生物は、アスペルギルス属
、ペニシリウム属、ムコール属、またはリゾプス属等に
属するプロテアーゼ生産能を有する糸状菌であり、具体
的にはアスペルギルス・ソーヤ(I AM 2703)
、アスペルギルス・ソーヤ(IAM 2631)、アス
ペルギルス・オリゼー(IAM2609)、アスペルギ
ルス・オリゼー(I F O4176)、アスペルギル
ス・タマリ (T AM 2156)、ペニシリウム・
クリソゲナム(HU T 4019)、ペニシリウム・
ルテウム(A HU 8022)、ムコール・ラセモサ
ス(A HU 6002)、ムコール・ヒエマリス(H
UT 1131)、リゾープス・フォルモサエンシス(
IF O4732)、リゾープス・ジャバニカス(IF
O5441) )などが挙げられる。
The microorganism used in the present invention is a filamentous fungus having protease-producing ability belonging to the genus Aspergillus, Penicillium, Mucor, Rhizopus, etc., and specifically, Aspergillus sojae (I AM 2703).
, Aspergillus soya (IAM 2631), Aspergillus oryzae (IAM2609), Aspergillus oryzae (I F O4176), Aspergillus tamari (T AM 2156), Penicillium
Chrysogenum (HU T 4019), Penicillium
Luteum (A HU 8022), Mucor racemosus (A HU 6002), Mucor hiemalis (H
UT 1131), Rhizopus formosaensis (
IF O4732), Rhizopus javanicus (IF
O5441) ), etc.

本発明に用いられるプロテアーゼ生産能を有する糸状菌
は雑菌汚染防止の観点から耐塩性を有するものであるこ
とが望ましい(耐塩性の目安としては食塩5%以上、好
ましくは食塩10%以上である)。
It is desirable that the filamentous fungi having protease-producing ability used in the present invention have salt tolerance from the viewpoint of preventing bacterial contamination (a rough guideline for salt tolerance is 5% or more salt, preferably 10% or more salt). .

本発明において、大豆粉を含む液体培地を添加するまで
の培養、即ち単に菌体を増殖するための培養を、以下単
に前培養と言う。
In the present invention, the culture up to the addition of the liquid medium containing soybean flour, that is, the culture for simply multiplying the bacterial cells, is hereinafter simply referred to as preculture.

そして前培養に使用する培地としては、従来プロテアー
ゼ生産能を有する糸状菌の液体培養法において用いられ
る液体培地であれば何れを用いてもよい、即ち、培地の
炭素源としては、例えばグルコース、可溶性澱粉、シュ
クロース、デキストリン、セルロース、グリセリン、敵
等が、窒素源としては、例えば大豆粉、ペプトン、肉エ
キス、酵母エキス、ヌカ、カゼイン、ポリペプトン、グ
ルテン等が、無機塩としては、例えば各種リン酸塩、硫
酸塩、塩酸塩等が用いられ、さらに必要によりビタミン
類、核酸等を適宜加えた液体培地が用いられる。
As the medium used for pre-culture, any liquid medium conventionally used in the liquid culture method of filamentous fungi having protease-producing ability may be used. Starch, sucrose, dextrin, cellulose, glycerin, etc. are used as nitrogen sources, soybean flour, peptone, meat extract, yeast extract, bran, casein, polypeptone, gluten, etc. are used as nitrogen sources, and inorganic salts include various types of phosphorus. Acid salts, sulfates, hydrochlorides, etc. are used, and if necessary, a liquid medium to which vitamins, nucleic acids, etc. are appropriately added is used.

このうち、窒素源として、プロテアーゼ活性を著しく高
める効果のある大豆粉が好ましい。なお、大豆粉の他に
前記の窒素源を併用してもよい。
Among these, soybean flour, which has the effect of significantly increasing protease activity, is preferred as a nitrogen source. In addition, the above-mentioned nitrogen source may be used in combination with soybean flour.

前記した液体培地に、プロテアーゼ生産能を有する糸状
菌菌体を接種した後、液体培養する。このときの培養温
度、培地のpH1通気量などの培養条件は使用する菌株
、培地組成などによって変わるが、通常培養温度は25
〜40℃、培地のpHは6〜8、通気量は0.1〜2 
V、V、M程度である。
The above liquid medium is inoculated with filamentous fungal cells capable of producing protease, followed by liquid culture. The culture conditions at this time, such as the culture temperature, pH 1 of the medium, and aeration rate, vary depending on the strain used, medium composition, etc., but the culture temperature is usually 25
~40°C, medium pH 6-8, aeration rate 0.1-2
It is about V, V, M.

かくして、培養初期の誘導期を経て、増殖期に移行する
と、菌体は著しく増殖する。通常、培養開始後l〜4日
程度で増殖は止まり、増殖末期以降はほぼ定常期に移行
する。
Thus, after passing through the lag phase at the initial stage of culture and entering the growth phase, the bacterial cells proliferate significantly. Normally, proliferation stops approximately 1 to 4 days after the start of culture, and after the final stage of proliferation, the cell enters an almost stationary phase.

本発明においては、増殖末期以降において培養液の溶存
酸素濃度を2. Otgl 1以上、好ましくは2.5
〜15■どlに維持する。維持法としては、通気ガスを
培養液中に攪拌混合してやればよい。但し、攪拌速度が
高回転になると、撹拌羽根による菌体のせん断等の物理
的影響が現われる可能性があるので、その影響が現われ
ないように通気ガス量、通気ガスの種類及び攪拌羽根の
形状等を決めた方が良い。溶解効率等の面から、通気ガ
スとして、純酸素ガスや酸素富化空気を用いることが好
ましい。
In the present invention, the dissolved oxygen concentration of the culture medium is reduced to 2. Otgl 1 or more, preferably 2.5
Maintain at ~15 liters. As a maintenance method, aeration gas may be stirred and mixed into the culture solution. However, when the stirring speed becomes high, there is a possibility that physical effects such as shearing of bacterial cells by the stirring blades may appear, so the amount of aeration gas, the type of aeration gas, and the shape of the stirring blades should be adjusted to prevent this effect from occurring. It is better to decide etc. From the viewpoint of dissolution efficiency, etc., it is preferable to use pure oxygen gas or oxygen-enriched air as the ventilation gas.

さらに本発明においては、増殖期末期以降、即ち、酵素
産生期に大豆粉を含む培養液を連続的又は断続的に加え
る。
Furthermore, in the present invention, a culture solution containing soybean flour is added continuously or intermittently after the end of the growth phase, that is, during the enzyme production phase.

このとき、必要に応じ大豆粉のほかに他の蛋白質原料、
例えば分離大豆蛋白、ミルクカゼイン、卵アルブミン、
牛血清アルブミン、小麦グルテン、ペプトン、ソイトー
ン等の1種もしくは2種以上のものを併用してもよい。
At this time, in addition to soybean flour, other protein raw materials may be added as needed.
For example, isolated soy protein, milk casein, egg albumin,
One or more of bovine serum albumin, wheat gluten, peptone, soytone, etc. may be used in combination.

この大豆粉を含む液体培地には、必要によりグルコース
、シュクロース、ラクトース、ガラクトース、可溶性澱
粉、デキストリン、セルロース、小麦等の糖質原料、更
に各種リン酸塩、硫酸塩、塩酸塩等の無機塩類、ビタミ
ン類、核酸等を加えてもよい。
This liquid medium containing soybean flour contains carbohydrate raw materials such as glucose, sucrose, lactose, galactose, soluble starch, dextrin, cellulose, and wheat, as well as inorganic salts such as various phosphates, sulfates, and hydrochlorides. , vitamins, nucleic acids, etc. may be added.

本発明において、増殖期末期以降の培養液に大豆粉を含
む液体培地を添加するのは、次の理由による。
In the present invention, the reason why a liquid medium containing soybean flour is added to the culture solution after the end of the growth phase is as follows.

培養液中、菌体の増殖とともに微量生産されるプロテア
ーゼ、ペプチダーゼ等により培養初期に含まれるプロテ
アーゼ生産の誘導物質である蛋白質が分解されてアミノ
酸となるため、蛋白質が殆どもしくは全く存在せず、プ
ロテアーゼ生産の誘導作用を受は難いため、増殖末期以
降においては高活性のプロテアーゼの生産は到底達成さ
れない。
In the culture solution, proteins that are inducers of protease production contained in the early stage of culture are degraded into amino acids by proteases, peptidases, etc. that are produced in small amounts as the bacterial cells multiply, so there is little or no protein present, and proteases are not present. Since it is difficult to induce production, production of highly active protease cannot be achieved after the final stage of proliferation.

そこで、プロテアーゼの生産を高めるには増殖末期以降
において、大豆粉を含む液体培地を培養液に加えればよ
いわけである。
Therefore, in order to increase protease production, a liquid medium containing soybean flour can be added to the culture solution after the final stage of growth.

なお、この増殖期末期以降に大豆粉を含む培養液を添加
する際、培養液中の窒素濃度を0.05〜0゜30%(
W/V)、かつ、糖濃度0.10% (W/V)以下に
維持する(以下、単に炭素律速と言うことがある。)か
、又は、培養液中の窒素濃度を0.05%(W/V)未
満に維持する(以下、単に窒素律速と言うことがある。
In addition, when adding a culture solution containing soybean flour after the end of the growth phase, the nitrogen concentration in the culture solution should be adjusted to 0.05-0°30% (
(W/V) and maintain the sugar concentration below 0.10% (W/V) (hereinafter sometimes simply referred to as carbon rate control), or reduce the nitrogen concentration in the culture solution to 0.05%. (W/V) (hereinafter sometimes simply referred to as nitrogen rate limiting).

)ことにより、プロテアーゼ活性を更に高められるので
好ましい。
) is preferable because the protease activity can be further enhanced.

先ず、増殖期末期以降に、炭素律速となるように大豆粉
を含む液体培地を添加する手段としては、培地の組成、
添加速度、添加割合などの調整その他適宜の手段を選ぶ
ことができるが、その好ましい手段の一例を述べると次
のとおりである。
First, as a means of adding a liquid medium containing soybean flour after the end of the growth phase so that the carbon rate is controlled, the composition of the medium,
Although the addition rate, addition ratio, etc. can be adjusted and other appropriate means can be selected, one example of preferred means is as follows.

先ず、糖源は糸状菌によって分解されて単糖類となり、
これがプロテアーゼ生産の抑制因子となるため、菌体自
身の炭素、窒素、およびリンの組成を考慮して培地中の
糖源の含有割合を蛋白質やリンに比べて低くする必要が
ある。そこで、増殖末期以降に培養液に添加する大豆粉
を含む液体培地の組成を決めるにあたっては、予めこの
液体培地に使用するプロテアーゼ生産能を有する糸状菌
を実験的に培養し、糖源が完全に消費された時に残存す
る窒素濃度が0.06〜0.3%(W/V)となるよう
に糖源と蛋白質及びその他の炭素源の配合比を決め、こ
のように配合比を決めた大豆粉を含む液体培地を上記し
た増殖末期以降の培養液に糖濃度が0.10%(W/V
)以下、好ましくは0.05%(W/V)以下となるよ
うに添加すると、培養液中の窒素濃度は0.06〜0.
30%(W/V)の範囲に保持される。
First, the sugar source is broken down by filamentous fungi into monosaccharides,
Since this acts as a suppressor for protease production, it is necessary to consider the carbon, nitrogen, and phosphorus composition of the bacterial cell itself and lower the content of sugar sources in the medium compared to proteins and phosphorus. Therefore, when determining the composition of a liquid medium containing soybean flour to be added to the culture medium after the final stage of growth, we experimentally cultivate filamentous fungi with protease-producing ability to be used in this liquid medium in advance to ensure that the sugar source is completely absorbed. The blending ratio of sugar sources, proteins, and other carbon sources is determined so that the nitrogen concentration remaining when consumed is 0.06 to 0.3% (W/V), and soybeans with the blending ratio determined in this way A sugar concentration of 0.10% (W/V
) or less, preferably 0.05% (W/V) or less, the nitrogen concentration in the culture solution will be 0.06-0.
It is maintained within a range of 30% (W/V).

また、上記大豆粉を含む液体培地に糖を含ませていない
場合には、培養液中の窒素濃度が 0.06〜0.30
%(W/V)の範囲となるように大豆粉を含む培地を添
加すればよい。
In addition, when the liquid medium containing soybean flour does not contain sugar, the nitrogen concentration in the culture medium is 0.06 to 0.30.
% (W/V) of the medium containing soybean flour may be added.

一方、増殖末期以降に、窒素律速となるように液体培地
を添加する方法としては、添加する大豆粉を含む液体培
地の組成を、菌体自身のC,N、Pの組成に比して、N
を少なくする方法が挙げられる。
On the other hand, as a method of adding a liquid medium after the final stage of growth so that nitrogen becomes rate-limiting, the composition of the liquid medium containing soybean flour to be added is compared to the C, N, and P composition of the bacterial cells themselves. N
There are ways to reduce this.

先ず、N源は糸状菌によって分解されてアミノ酸となり
、これがプロテアーゼ生産の抑制因子となるため、菌体
自身の炭素、窒素、およびリンの組成を考慮して培地中
のNiff1の含有割合を糖やリンに比べて低くする必
要がある。そこで、増殖末期以降に培養液に添加する大
豆粉を含む液体培地の組成を決めるにあたっては、予め
液体培地に使用するプロテアーゼ生産能を有する糸状菌
を実験的に培養し、C源、P源及びその他の栄養源に比
し、N源が完全に消費されるように糖源、その他の栄養
源と蛋白質の配合比を決め、このように配合比を決めた
大豆粉を含む液体培地を上記した増殖末期以降の培養液
に窒素濃度が0.05%(W/V)未満となるように添
加すると、培養液中の窒素濃度は0.05%(W/V)
未満の範囲に保持される。
First, the N source is decomposed by the filamentous fungus into amino acids, which act as inhibitors of protease production. Therefore, the content of Niff1 in the medium should be adjusted by considering the carbon, nitrogen, and phosphorus composition of the fungus itself. It needs to be lower than phosphorus. Therefore, in determining the composition of a liquid medium containing soybean flour to be added to the culture medium after the final stage of growth, we experimentally cultivated filamentous fungi capable of producing protease to be used in the liquid medium, and Compared to other nutrient sources, the blending ratio of sugar source, other nutrient sources, and protein was determined so that the N source was completely consumed, and the liquid medium containing soybean flour with the blending ratio determined in this manner was prepared as described above. If added to the culture solution after the end of growth so that the nitrogen concentration is less than 0.05% (W/V), the nitrogen concentration in the culture solution will be 0.05% (W/V)
is kept within the range below.

いずれの方法においても増殖末期以降の培養液への大豆
粉を含む液体培地の添加は連続的もしくは断続的に添加
することができる。
In either method, the liquid medium containing soybean flour can be added continuously or intermittently to the culture solution after the final stage of growth.

そして増殖末期以降に大豆粉を含む液体培地を添加して
行なう培養は、該液体培地を連続的に添加し培養液を連
続的に取り出して連続培養するか、または該液体培地を
断続的に添加し培養液を断続的に取り出すというように
培養するか、または該液体培地を連続的もしくは断続的
に添加して流加培養することにより実施される。
When culturing is carried out by adding a liquid medium containing soybean flour after the final stage of growth, the liquid medium is continuously added and the culture solution is continuously taken out for continuous culture, or the liquid medium is added intermittently. The culture is carried out by intermittently removing the culture medium, or by adding the liquid medium continuously or intermittently to perform fed-batch culture.

上記のようにする以外は、連続培養法、流加培養法は常
法に準じて行なうことができる。なお、大豆粉を含む液
体培地を断続的に添加し培養液を断続的に取り出す培養
では、添加量と取り出し量は同じであっても異なってい
てもよく、また添加時期と取り出し時期は同時であって
も異なっていてもよい。
The continuous culture method and the fed-batch culture method can be carried out according to conventional methods except as described above. In addition, in culture in which a liquid medium containing soybean flour is intermittently added and the culture solution is intermittently removed, the addition amount and removal amount may be the same or different, and the addition time and removal time may be at the same time. It may be different or different.

また、大豆粉を含む液体培地を連続的又は断続的に添加
して培養する場合、上記したいずれの培養においても、
通常温度は25〜35℃、培地のpHは6〜8程度であ
る。
In addition, when culturing by continuously or intermittently adding a liquid medium containing soybean flour, in any of the above-mentioned cultures,
The normal temperature is 25 to 35°C, and the pH of the medium is about 6 to 8.

上記のようにして得られた培養終了液よりプロテアーゼ
を回収する手段としては、例えば常法により培養液を濾
過して菌体を分離し、更に必要により透析、塩析、イオ
ン交換樹脂、ゲル濾過等により精製する方法等が挙げら
れる。
As a means of recovering protease from the culture solution obtained as described above, for example, the culture solution is filtered by a conventional method to separate the bacterial cells, and if necessary, dialysis, salting out, ion exchange resin, gel filtration, etc. Examples include a method of purification by, etc.

〔作 用〕[For production]

本発明において、増殖末期以降において培養液の溶存酸
素濃度を2.0mg/l以上に維持しながら大豆粉を含
む液体培地を連続的又は断続的に加えることにより、増
殖末期以降における菌体濃度を高(維持し、プロテアー
ゼ活性も高く維持することができる。さらに、好ましく
は炭素又は窒素律速にすることにより、プロテアーゼ生
産を抑制する単糖類又はアミノ酸等が培養液中に著しく
少量となるため、プロテアーゼ生産を著しく促進させる
ことになる。
In the present invention, by continuously or intermittently adding a liquid medium containing soybean flour while maintaining the dissolved oxygen concentration of the culture solution at 2.0 mg/l or more after the final stage of growth, the bacterial cell concentration after the final stage of growth can be reduced. In addition, by preferably controlling the rate of carbon or nitrogen, monosaccharides or amino acids, etc. that inhibit protease production are kept in extremely small amounts in the culture solution, so protease activity can be maintained at a high level. This will significantly accelerate production.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、著しく高力価のプロテアーゼを効率良
く得ることが出来るので、本発明は産業上極めて有意義
である。
According to the present invention, it is possible to efficiently obtain a protease with extremely high titer, so the present invention is extremely significant industrially.

以下に実施例を掲げて更に本発明を説明する。The present invention will be further explained below with reference to Examples.

〔実施例〕〔Example〕

実施例1 大豆粉1.6χ(W/V)、可溶性澱粉5.0χ(W/
V)1MgSO4・7HzOO,5X(W/V)、 K
HzPO40,5X(W/V)、酵母エキス0.03χ
(W/V)、 ZnC1z  O,01χ(W/V)、
 CaC1z 0.02%(W/V)及びNaC110
,0χ(W/V)を含有する液体培地(pH6,5)を
21ミニジヤーに1.51仕込んだ後、オートクレーブ
で加熱殺菌し、その後、該培地にアスペルギルス・オリ
ゼー(I A M 2609)の胞子懸濁液を接種しく
胞子数10“個/d)、攪拌速痩250〜400rpH
lで培養した。培養中のpHは6.5となるように5 
N−HtSO,及び5 N−NaOHで制御した。
Example 1 Soybean flour 1.6χ (W/V), soluble starch 5.0χ (W/V)
V) 1MgSO4・7HzOO, 5X (W/V), K
HzPO40.5X (W/V), yeast extract 0.03χ
(W/V), ZnC1z O,01χ(W/V),
CaC1z 0.02% (W/V) and NaC110
, 0χ (W/V) was charged into a 21 mini jar at 1.51 liters of a liquid medium (pH 6,5), then heat sterilized in an autoclave, and then spores of Aspergillus oryzae (I A M 2609) were added to the medium. When inoculating the suspension, the number of spores is 10 spores/d), and the stirring speed is 250-400 rpm.
Cultured in l. 5 so that the pH during culture is 6.5.
Control was performed with N-HtSO and 5N-NaOH.

80時間後、増殖末期となったので、連続培養に入った
。即ち、先ず、該培地に純酸素を吹き込み、攪拌速度を
400〜700rpmにして、培養液中の溶存酸素濃度
が常に0〜2■/β未満、2.5■/β前後及び15■
/l前後となるように制御した。
After 80 hours, the growth reached the final stage, so continuous culture was started. That is, first, pure oxygen is blown into the culture medium, and the stirring speed is set to 400 to 700 rpm, so that the dissolved oxygen concentration in the culture solution is always between 0 and less than 2 ■/β, around 2.5 ■/β, and 15 ■
It was controlled to be around /l.

同時に、前述と同一の液体培地を希釈率0.02V/V
 −hrの割合でミニジャーの供給口より連続的に供給
し、その取出口より供給量と同量の培養液を連続的に採
取した。連続培養中の温度は30℃、培地pHは6.5
に維持した。
At the same time, use the same liquid medium as above at a dilution rate of 0.02V/V.
-hr was continuously supplied from the supply port of the mini-jar, and the same amount of culture solution as the supplied amount was continuously collected from the discharge port. The temperature during continuous culture was 30°C, and the medium pH was 6.5.
maintained.

液体培養開始後の培養液中の窒素濃度は0.025〜0
.03%(W/V)に維持された。
The nitrogen concentration in the culture solution after the start of liquid culture is 0.025 to 0.
.. It was maintained at 0.3% (W/V).

採取した培養液中のプロテアーゼ力価(P、U、/d)
をアンソン−萩原変法により測定した。結果を第1図に
示す。
Protease titer (P, U, /d) in the collected culture solution
was measured by the modified Anson-Hagiwara method. The results are shown in Figure 1.

上記第1図から、本発明方法では、プロテアーゼ活性が
高く維持されているのに対し、溶存酸素濃度が2■/l
未満となると、本発明に比してプロテアーゼ活性が劣る
ことがわかる。
From Figure 1 above, in the method of the present invention, the protease activity is maintained high, while the dissolved oxygen concentration is 2■/l.
If it is less than that, it can be seen that the protease activity is inferior to that of the present invention.

実施例2 大豆粉2.0χ(W/V)、可溶性澱粉1.0χ(W/
V)9MgSO4・7H,OO,5χ(W/V)、 K
HgPO4o、sχ(W/V) 、酵母エキス0.03
χ(W/V)、ZnC1z O,01χ(W/V)、 
CaC1t O,02X (W/V)及びNaC110
,0X(W/V)を含有する液体培地(pH6,5)を
オートクレーブで常圧で加熱殺菌し、21ミニジヤーに
1.51仕込んだ後、該培地にアスペルギルス・オリゼ
ー(I AM 2609)の胞子懸濁液を接種しく胞子
数106個/mZ) 、002■/Il、攪拌速度40
0rpmで培養した。培養中のpHは6.5となるよう
に5 N 1hsO4及び5N−N’aOHで制御した
Example 2 Soybean flour 2.0χ (W/V), soluble starch 1.0χ (W/V)
V) 9MgSO4・7H, OO, 5χ (W/V), K
HgPO4o, sχ (W/V), yeast extract 0.03
χ(W/V), ZnC1z O,01χ(W/V),
CaC1t O,02X (W/V) and NaC110
, 0X (W/V) was heated and sterilized in an autoclave at normal pressure, and charged into a 21 mini jar at 1.51 μl, and the spores of Aspergillus oryzae (I AM 2609) were added to the medium. When inoculating the suspension, the number of spores was 106/mZ), 002/Il, and the stirring speed was 40.
Culture was performed at 0 rpm. The pH during the culture was controlled to 6.5 using 5N 1hsO4 and 5N-N'aOH.

48時間後、増殖末期となったので、連続培養に入った
。即ち、先ず、該培地に純酸素を吹き込み、攪拌速度を
500〜700rpmにして、培養液中の溶存酸素濃度
が常にO■/l.3■/l15■/lとなるように制御
しつつ3種の連続培養を行なった。
After 48 hours, the cells reached the final stage of growth, so continuous culture was started. That is, first, pure oxygen is blown into the culture medium, and the stirring speed is set to 500 to 700 rpm, so that the dissolved oxygen concentration in the culture solution is always O2/l. Three types of continuous culture were carried out while controlling the concentration to be 3 .mu./l and 15 .mu./l.

同時に、蛋白質原料〔1,0χ(W/V)澱粉、 2.
0X(W/V)大豆粉、0,5χ(W/V)KH2PO
4,0,05χ(W/V) Mg5o、。
At the same time, protein raw material [1,0χ (W/V) starch, 2.
0X (W/V) soybean flour, 0.5χ (W/V) KH2PO
4,0,05χ(W/V) Mg5o,.

0.01(W/V) CaC1z、0.03χ(W/V
)酵母エキスを含有するpH6,5の液体培地をオート
クレーブで常圧加熱殺菌したもの〕を希釈率0.02V
/V −hrの割合でミニジャーの供給口より連続的に
供給し、その取出口より供給量と同量の培養液を連続的
に採取した。連続培養中の温度は30℃、培地pHは6
.5に維持した。
0.01(W/V) CaC1z, 0.03χ(W/V
) A liquid medium containing yeast extract with a pH of 6.5 that was sterilized by heating at normal pressure in an autoclave] was diluted at a dilution rate of 0.02V.
/V-hr was continuously supplied from the supply port of the mini-jar, and the same amount of culture solution as the supply amount was continuously collected from the discharge port. The temperature during continuous culture was 30°C, and the medium pH was 6.
.. It was kept at 5.

液体培養開始後の培養液中の11M98度は0.1%(
−/V)以下、窒素濃度は0.05〜0.20%(W/
V) ニ維持された。
11M98 degrees in the culture solution after the start of liquid culture is 0.1% (
-/V), the nitrogen concentration is 0.05 to 0.20% (W/V) or less.
V) D was maintained.

採取した培養液中のプロテアーゼ力価(P、U、/−)
をアンソン−萩原変法により測定した。連続培養開始後
10日目の活性を第1表に示す。
Protease titer (P, U, /-) in collected culture solution
was measured by the modified Anson-Hagiwara method. Table 1 shows the activity on the 10th day after the start of continuous culture.

(本頁、以下余白) 第1表 上表より明らかな如く、本発明方法ではプロテアーゼ活
性が著しく上昇することが認められた。
(This page, below in the margins) As is clear from the upper table of Table 1, it was observed that the protease activity significantly increased in the method of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例及び比較例の結果を示すものであ
る。
The drawings show the results of Examples and Comparative Examples of the present invention.

Claims (1)

【特許請求の範囲】 1)プロテアーゼ生産能を有する糸状菌を液体培地に培
養してプロテアーゼを製造するに際し、増殖末期以降に
おいて培養液の溶存酸素濃度を2.0mg/l以上に維
持すると共に、大豆粉を含む液体培地を連続的又は断続
的に加えて培養することを特徴とするプロテアーゼの製
造法。 2)増殖末期以降において、培養液中の窒素濃度を0.
05〜0.30%(W/V)、糖濃度を0.10%(W
/V)以下に維持しつつ培養する特許請求の範囲第1項
記載の製造法。 3)増殖末期以降において、培養液中の窒素濃度を0.
05%(W/V)未満に維持しつつ培養する特許請求の
範囲第1項記載の製造法。 4)プロテアーゼ生産能を有する糸状菌が耐塩性菌であ
る特許請求の範囲第1項ないし第3項のいずれかに記載
の製造法。 5)純酸素ガス又は酸素富化空気を用いて溶存酸素濃度
を2.0mg/l以上に維持するものである特許請求の
範囲第1項ないし第4項のいずれかに記載の製造法。
[Scope of Claims] 1) When producing protease by culturing a filamentous fungus capable of producing protease in a liquid medium, the dissolved oxygen concentration of the culture solution is maintained at 2.0 mg/l or more after the final stage of growth, and 1. A method for producing protease, which comprises culturing by continuously or intermittently adding a liquid medium containing soybean flour. 2) After the final stage of growth, reduce the nitrogen concentration in the culture solution to 0.
05-0.30% (W/V), sugar concentration 0.10% (W/V)
/V) The production method according to claim 1, which comprises culturing while maintaining the following conditions. 3) After the final stage of growth, reduce the nitrogen concentration in the culture solution to 0.
2. The production method according to claim 1, wherein the production method is performed by culturing while maintaining the concentration below 0.5% (W/V). 4) The production method according to any one of claims 1 to 3, wherein the filamentous fungus having protease-producing ability is a salt-tolerant bacterium. 5) The manufacturing method according to any one of claims 1 to 4, wherein the dissolved oxygen concentration is maintained at 2.0 mg/l or more using pure oxygen gas or oxygen-enriched air.
JP5314287A 1987-03-10 1987-03-10 Production of protease Pending JPS63219376A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5314287A JPS63219376A (en) 1987-03-10 1987-03-10 Production of protease

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5314287A JPS63219376A (en) 1987-03-10 1987-03-10 Production of protease

Publications (1)

Publication Number Publication Date
JPS63219376A true JPS63219376A (en) 1988-09-13

Family

ID=12934579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5314287A Pending JPS63219376A (en) 1987-03-10 1987-03-10 Production of protease

Country Status (1)

Country Link
JP (1) JPS63219376A (en)

Similar Documents

Publication Publication Date Title
Hayashida Selective submerged productions of three types of glucoamylases by a black-koji mold
JPS6155948B2 (en)
US20020079268A1 (en) Process for preparing a fermentation medium from a renewable raw material
CN110846351B (en) Threonine fermentation medium prepared by using mycoprotein as raw material
JP3712530B2 (en) A novel Cryptococcus nodaensis, a method for producing a salt-tolerant and heat-resistant glutaminase using the same, and a method for producing a protein hydrolyzate having a high glutamic acid content
US4684527A (en) Process for producing seasoning
EP0219673B1 (en) Method of preparing novel thermostable transglucosidase
JPS63219376A (en) Production of protease
AU2005254730B2 (en) Fermentation process using faba beans as nitrogen source
Sinha et al. Studies on the production of acid protease by submerged fermentation
JP2521706B2 (en) Method for producing protease
Pourrat et al. Production of semi-alkaline protease by Aspergillus niger
JPH044888A (en) Production of amino acid by fermentation
US4879235A (en) Process for producing protease by cultivating a protease-producing mold in a liquid medium
EP0834573A1 (en) Process for the production of glutamic acid and the use of protein hydrolysates in this process
KR830002800B1 (en) Preparation of heat stable glucoamylase
CN110846369B (en) Process for jointly hydrolyzing mycoprotein and soybean protein
Priyanka et al. Neutral protease production by Rhizopus oligosporus NCIM 1215 under solid state fermentation using mixed substrates of agro industrial residues
JPS63248390A (en) Production of protease
JPH0731468A (en) Method for continuous liquid culturing of mold
SU840099A1 (en) Method of saccharification of starch raw material in alcohol production
JPH09322761A (en) Medium for producing amylase
JPS606182B2 (en) Seasoning liquid manufacturing method
JPH012573A (en) Method for producing carboxypeptidase
JPS62118884A (en) Cultivation of microorganism capable of producing lipase having high ester interchange capacity