JPS63219244A - Enciphered information processing system - Google Patents

Enciphered information processing system

Info

Publication number
JPS63219244A
JPS63219244A JP62053348A JP5334887A JPS63219244A JP S63219244 A JPS63219244 A JP S63219244A JP 62053348 A JP62053348 A JP 62053348A JP 5334887 A JP5334887 A JP 5334887A JP S63219244 A JPS63219244 A JP S63219244A
Authority
JP
Japan
Prior art keywords
key
terminal
decoding
card
decryption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62053348A
Other languages
Japanese (ja)
Other versions
JP2574279B2 (en
Inventor
Masayoshi Hirashima
正芳 平嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62053348A priority Critical patent/JP2574279B2/en
Publication of JPS63219244A publication Critical patent/JPS63219244A/en
Application granted granted Critical
Publication of JP2574279B2 publication Critical patent/JP2574279B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To disable decoding substantially and to perform the transmission/ reception of a bit of enciphered information economically, by reading the decoding key of a terminal side from an IC card, etc., and rewriting the decoding key of a key input unit fitting to the enciphering key of a center side. CONSTITUTION:At a transmission side, 10,000 pairs of enciphering keys KEi and KDi and decoding keys Kn are prepared every month. The Kn is enciphered 5 with a DES system by a key Kmi proper to each terminal, and three pairs of Kns are inputted in a data part and are sent. At a reception side, the same key Ci (Kn) of the said terminal group is sampled and decoded 6 by the KDi read from the IC card 9 by using the Kmi generated already. Next, for example, a random number Rn which scrambles an image and a voice at every field is changed, and the initial value of the random number is transferred, then, an enciphered random number C' (Rn) is decoded by using the Kn at a decoding part 4. And an Rne is set equal to an RnD, and a data or a video and the voice is scrambled by an EXOR both in the decoding and encipherment.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、情報処理に於ける情報の暗号化、特にセンタ
ーから端末への一方向の情報伝送系、例えばCATV 
、衛星放送等の有料システムに用いられる暗号化情報処
理方式に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to the encryption of information in information processing, particularly to one-way information transmission systems from a center to a terminal, such as CATV.
, relates to encrypted information processing methods used in pay systems such as satellite broadcasting.

従来の技術 情報を暗号化し送信し、受信側で復号する一般的な例と
して、第2図を参照しながら説明する(例えば、−松信
監修「データ保護と暗号化の研究」第63頁図1−27
)。第4図に示す方式はMIX方式と呼ばれ、送信側で
平文Pを暗号化部201で暗号化するための鍵Kを作成
し、受信者が公開しているR3A方式の暗号化鍵に8を
用いて鍵Kを暗号化部203で暗号化し、暗号化された
鍵C,を受信側へ伝送する。受信側では、R3A方式の
復号化鍵KDを用いて復号化鍵204で鍵OKを復号し
、DES方式の鍵Kを得る。送信側では鍵Kが受信側に
正しく受取られたことを確認3へ゛ してから、鍵Kを用いてDES方式により平文Pを暗号
化部201で暗号化し、暗号文Cを伝送する。受信側で
は、既に得ている鍵Kを用いて暗号文Cを復号化鍵20
2を復号化し、平文Pを得る。
A general example of encrypting and transmitting conventional technical information and decrypting it on the receiving side will be explained with reference to Figure 2 (for example, Figure 1, ``Research on Data Protection and Encryption'', supervised by Matsunobu, p. 63). -27
). The method shown in FIG. 4 is called the MIX method, in which a key K for encrypting plaintext P in the encryption unit 201 is created on the sender side, and 8 The encrypting unit 203 encrypts the key K using the key C, and transmits the encrypted key C to the receiving side. On the receiving side, the key OK is decrypted using the decryption key 204 using the R3A decryption key KD to obtain the DES key K. On the sending side, after confirming that the key K has been correctly received by the receiving side (step 3), the encryption unit 201 encrypts the plaintext P using the key K using the DES method, and transmits the ciphertext C. On the receiving side, the ciphertext C is decrypted using the already obtained key K.
2 is decrypted to obtain plaintext P.

以上が第4図の動作の概要であり、この方式を一方面ア
ドレッサプル0ATV或は衛星放送に適用した場合を考
えると、暗号化鍵に、と復号化鍵KDの組合せが端末の
数だけ必要となり、鍵Kを各端末へ配送するのに長時間
を必要とする。又、K8とに、を秘密の鍵としても、時
間は同じだけ必要となる。又、全端末共通のに、、に、
とすれば1台で盗聴された時、全端末で盗聴されるとい
う影響が生じる。或はKを固定にしても1台で盗聴され
れば全端末で盗聴される。これらの危険を防ぐには鍵を
二重にして送受する事が考えられる。
The above is an overview of the operation shown in Fig. 4. When this method is applied to one-sided address pull-0 ATV or satellite broadcasting, the combinations of encryption key and decryption key KD are required for the number of terminals. , it takes a long time to deliver the key K to each terminal. Also, even if K8 is used as the secret key, the same amount of time is required. Also, common to all terminals...
If this is the case, if one device is wiretapped, all devices will be wiretapped. Alternatively, even if K is fixed, if one device is wiretapped, all terminals will be wiretapped. To prevent these dangers, it is possible to use duplicate keys for sending and receiving.

発明が解決しようとする問題点 しかしながら、各端末毎の鍵(以下K。、と記す)は、
端末の数だけ用いないと安全性が確保できない。従って
、従来の構成では以下の問題点を有していた。
Problems to be Solved by the Invention However, the key for each terminal (hereinafter referred to as K.) is
Security cannot be ensured unless as many terminals are used. Therefore, the conventional configuration has the following problems.

(1)多数の端末へ復号化鍵を安全に配送する為に長時
間を要しだ。例えば、TV倍信号1フイールド毎に1端
末をアクセスすると、毎分3600端末、1日で518
.4万端末となり、日本全国3000万世帯加入と考え
ると、約6日間必要となる。従って、1日に3000万
端末をアクセスするには1フイールドに6端末をアクセ
スする必要がある。即ち、早く全端末をアクセスするに
は、多量の端末アドレスを短時間で送る必要がある。
(1) It takes a long time to safely deliver the decryption key to a large number of terminals. For example, if one terminal is accessed for every field of TV multiplication signal, 3,600 terminals will be accessed per minute, and 518 terminals will be accessed per day.
.. Considering that there will be 40,000 terminals and 30 million households across Japan have subscribed, it will take about 6 days. Therefore, in order to access 30 million terminals in one day, 6 terminals need to access one field. That is, in order to quickly access all terminals, it is necessary to send a large number of terminal addresses in a short time.

(2)各端末毎に固有の鍵Kmiを割当る場合、ICカ
ード等で料金情報と、Kmiの下で働く鍵Kwを配送す
る場合、短期にICカードの書替、新規発行が集中すれ
ば、これらを管理するCPUが処理できなくなる。例え
ば料金のICカードが毎月切替えられるものとし月末の
3日間で30Q○万枚を書替えるものとし、ICカード
発売窓口が12時間営業とすれば、4フイールドで4端
末を処理すればよく、(12時間で1037万端末)1
枚のカードを1/240秒即ち4 m5elcで処理で
きればよい。しかし現実には、人間が介在してキーボー
ドを叩くので回線の専有時間が長くなり実用的ではなく
、全国に数カ所〜十カ所の大型CPUによる処理センタ
ーが必要となる。
(2) When assigning a unique key Kmi to each terminal, when delivering fee information and the key Kw that works under Kmi using an IC card, etc., when rewriting and issuing new IC cards are concentrated in a short period of time. , the CPU that manages them becomes unable to process them. For example, if the IC card charge is changed every month, and 30Q○ million cards are to be rewritten in the last three days of the month, and the IC card sales counter is open 12 hours, it is only necessary to process 4 terminals in 4 fields. 10.37 million devices in 12 hours) 1
It is sufficient if one card can be processed in 1/240 seconds, that is, 4 m5elc. However, in reality, humans are involved in typing on the keyboard, which increases the amount of time dedicated to the line, which is impractical, and requires several to ten processing centers with large CPUs across the country.

本発明は上記問題点に鑑み、実質的に解読が不可能で盗
聴できず、かつ経済的な暗号化情報の送受信が可能な暗
号化情報処理方式を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above problems, it is an object of the present invention to provide an encrypted information processing system that is virtually impossible to decrypt, cannot be intercepted, and is capable of economically transmitting and receiving encrypted information.

問題点を解決するための手段 本発明は上記目的を達するため、多数の端末を2個以上
の複数の群に分割し、各群へ情報を送出する少なくとも
一つ以上の情報送出センターを有し、情報を暗号化し復
号化するための鍵Kxを一層以上備え、各端末群に群別
に割当てた暗号化鍵に81.復号化鍵Kpiを群の数だ
け別々に備え、暗号化鍵KEiを用いて、鍵Kxを暗号
化し、受信側へ送信しかつ受信側で受信し、復号化鍵K
Diを用いて復号し鍵Kxを各端末群で再生するだめ、
端末側の復号化鍵KDiをICカード等の鍵入力体か6
1\−′ ら端末へ読込ませると共に、センター側の暗号化鍵に8
.の変更に合わせて、鍵入力体の復号化鍵Koiを書替
える構成となっている。
Means for Solving the Problems In order to achieve the above object, the present invention divides a large number of terminals into two or more groups, and has at least one information sending center that sends information to each group. , has one or more keys Kx for encrypting and decoding information, and has an encryption key of 81. The number of decryption keys Kpi is separately provided as many as the number of groups, and the key Kx is encrypted using the encryption key KEi, transmitted to the receiving side, received by the receiving side, and decrypted with the decryption key K.
Di must be used to decrypt and regenerate the key Kx at each terminal group.
Insert the decryption key KDi on the terminal side into a key input device such as an IC card6
1\-' and read it into the terminal, and set the encryption key on the center side to 8
.. The configuration is such that the decryption key Koi of the key input body is rewritten in accordance with the change.

作用 本発明は上記した構成により、端末固有R8A方式の鍵
KDiを、例えばICカードで毎月書替えDESのKm
iを公開鍵で配送し、復号鍵Kmiを得る。これを、例
えば1万組用意し、KD工と送出側の暗号鍵KEiとか
ら復号鍵KIn工を得る。(従ってKmiは1万組とカ
リ、センターからの端末アクセスは、1フイールドにつ
きKm工1個として、3秒で終了する)また、ICカー
ドと端末の間は、信号の送受を決められた暗号化手順(
固定鍵)で行なっておけば解読されない。仮にDESで
鍵の長さを32ビツト(データ28ピツト)としておく
と平均解読に4.3年必要とされており、ICカードか
らの入力データの解読は盗聴の意欲を失わせるに十分で
ある。そして端末管理番号と別に、端末認識番号を1万
個用意する事により実質的な端末アドレスを1万個と見
なしてセンターから鍵を配送する。
Effect of the present invention With the above-described configuration, the terminal-specific R8A key KDi is rewritten every month using an IC card, for example, and the DES Km
Distributes i using a public key and obtains a decryption key Kmi. For example, 10,000 sets of these are prepared, and the decryption key KIn is obtained from the KD key and the sending-side encryption key KEi. (Therefore, Kmi is 10,000 pairs, and terminal access from the center is completed in 3 seconds with 1 Km per field.) Also, between the IC card and the terminal, a predetermined code is used to send and receive signals. conversion procedure (
If you use a fixed key), it will not be decrypted. If the key length in DES were set to 32 bits (28 data bits), it would take an average of 4.3 years to decode the data, which is enough to discourage eavesdropping on the input data from the IC card. . Then, by preparing 10,000 terminal identification numbers in addition to the terminal management number, the key is delivered from the center by considering the actual terminal addresses as 10,000.

実施例 以下本発明の一実施例について図面を参照し々から説明
する。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図は、一実施例として衛星放送の有料放送システム
について本発明を適用した場合を示すものである。第1
図に於て、1.3,5.7は送信側即ち放送局(地上局
)側にある装置の暗号化部および暗号化鍵であり、2,
4,6,8.9は受信側の端末の復号化鍵およびICカ
ードである。
FIG. 1 shows a case where the present invention is applied to a paid broadcasting system for satellite broadcasting as an embodiment. 1st
In the figure, 1.3 and 5.7 are the encryption unit and encryption key of the device on the transmitting side, that is, the broadcasting station (ground station) side;
4, 6, 8.9 are the decryption key and IC card of the terminal on the receiving side.

尚、第3図は端末の具体的−構成例を示すもので、タイ
マー21.プログラムROM22 、中央処理装置23
.暗号化復号化鍵24からなっている。
Incidentally, FIG. 3 shows a specific example of the configuration of the terminal, in which the timer 21. Program ROM 22, central processing unit 23
.. It consists of an encryption/decryption key 24.

全体のシステム中、本発明に関係する部分について述べ
る。第1図で、Pは暗号化されていない情報であり、映
像、音声及び有料放送の各種情報の一部又は全部である
。映像、音声は日本の衛星放送の規格で送られるものと
し、各種情報は、第2図のφ、に示すVBLを用いるか
、又はφ2の音声のデータチャンネルを用いる。ここで
は簡単なため、φ2のデータチャンネルを用いるものと
する。音声をBモードで送ると、データ容量は240K
bpsである。パケット構成でデータを送受するものと
すれば、ヘッダーに16ビツト、データに19oビツト
、訂正用に82ビツトの計288ビット構成で1パケツ
トとなシ、これをφ1のVBL中の1Hに重畳し、文字
放送の規格に合わせ、5.73Mビット秒で送受できる
事は云うまでもない。データ190ビツト、訂正82ビ
ツトなら文字放送のBEST方式の誤り訂正が行なえ、
1パケット当り8ビツト以下のバースト誤りは訂正され
る。この方式ではデータの伝送は1パケット当り190
ビツトである。仮に端末へ鍵を配送する為のパケットと
各種情報伝送用パケットの2種類を用いるものとし、各
種情報用パケットは毎秒2回、5パケツトとし、これを
5連送して多数決をとるものとすれば、毎秒2×6×5
−60パケツトが情報用パケットとなり、各端末用鍵伝
送バケットは 833(24000÷288=833)−9、− 60=783パケツト となる。第1図でKmiを暗号化部5→復号化鍵6間は
公開鍵で送るものとする。公開鍵で、全端末の復号鍵K
Eiが(di、ni)送出側の暗号鍵が(ex、nx)
とする時、毎月に、1(dx、nx)、(ei。
The parts of the entire system that are related to the present invention will be described. In FIG. 1, P is unencrypted information, which is part or all of various information such as video, audio, and paid broadcasting. It is assumed that video and audio are sent in accordance with Japanese satellite broadcasting standards, and for various information, the VBL shown in φ in FIG. 2 or the audio data channel φ2 is used. Here, for simplicity, it is assumed that the data channel of φ2 is used. When sending audio in B mode, the data capacity is 240K.
bps. If data is to be sent and received in a packet configuration, one packet will have a total of 288 bits: 16 bits for the header, 190 bits for data, and 82 bits for correction, and this will be superimposed on 1H in the VBL of φ1. Needless to say, it can be transmitted and received at 5.73 Mbits per second, in accordance with the teletext standard. With 190 bits of data and 82 bits of correction, error correction using the BEST method for teletext can be performed.
Burst errors of 8 bits or less per packet are corrected. In this method, data transmission is 190 times per packet.
It's bit. Assume that two types of packets are used: packets for delivering keys to terminals and packets for transmitting various information, and the packets for various information are 5 packets twice per second, and these are sent 5 times in a row to obtain a majority decision. For example, 2×6×5 per second
-60 packets are information packets, and the key transmission bucket for each terminal is 833 (24000÷288=833)-9, -60=783 packets. In FIG. 1, it is assumed that Kmi is sent between the encryption unit 5 and the decryption key 6 using a public key. The public key is the decryption key K for all terminals.
Ei is (di, ni) and the sender's encryption key is (ex, nx)
Then, every month, 1(dx, nx), (ei.

nl)を変更し、1万組(x−1〜1ooQo)用意す
ればよい。暗号の強度を強くするため、BESの鍵に!
l1i64ビットに更に一部パターンで0又は1を付加
して、100桁の数値に変換し、これをに、iで暗号化
する。従って、扱うデータ量は100桁の数値を想定し
、1アドレス当り400ビツト(数字をBCDで扱う)
必要になる。1パケツト190ビツト中制御用に8ビツ
ト、アドレスに14ビツト割当ると、168ビツトが残
る。従って3パケツトで、1つのC(Klni)が送れ
る。故に、783−73=261/秒でアクセスでき、
約40秒で全端末へC(Kmi)を配送できる。同様に
Kmiで暗号化Knも約40秒で送れる。但し、Knを
4o○ビツトとした時であシ、KnをDESの鍵64ピ
ットにすれば、3図φ3に示す如く、1パ1 o へ−
7 ケラトに2端末分送れるので783 X 2=1566
/秒でアクセスでき約6秒で1万端末群をアクセスでき
る。約12Kmiを送るパケットと、Knを送るパケッ
トをそれぞれ1万端末群に対してアクセスすれば約46
秒で、全端末群にKmよとKnを配送できる。このKm
よとKnの受信処理は例えば毎月1回だから、ソフト処
理で両方合わせて1分程度かかっても支障はない。
nl) and prepare 10,000 sets (x-1 to 1ooQo). To strengthen the strength of the encryption, use it as the key to BES!
Add 0 or 1 in a partial pattern to l1i64 bits to convert it into a 100-digit number, and then encrypt this with i. Therefore, the amount of data handled is assumed to be 100 digits, and 400 bits per address (numbers are handled in BCD).
It becomes necessary. Of the 190 bits in one packet, 8 bits are allocated for control and 14 bits are allocated to the address, leaving 168 bits. Therefore, one C (Klni) can be sent in three packets. Therefore, it can be accessed at 783-73=261/sec,
C (Kmi) can be delivered to all terminals in about 40 seconds. Similarly, Kmi can also send encrypted Kn in about 40 seconds. However, if Kn is set to 4 o○ bits, and Kn is set to 64 pits of the DES key, as shown in Figure 3 φ3, 1 part 1 o -
7 Since you can send 2 terminals to Kerat, 783 x 2 = 1566
/second, and can access 10,000 terminals in about 6 seconds. If a packet sending approximately 12 Kmi and a packet sending Kn are accessed to a group of 10,000 terminals, approximately 46
Km and Kn can be delivered to all terminals in seconds. This Km
Since the reception processing for YotoKn is performed once a month, for example, there is no problem even if the software processing takes about one minute in total.

ゆえに、受信者は代金を払って毎月ICカード9を入手
し、カードリーグを含む復号化鍵8へICカード9を挿
入すれば、いつでも1分以内に暗号化された情報を解読
し、正常な映像音声を楽しむ事ができる。暗号の強度を
考えると、K、1とKllが28桁でも、解読に平均4
.3年と云われている。KD、とKEiとを一組として
毎月変更すれば解読は実質的に不可能である。
Therefore, if the recipient pays the price and obtains the IC card 9 every month, and inserts the IC card 9 into the decryption key 8 containing the card league, the recipient can decrypt the encrypted information at any time within one minute and make it normal. You can enjoy video and audio. Considering the strength of the cipher, even if K,1 and Kll are 28 digits, it takes an average of 4 to decode it.
.. It is said to be 3 years. If KD and KEi are changed as a set every month, decoding is virtually impossible.

以下第1図と共に動作の概要を述べる。送出側では、暗
号化鍵に81とKDi(各100桁整数、400ビツト
)を毎月1万組用意する。又、解読用当月鍵Knも一万
組用意する。、Knを64ピッ11 ・\ 2 トで構成し、KTn工によりKnをDESで暗号化し、
第2図φ2のデータ部DMの中へφ、の如<Knを3組
入れて送出する。即ち、アドレスは暗号化せず鍵1Kn
のみKmiで暗号化C1(Kn)の形でのせて送る。受
信側では、ICカードから読込んだKpiで既に作成済
のKmiを用いて当該端末群アドレスiの同じ鍵C1(
Kn)  を抜取り復号する。
An outline of the operation will be described below with reference to FIG. On the sending side, 10,000 sets of 81 and KDi (each 100-digit integer, 400 bits) are prepared as encryption keys every month. In addition, 10,000 pairs of current month keys Kn for decoding are also prepared. , Kn is composed of 64 bits, Kn is encrypted with DES by KTn engineer,
Three sets of φ, such as <Kn, are inserted into the data portion DM of φ2 in FIG. 2 and sent. In other words, the address is not encrypted and the key is 1Kn.
Only Kmi is sent in the form of encrypted C1 (Kn). On the receiving side, the same key C1(
Kn) is sampled and decoded.

第2図のφ3に示す如く、アドレス、鍵の位置をパケッ
ト内で固定しておけば、1の照合は容易に行なえる。又
、受信側ではDESの復号をソフト処理してもよい。(
送出側は、多数のKnlを用いてKnを次々暗号化する
ため、)・−ドロシック、即ちICの使用が望ましいが
、受信側では、1回復号できればよいから、前述の1分
(Knだけなら6秒)で正規の映像、音声が得られる。
As shown at φ3 in FIG. 2, if the address and key position are fixed within the packet, 1 verification can be easily performed. Further, on the receiving side, DES decoding may be performed by software processing. (
Since the sending side encrypts Kn one after another using a large number of Knl, it is preferable to use )-drossic, that is, IC, but on the receiving side, it is only necessary to decrypt once, so the above-mentioned 1 minute (if only Kn is used) Regular video and audio can be obtained in 6 seconds).

DES復号時間が数秒かかっても全部で10秒程度で復
号できる。復号化鍵6の復号回路でC1(Kn)を復号
するとKnが得られる。Knは今月の復号鍵である。次
に、比較的短時間、例えば1フイールド(約16.7m
s  )毎に画像、音声をスクランブルする乱数Rnを
変化させるものとし、その乱数の初期値例えば16ピツ
ト(この時2−1の乱数、即ちPN雑音)を送受し、復
号化鍵4で、Knを用いて暗号化された乱数C’  (
Rn)を復号する。
Even if DES decoding takes several seconds, it can be decoded in about 10 seconds in total. When C1(Kn) is decrypted by the decryption circuit using the decryption key 6, Kn is obtained. Kn is this month's decryption key. Next, for a relatively short period of time, for example, one field (approximately 16.7 m)
The random number Rn for scrambling images and audio is changed every time s), and the initial value of the random number, for example, 16 pits (in this case, a random number of 2-1, that is, PN noise) is sent and received, and with the decryption key 4, Kn A random number C' (
Rn).

Rn6−Rnoとし、暗号化、復号化共EXORをとる
方式で、データ或は映像、音声をスクランブルし、デス
クランブルできる。映像については、ライン単位のラン
ダム反転成は1ラインより狭い幅の各部分のランダム反
転等を行なうことにより暗号化でき、復号化鍵2でRn
DとEXORを形成し、元の映像信号を得る。音声はP
CMであれば、容易に暗号化部1でRneで暗号化し、
復号化鍵2でRnl1lで復号化できる。以上の動作に
於て、Knが判らない時は、Rnを発生するロジックを
作っても、初期値が2−1通シあり、16−7 m56
0毎に変化するので盗聴視は殆ど不可能である。偶然1
6.7 m860間だけ正規の映像、音声が得られるの
みである。KnをDESの32ビツトで構成しておけば
、毎月変化するので、実質的に解読できない。次にIC
カードと端末のカードリーダー13 ・ との間の信号のやり取りをDESで行ない復号化鍵8を
マイクロプロセッサ−で行ない、DESの鍵(端末群毎
に共通の鍵)Kciを64ビツトで構成しておけば、解
読は不可能である。Kciのデータをマイコンと同一の
チップ上に形成しておけば読出す事は実質的に不可能で
ある。K、i、Kn、RnをすべてDESとすればマイ
コンのソフトは共通でよい。ICカードからのデータの
読み込みは、Knが変更される前でも後でもよく、第3
図のタイマー21で時間管理してもよく、又、パケット
で送られて来る制御信号中のKey変更信号で読込んで
もよい。第3図の中央処理装置23.プログラムROM
(RAMでもよい)22により、ICカード9から読込
んだKDlを一時的にメモリし、月単位で鍵が変更にな
った時、KゎiでK。、を解読すればよい。このような
鍵の管理はタイマー21゜中央処理装置23.プログラ
ムROM22の組合せで容易に行なえる。
Data, video, and audio can be scrambled and descrambled by setting Rn6-Rno and using EXOR for both encryption and decryption. As for video, random inversion generation in line units can be encrypted by performing random inversion of each part narrower than one line, and Rn with decryption key 2.
EXOR is formed with D to obtain the original video signal. The audio is P
If it is a CM, the encryption unit 1 can easily encrypt it with Rne,
It can be decrypted with Rnl1l using decryption key 2. In the above operation, if Kn is not known, even if you create a logic to generate Rn, the initial value will be 2-1 times, 16-7 m56
Since it changes every 0, eavesdropping is almost impossible. coincidence 1
Regular video and audio can only be obtained for 6.7 m860. If Kn is composed of 32 bits of DES, it changes every month and is virtually impossible to decipher. Next, I.C.
The exchange of signals between the card and the card reader 13 of the terminal is performed using DES, the decryption key 8 is performed using a microprocessor, and the DES key (a common key for each terminal group) Kci is composed of 64 bits. Otherwise, it will be impossible to decipher. If the Kci data is formed on the same chip as the microcomputer, it is virtually impossible to read it. If K, i, Kn, and Rn are all DES, the microcomputer software may be the same. Data can be read from the IC card either before or after the Kn is changed.
The time may be managed using the timer 21 shown in the figure, or it may be read using a key change signal in a control signal sent in a packet. Central processing unit 23 in FIG. Program ROM
(RAM may also be used) 22 temporarily stores the KDl read from the IC card 9, and when the key is changed on a monthly basis, K is pressed with K. , just decipher. Such keys are managed by the timer 21 and the central processing unit 23. This can be easily done by combining the program ROM 22.

以」二の如く構成する事により実質的に解読不可能でか
つ経済的な暗号化情報の送受システムが形14へ 成できる。
By configuring as described above, a virtually undecipherable and economical encrypted information transmission/reception system can be realized in the form 14.

発明の効果 以上のように本発明によれば以下の優れた効果を奏する
ことができるものである。
Effects of the Invention As described above, according to the present invention, the following excellent effects can be achieved.

(1) ICカードは端末毎に別々にしなくても、端末
群単位で1万(或は1千、IQ万)種類でよいので、セ
ンターからの端末アクセス時間が短かい。
(1) The terminal access time from the center is short because there can be 10,000 (or 1,000, IQ, 1,000,000) types of IC cards for each terminal group without having to use separate IC cards for each terminal.

(2)、ICカードに、料金データと当月鍵を解読する
鍵KDiが入っているので、料金を払わない端末は、1
カ月経つと自動的に当月鍵が変化し、ICカード内のK
Diでは解読できなくなる。従って端末強制オフ動作が
不要となる。
(2) Since the IC card contains the charge data and the key KDi for decoding the current month's key, terminals that do not pay charges can only use 1
After a month has passed, the current month's key will automatically change, and the key in the IC card will change automatically.
Di cannot decipher it. Therefore, there is no need to force the terminal to turn off.

(3)ICカードの情報は簡単には読出せ々い構成にで
きる。もし、ICカードを分解して、内容を盗視しても
端末が1万種類あるので、他の端末に上記盗視情報に基
づく不法ICカードを使える確率は1万分の1であり、
又、同一群の端末を多数入手する事は製造者と共同で考
えなければ実現不可能である。従って、盗聴に対し十分
な安全性がある。
(3) The information on the IC card can be configured to be easily readable. Even if you disassemble an IC card and spy on its contents, there are 10,000 different terminals, so the probability that you can use the illegal IC card based on the above information on other terminals is 1 in 10,000.
Furthermore, it is impossible to obtain a large number of terminals of the same group without considering it jointly with the manufacturer. Therefore, there is sufficient security against eavesdropping.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における暗号化情報処理方式
を示すブロック図、第2図は同方式に用いられるデータ
構成を示すデータ配列図、第3図は同端末の構成例を示
すブロック図、第4図は従来の暗号化情報処理方式を示
すブロック図である。 1.3.5・・・・・・暗号化部、7・・・・・・暗号
化鍵、2゜4.6.8・・・・・・復号化鍵、9・・・
・・・ICカード。
Fig. 1 is a block diagram showing an encrypted information processing method in an embodiment of the present invention, Fig. 2 is a data arrangement diagram showing the data structure used in the method, and Fig. 3 is a block diagram showing an example of the configuration of the terminal. 4 are block diagrams showing a conventional encrypted information processing method. 1.3.5...Encryption section, 7...Encryption key, 2゜4.6.8...Decryption key, 9...
...IC card.

Claims (2)

【特許請求の範囲】[Claims] (1)多数の端末を2個以上の複数の群に分割し、各群
へ情報を送出する少なくとも一つ以上の情報送出センタ
ーとからなり、情報を暗号化し復号化するための鍵K_
xを一層以上備え、各端末群に群別に割当てた暗号鍵K
_E_i、復号化鍵K_D_iを群の数だけ別々に備え
、前記暗号化鍵K_E_iを用いて、前記鍵K_xを暗
号化して受信側へ送信しかつ受信側で受信し、復号化鍵
K_D_iを用いて復号し鍵K_xを各端末群で再生す
るため、端末側の復号化鍵K_D_iをICカード等の
書替可能なメモリを包含した鍵入力体から端末へ読込ま
せると共に、センター側の暗号化鍵K_E_iの変更に
合わせ、前記鍵入力体内の復号化鍵K_D_iを書替え
ることを特徴とする暗号化情報処理方式。
(1) A large number of terminals are divided into groups of two or more, and consists of at least one information transmission center that sends information to each group, and a key K_ for encrypting and decoding information.
An encryption key K that has one or more layers of x and is assigned to each terminal group according to group.
_E_i, decryption keys K_D_i are separately provided as many as the number of groups, and the encryption key K_E_i is used to encrypt the key K_x and transmitted to the receiving side, and the receiving side receives it, and the decryption key K_D_i is used to encrypt the key K_x. In order to reproduce the decrypted key K_x at each terminal group, the decryption key K_D_i on the terminal side is read into the terminal from a key input device including a rewritable memory such as an IC card, and the encryption key K_E_i on the center side is read into the terminal. An encrypted information processing method characterized in that the decryption key K_D_i in the key input body is rewritten in accordance with a change in the key input body.
(2)暗号化鍵K_E_iと、復号化鍵K_D_iを共
通にした事を特徴とする特許請求の範囲第1項記載の暗
号化情報処理方式。
(2) The encrypted information processing method according to claim 1, characterized in that the encryption key K_E_i and the decryption key K_D_i are made common.
JP62053348A 1987-03-09 1987-03-09 Encryption information processing method Expired - Lifetime JP2574279B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62053348A JP2574279B2 (en) 1987-03-09 1987-03-09 Encryption information processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62053348A JP2574279B2 (en) 1987-03-09 1987-03-09 Encryption information processing method

Publications (2)

Publication Number Publication Date
JPS63219244A true JPS63219244A (en) 1988-09-12
JP2574279B2 JP2574279B2 (en) 1997-01-22

Family

ID=12940268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62053348A Expired - Lifetime JP2574279B2 (en) 1987-03-09 1987-03-09 Encryption information processing method

Country Status (1)

Country Link
JP (1) JP2574279B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990009009A1 (en) * 1989-01-24 1990-08-09 Matsushita Electric Industrial Co., Ltd. Data carrier and data communication apparatus using the same
JPH04199980A (en) * 1990-11-29 1992-07-21 N T T Data Tsushin Kk Image processor using ic card
JPH07123375A (en) * 1993-10-22 1995-05-12 Matsushita Electric Ind Co Ltd Character graphic transmission system
JP2003521820A (en) * 1997-08-01 2003-07-15 サイエンティフィック−アトランタ, インコーポレイテッド Conditional access system
JP2006527512A (en) * 2003-02-12 2006-11-30 ドイチェ ポスト アーゲー Method for proof of validity of digital fee payment note and apparatus for its execution

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5934741A (en) * 1982-07-23 1984-02-25 オ−ク・インダストリイス・インコ−ポレ−テツド Multilayer cryptographic system for broadcasting cryptographic information
JPS61114680A (en) * 1984-11-08 1986-06-02 Toshiba Corp Broadcasting receiving set

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5934741A (en) * 1982-07-23 1984-02-25 オ−ク・インダストリイス・インコ−ポレ−テツド Multilayer cryptographic system for broadcasting cryptographic information
JPS61114680A (en) * 1984-11-08 1986-06-02 Toshiba Corp Broadcasting receiving set

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990009009A1 (en) * 1989-01-24 1990-08-09 Matsushita Electric Industrial Co., Ltd. Data carrier and data communication apparatus using the same
US5227613A (en) * 1989-01-24 1993-07-13 Matsushita Electric Industrial Co., Ltd. Secure encrypted data communication system having physically secure ic cards and session key generation based on card identifying information
JPH04199980A (en) * 1990-11-29 1992-07-21 N T T Data Tsushin Kk Image processor using ic card
JPH07123375A (en) * 1993-10-22 1995-05-12 Matsushita Electric Ind Co Ltd Character graphic transmission system
JP2003521820A (en) * 1997-08-01 2003-07-15 サイエンティフィック−アトランタ, インコーポレイテッド Conditional access system
JP2006527512A (en) * 2003-02-12 2006-11-30 ドイチェ ポスト アーゲー Method for proof of validity of digital fee payment note and apparatus for its execution

Also Published As

Publication number Publication date
JP2574279B2 (en) 1997-01-22

Similar Documents

Publication Publication Date Title
JP4633202B2 (en) Method for providing secure communication between two devices and application of this method
CN1655495B (en) System and method for security key transmission with strong pairing to destination client
JP3015175B2 (en) Terminal function updating method and device for maintaining secure communication network
US7577846B2 (en) Mechanism of matching between a receiver and a security module
US5485577A (en) Method and apparatus for incremental delivery of access rights
US6504930B2 (en) Encryption and decryption method and apparatus using a work key which is generated by executing a decryption algorithm
EP1119131B1 (en) Method and apparatus for encrypting contents information
CN1992589B (en) Methods of scrambling and descrambling units of data
JPH0816824B2 (en) Key security system and descrambler
JPH10164053A (en) Verification method/system for data by scrambling
JPH06125554A (en) Protective method for encoding of sunscribed satellite television
US7881478B2 (en) Method for controlling access to an encrypted programme
JP4043669B2 (en) Related information processing device in conditional access system
JPH04150333A (en) Broadcast reception control system
EP0448534A2 (en) Method and apparatus for encryption/decryption of digital multisound in television
AU750042B2 (en) Method and apparatus for conveying a private message to selected members
JP4740859B2 (en) Portable safety module pairing
JPH01248891A (en) Encipherment key delivery system
JPS63219244A (en) Enciphered information processing system
GB2151886A (en) Conditional-access broadcast transmission
JPS63220630A (en) Terminal control system
JP2001285820A (en) System and method for storage/reproduction/charging
JPH11196083A (en) Method for transferring scramble key
CA2250833C (en) Method for providing a secure communication between two devices and application of this method
JP2001251290A (en) Data transmission system and method for distributing and storing and reproducing contents