JPS63218928A - Light guide - Google Patents

Light guide

Info

Publication number
JPS63218928A
JPS63218928A JP62051693A JP5169387A JPS63218928A JP S63218928 A JPS63218928 A JP S63218928A JP 62051693 A JP62051693 A JP 62051693A JP 5169387 A JP5169387 A JP 5169387A JP S63218928 A JPS63218928 A JP S63218928A
Authority
JP
Japan
Prior art keywords
nonlinear optical
loss
photon
exciton
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62051693A
Other languages
Japanese (ja)
Other versions
JPH0786627B2 (en
Inventor
Tsutomu Yanagawa
勉 柳川
Yoshihisa Yamamoto
喜久 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP5169387A priority Critical patent/JPH0786627B2/en
Publication of JPS63218928A publication Critical patent/JPS63218928A/en
Publication of JPH0786627B2 publication Critical patent/JPH0786627B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To increase a nonlinear optical constant without having a loss by doping fine particles of a specific semiconductor, metal or metal oxide as a nonlinear optical medium to the core of an optical fiber. CONSTITUTION:The fine particles of such semiconductor, metal or metal oxide with which one photon transition does not take place at the wavelength of the light to be used and the multiphoton process of >=2 photons takes place near a band gap energy value or takes place near an exciton absorption energy value are doped in the core of the optical fiber. Since the absorption level by one photon process does not exist, the emphasis of the nonlinear optical constant by the two photon process is realized without receiving an excess loss in the fiber. The nonlinear optical constant is thereby increased without increasing the loss by linear absorption in the wavelength region of the light to be used.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光の非線形現象そのものをひき起こす非線形
光学定数の実効的な改善をもたらすものであり、非線形
現象の長距離にわたる伝搬を要する分野、及び非線形現
象の相互作用長を大きくとりたい場合に特に有効となる
光ファイバや基板上に形成された薄膜状光導波路等の光
導波路に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention brings about an effective improvement of the nonlinear optical constant that causes the nonlinear phenomenon of light itself, and is applicable to fields where nonlinear phenomena require propagation over long distances. The present invention relates to optical waveguides such as optical fibers and thin film optical waveguides formed on substrates, which are particularly effective when it is desired to increase the interaction length of nonlinear phenomena.

〔従来の技術および問題点〕[Conventional technology and problems]

光ファイバ等の光導波路における光の非線形効果を実効
的に高めるためには、■非線形光学定数の大きい物質を
用いる、■非線形光学媒質との相互作用長を大ぎくする
、■光のビーム径(光と非線形光学媒質との相互作用断
面積)を小さくする、■非線形光学媒質に入射する光の
強度を大きくする、等が有効である。
In order to effectively increase the nonlinear effect of light in optical waveguides such as optical fibers, it is necessary to: ■ use a material with a large nonlinear optical constant, ■ increase the interaction length with the nonlinear optical medium, and ■ change the beam diameter of light ( It is effective to reduce the cross-sectional area of interaction between light and the nonlinear optical medium (1) to increase the intensity of the light incident on the nonlinear optical medium.

従来、非線形光学媒質には、前記■の非線形光学定数そ
のものが大きいGe、 SL 、 GaAS、 InS
b。
Conventionally, nonlinear optical media include Ge, SL, GaAS, and InS, which have a large nonlinear optical constant as described in (2) above.
b.

InAs、 Cd3 、 CdSe、 HgCdTe、
 Cd3Se等の半導体をドープしたガラス板が、■、
■の例としては、コア径が小さく長距離導波が可能な通
常の単一モード光ファイバが、それぞれ■の人出力レー
ザ(YAG、Ar、にr1色素レーザ等)とともに用い
られていた。最近では、前記■〜■を同時に満たす媒質
として、ファイバラマンレーザに代表されるような光ア
クティブ線路の分野で、Nd” 、 Er”°等のイオ
ンをドープした光ファイバが試作されはじめている。と
ころが、■では非線形光学定数が大きいもののくバンド
ギ17ツブエネルギー値近傍の波長で、χ  〜10 
’HKSに及ぶものすら存在する)、光の損失が大きく
、相互作用長を大ぎくすることはできない。光ファイバ
については、例えば1,5μm帯において−0,2dB
 / kのものが実現されており、この点右利であるが
、χ(3)〜10−338KSと極端に小さい非線形光
学定数を有しているにすぎない。このため前述のNds
” 、 [r3+をドープすることが考案されたが、残
念なことには、これらには光ファイバの最小損失波長域
が(1,3μm、  1.5μm帯)におけるドープイ
オンのかなり大きな吸収が存在しており、これが大きな
損失となる。したがって、このような光ファイバを用い
て、非線形現象の相互作用長、伝lI長を大きくするこ
とは事実上不可能である。
InAs, Cd3, CdSe, HgCdTe,
A glass plate doped with a semiconductor such as Cd3Se,
As an example of (2), an ordinary single mode optical fiber with a small core diameter and capable of long-distance waveguiding was used together with a human output laser (YAG, Ar, R1 dye laser, etc.). Recently, optical fibers doped with ions such as Nd'' and Er''° have begun to be prototyped as a medium that simultaneously satisfies the above-mentioned conditions (1) to (2) in the field of optical active lines such as fiber Raman lasers. However, in ■, although the nonlinear optical constant is large, at wavelengths near the bandgi energy value, χ ~ 10
'HKS even exists), the loss of light is large, and the interaction length cannot be greatly increased. For optical fibers, for example, -0.2 dB in the 1.5 μm band
/k has been realized, which is advantageous in this respect, but it only has an extremely small nonlinear optical constant of χ (3) ~ 10-338 KS. Therefore, the aforementioned Nds
”, [r3+ doping was devised, but unfortunately, there is a fairly large absorption of doped ions in the optical fiber's minimum loss wavelength range (1.3 μm, 1.5 μm band). This results in a large loss.Therefore, it is virtually impossible to increase the interaction length of nonlinear phenomena, the transmission II length, using such an optical fiber.

本発明の目的は、前記従来の問題点を改善することにあ
り、損失を伴わない状態で非線形光学定数の増大を図り
、従来の非線形光学媒質と比較して、相互作用長、伝搬
長を大幅に大きくすることが可能な光ファイバ等の光導
波路を実現することである。
The purpose of the present invention is to improve the above-mentioned conventional problems by increasing the nonlinear optical constant without loss, and significantly increasing the interaction length and propagation length compared to conventional nonlinear optical media. The objective is to realize an optical waveguide such as an optical fiber that can be made large in size.

(問題点を解決するための手段) 一般にエネルギ一単位に共鳴する波長付近では、比較的
大きな非線形光学定数が得られることが知られている。
(Means for Solving the Problem) It is generally known that a relatively large nonlinear optical constant can be obtained near a wavelength that resonates with one unit of energy.

なお、ここで言うエネルギ一単位とは、原子、イオンの
遷移レベルのことを指すが、半導体の場合には、バンド
ギャップに相当することになる。また、励起子単位、不
純物準位もこれに当たる。
Note that one unit of energy here refers to the transition level of atoms and ions, but in the case of semiconductors, it corresponds to the band gap. This also applies to exciton units and impurity levels.

しかし、このエネルギー準位間の遷移が吸収に寄付する
場合には、光強度に対して損失として作用する。このた
め、例えば10077L〜10/mとい ゛う長距離に
わたる非線形効果を観測したい場合や、相互作用長を大
きくとりたい場合には、吸収を可能な限り小さくしなけ
ればならないという必然性がでてくる。
However, if this transition between energy levels contributes to absorption, it acts as a loss to the light intensity. Therefore, if you want to observe nonlinear effects over long distances, such as 10077L to 10/m, or if you want to increase the interaction length, it is necessary to minimize absorption as much as possible. .

本発明は従来のものと異なり、使用する光の波長域で線
形吸収による損失増加を伴うことなく非線形光学定数の
増大をもたらすものである。特に光ファイバの最小損失
波長域(1,3μm、  1.5μm帯)おいても後述
の実施例のように上記光ファイバが実現できる。
The present invention is different from conventional methods in that it increases the nonlinear optical constant without increasing loss due to linear absorption in the wavelength range of the light used. In particular, even in the minimum loss wavelength range of optical fibers (1.3 μm, 1.5 μm bands), the above optical fiber can be realized as in the embodiments described later.

第1図に1光子過程を伴わない2光子過程のダイヤグラ
ムを示す。ω1.ω2の2つの光子がωりω1+ω2と
なるωとほぼ共鳴状態となっている場合を第1−(a)
図に、ω々2ω1となっている場合を第1−(b)図に
それぞれ示す。半導体においてバンドギャップEaがh
ωに相当する。
Figure 1 shows a diagram of a two-photon process that does not involve a one-photon process. ω1. The case in which two photons of ω2 are almost resonant with ω, where ω is ω1 + ω2, is shown in 1-(a).
In the figure, the case where ω2ω1 is obtained is shown in FIG. 1-(b). In semiconductors, the bandgap Ea is h
Corresponds to ω.

この図ではω1.ω2の1光子過程による吸収レベルが
存在しないため、ファイバ中で過剰損失を受けることな
く、2光子過程による非線形光学定数の強調が実現され
る。励起子・不純物準位をこの2光子過程のレベルとし
て用いる場合には、hωがこの励起子単位・不純物単位
に相当することになる。第2図に、バンドギャップ、励
起子準位の一例を示す。
In this figure, ω1. Since there is no absorption level due to the one-photon process at ω2, enhancement of the nonlinear optical constants due to the two-photon process is achieved without excessive loss in the fiber. When the exciton/impurity level is used as the level of this two-photon process, hω corresponds to the exciton/impurity unit. FIG. 2 shows an example of the band gap and exciton level.

以下、本発明を実施例によりさらに詳しく説明するが、
本発明はこれら実施例に限定されるものではない。
Hereinafter, the present invention will be explained in more detail with reference to Examples.
The present invention is not limited to these examples.

〔実施例1〕 比較的χ  の大きい非線形光学媒質として、半導体微
粒子を光ファイバのコアにドープする。
[Example 1] Semiconductor fine particles are doped into the core of an optical fiber as a nonlinear optical medium with a relatively large χ.

これは1光子過程における共鳴波長では吸収損失がかな
り大きい。(このため、典型的な例としては、2〜3I
IIIIの長さで、60%透過となる。)第2図に半導
体および金属酸化物のバンドギjyツブと励起子単位の
一例が示されている。これらは光ファイバの低損失波長
域(1,0〜1.6μm帯)においては透過性を示すが
、ω夕ω1+ω2となるωに当たる0.5〜0.8μm
帯にバンドギャップ、あるいは、励起子準位を有してい
る。このため、光ファイバの低損失波長域で、1光子過
程による損失としての吸収を受けることなく2光子過程
による非線形光学定数の強調が行なわれることになる。
This is because the absorption loss is quite large at the resonant wavelength in a one-photon process. (For this reason, as a typical example, 2-3I
With a length of III, it becomes 60% transparent. ) FIG. 2 shows an example of a band gear and an exciton unit in semiconductors and metal oxides. These exhibit transparency in the low-loss wavelength range (1.0 to 1.6 μm band) of optical fibers, but at 0.5 to 0.8 μm, which corresponds to ω, which is ω1 + ω2.
It has a band gap or exciton level. Therefore, in the low-loss wavelength region of the optical fiber, the nonlinear optical constant is enhanced by the two-photon process without being absorbed as a loss by the one-photon process.

具体的には、CdS 、 CdSeの混晶であるCd3
  Se11があげられる。これは、3.Seの組成比
(、)を調節することによりCdS 、 CdSeのバ
ンドギャツブの間の任意のエネルギー値にCdSよSe
、Jcのバンドギャップ値を設定できる半導体であり、
60%透過の1光子過程でχ  は10−16〜10−
178KSに達する。これを光ファイバにドープすると
、低損失波長域(0,8μTrL〜1,5μm帯)で1
光子過程に起因する損失を伴なうことなく2光子過程に
よるχ  の増強が実現できる。
Specifically, Cd3, which is a mixed crystal of CdS and CdSe,
Se11 is mentioned. This is 3. By adjusting the Se composition ratio (, ), CdS and Se can be adjusted to an arbitrary energy value between the band gaps of CdS and CdSe.
, Jc is a semiconductor that can set the band gap value,
In a one-photon process with 60% transmission, χ is 10-16 to 10-
It reaches 178KS. When this is doped into an optical fiber, 1
χ can be enhanced by the two-photon process without loss due to the photon process.

〔実施例2〕 2光子過程に用いるエネルギー準位を励起子単位、不純
物準位に設定することも可能であるが、ここでは励起子
準位の例を示す前述のように非線形光学媒質として、1
光子過程の励起子吸収のピークにほぼ共鳴する状態でこ
れらを使用すると、大きい吸収損失を招く。この励起子
に対し、1光子過程で非共鳴であり、2光子過程でほぼ
共鳴するように光の波長を設定すると、吸収損失のない
非線形光学定数の大きい媒質が実現できる。これは2光
子過程での共鳴によりχ  が増強されるためである。
[Example 2] It is also possible to set the energy level used in the two-photon process to be an exciton unit or an impurity level, but here we will show an example of the exciton level as a nonlinear optical medium as described above. 1
If they are used in a state that is approximately resonant with the exciton absorption peak of the photon process, large absorption losses will result. If the wavelength of light is set so that the exciton is non-resonant in the one-photon process and almost resonant in the two-photon process, a medium with no absorption loss and a large nonlinear optical constant can be realized. This is because χ is enhanced due to resonance in the two-photon process.

例えば、第2図に示したように、Cd3 、 CdSe
は 2.54 eV、  1.82 eV付近に、Cd
S。
For example, as shown in FIG. 2, Cd3, CdSe
is around 2.54 eV, 1.82 eV, Cd
S.

5e1−、はこの間の2.04〜2.09 eV付近に
、それぞれ励起子吸収のピークを有している。CdSで
は1.3μTrLYAGレーザと0.77μm(7)半
導体レーザというように、2個の光子のエネルギー和が
第1−(a)図のように、この励起子吸収のピーク付近
にくるように設定できるので、上述の条件を満たすこと
ができる。また、CdS 、 CdSe、 CuCj 
5e1- and 5e1- have exciton absorption peaks in the vicinity of 2.04 to 2.09 eV, respectively. In CdS, the settings are made such as the 1.3 μTrLYAG laser and the 0.77 μm (7) semiconductor laser so that the sum of energy of two photons is near the peak of exciton absorption, as shown in Figure 1-(a). Therefore, the above-mentioned conditions can be satisfied. Also, CdS, CdSe, CuCj
.

CuBrでは、2個の励起子が互いに束縛し合って励起
子分子を構成するので、大きな非線形光学定数が得られ
る。これは、1個の光子が励起子吸収のピークと非共鳴
であっても、第1−(b)図のように、2個の光子が、
励起子分子のレベルとほぼ共鳴する状態が作り出せ、非
線形定数の増強が起こるためである。この励起子分子に
は大きな電子軌道が存在するので、巨大振動子効果が起
こり、特に大きな非線形光学定数が得られる。ファイバ
の低損失波長域で、この効果を利用するにはGaAs。
In CuBr, two excitons bind each other to form an exciton molecule, so a large nonlinear optical constant can be obtained. This means that even if one photon is non-resonant with the exciton absorption peak, two photons, as shown in Figure 1-(b),
This is because a state that almost resonates with the level of exciton molecules can be created, and the nonlinear constant is enhanced. Since this exciton molecule has a large electron orbit, a giant oscillator effect occurs, resulting in a particularly large nonlinear optical constant. GaAs is used to take advantage of this effect in the low-loss wavelength range of fiber.

InP、 CdTe、 CdSe等の利用が有効テアル
Effective materials include InP, CdTe, and CdSe.

ドープする結晶の寸法が100人程入部下(微粒子)の
場合、ω子すイズ効果によって電子の束縛エネルギーが
大きくなり、室温状態でも励起子吸収のピークが観測で
きることがわかっており、これに対しても2光子遷移の
利用により、良質な非線形光学媒質が、実現できる。ざ
らに、ドープ粒子の寸法を制御することにより、励起子
吸収のエネルギー値を制御することができる。
It is known that when the size of the doped crystal is about 100 particles (fine particles), the binding energy of electrons becomes large due to the ω-Size effect, and an exciton absorption peak can be observed even at room temperature. However, by utilizing two-photon transition, high-quality nonlinear optical media can be realized. In general, by controlling the dimensions of the doped particles, the energy value of exciton absorption can be controlled.

〔発明の効果〕 以上説明したように、本発明によれば、所望の光の波長
域で、特に光ファイバの最小損失波長域である1、3μ
m、  1.5μ肌帯で過剰損失がなく、非線形効果の
大きい光ファイバが実現できる。このため、本発明は、
ソリトンレーザ、ソリトン伝送、光パルス圧縮、光子数
の被破壊測定、光子数状態無歪伝送等の非線形光学現象
の長距離にわたる伝搬を要する分野、相互作用長を長く
する必要のある分野、損失が特性劣化に大きな影響を及
ばずような分野に大きな貢献を果たすものである。
[Effects of the Invention] As explained above, according to the present invention, in the desired wavelength range of light, especially in the 1 and 3μ wavelength range, which is the minimum loss wavelength range of optical fibers.
It is possible to realize an optical fiber with a skin band of 1.5μ, no excessive loss, and a large nonlinear effect. For this reason, the present invention
Fields that require long-distance propagation of nonlinear optical phenomena such as soliton lasers, soliton transmission, optical pulse compression, destructive measurement of photon numbers, distortion-free transmission of photon number states, fields that require a long interaction length, and fields that require a long interaction length. This will make a major contribution to fields where it does not have a major effect on characteristic deterioration.

【図面の簡単な説明】[Brief explanation of drawings]

第1−(a)図はω1≠ω2でω2ω1+ω2の2光子
過程のダイヤグラム、第1−(b)図はω1−ω2でω
夕2ω1のダイヤグラム、第2図は半導体、金属酸化物
のバンドギャップ、及び励起子単位を示す図である。 (a) 1.L)=ω+十ω2 (b)  ωz2ωI 第2図 qr バンドキーy+7ア      1冴力□産C子準f立
亀小値(3oOに)
Figure 1-(a) is a diagram of a two-photon process with ω1≠ω2 and ω2ω1+ω2, and Figure 1-(b) is a diagram of a two-photon process with ω1-ω2 and ω
Figure 2 is a diagram showing the band gap of semiconductors and metal oxides, and the exciton unit. (a) 1. L) = ω + 10ω2 (b) ωz2ωI Fig. 2 qr Band key y + 7a 1 Saeki □ Production C child quasi f standing turtle small value (to 3oO)

Claims (1)

【特許請求の範囲】[Claims] 使用する光の波長で1光子遷移が起こらず、2光子以上
の多光子過程がバンドキャップエネルギー値の近傍で起
きるか、あるいは励起子吸収エネルギー値の近傍で起き
るような半導体、金属あるいは金属酸化物の微粒子がド
ープされていることを特徴とする光導波路。
Semiconductors, metals, or metal oxides in which one-photon transition does not occur at the wavelength of the light used, and multiphoton processes of two or more photons occur near the band gap energy value or near the exciton absorption energy value. An optical waveguide characterized in that it is doped with fine particles.
JP5169387A 1987-03-06 1987-03-06 Optical waveguide Expired - Lifetime JPH0786627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5169387A JPH0786627B2 (en) 1987-03-06 1987-03-06 Optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5169387A JPH0786627B2 (en) 1987-03-06 1987-03-06 Optical waveguide

Publications (2)

Publication Number Publication Date
JPS63218928A true JPS63218928A (en) 1988-09-12
JPH0786627B2 JPH0786627B2 (en) 1995-09-20

Family

ID=12893980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5169387A Expired - Lifetime JPH0786627B2 (en) 1987-03-06 1987-03-06 Optical waveguide

Country Status (1)

Country Link
JP (1) JPH0786627B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2689982A1 (en) * 1992-04-13 1993-10-15 Alcatel Nv Optical communication system with optical device protection
US5603772A (en) * 1994-08-16 1997-02-18 Nec Corporation Furnace equipped with independently controllable heater elements for uniformly heating semiconductor wafers
JP2006514711A (en) * 2002-10-02 2006-05-11 スリーエム イノベイティブ プロパティズ カンパニー Multiphoton photosensitization system
JP2006514709A (en) * 2002-10-02 2006-05-11 スリーエム イノベイティブ プロパティズ カンパニー Multiphoton photosensitization method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59133530A (en) * 1983-01-20 1984-07-31 Nippon Telegr & Teleph Corp <Ntt> Waveguide type nonlinear optical element and its manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59133530A (en) * 1983-01-20 1984-07-31 Nippon Telegr & Teleph Corp <Ntt> Waveguide type nonlinear optical element and its manufacture

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2689982A1 (en) * 1992-04-13 1993-10-15 Alcatel Nv Optical communication system with optical device protection
US5603772A (en) * 1994-08-16 1997-02-18 Nec Corporation Furnace equipped with independently controllable heater elements for uniformly heating semiconductor wafers
JP2006514711A (en) * 2002-10-02 2006-05-11 スリーエム イノベイティブ プロパティズ カンパニー Multiphoton photosensitization system
JP2006514709A (en) * 2002-10-02 2006-05-11 スリーエム イノベイティブ プロパティズ カンパニー Multiphoton photosensitization method

Also Published As

Publication number Publication date
JPH0786627B2 (en) 1995-09-20

Similar Documents

Publication Publication Date Title
Saouma et al. Selective enhancement of optical nonlinearity in two-dimensional organic-inorganic lead iodide perovskites
US5115488A (en) Apparatus comprising an all-optical gate
Peacock et al. Wavelength conversion and supercontinuum generation in silicon optical fibers
CN109491012B (en) Tunable light-controlled terahertz wave beam splitter based on photonic crystal
Faris et al. Au coated ZnO/MWCNTs nanocomposites film-induced four-wave-mixing effect for multi-wavelength generation in erbium-doped fiber laser
Wang et al. Tin selenide: A promising black-phosphorus-analogue nonlinear optical material and its application as all-optical switcher and all-optical logic gate
Shen et al. A review of nonlinear applications in silicon optical fibers from telecom wavelengths into the mid-infrared spectral region
Jafari et al. Parameter space exploration in dispersion engineering of multilayer silicon waveguides from near-infrared to mid-infrared
JPS63218928A (en) Light guide
Sirleto et al. Toward an ideal nanomaterial for on-chip Raman laser
Li et al. Tunable, mid-Infrared ultra-narrowband filtering effect induced by two coplanar graphene strips
Zhang et al. Enhanced Kerr nonlinear performance in graphene oxide-coated silicon and silicon nitride waveguides
JP3518604B2 (en) Dopant-doped KTP exhibiting high birefringence suitable for type II phase matching and similar forms
Xie et al. Synchronous slow and fast light based on plasmon-induced transparency and absorption in dual hexagonal ring resonators
Neethish et al. Broad white light supercontinuum generation in Barium Zinc Borate glasses
Okhrimchuk et al. Femtosecond laser writing in the monoclinic RbPb2Cl5: Dy3+ crystal
Vasconcelos Optical nonlinearities in glasses
JP2756509B2 (en) Optical device
Nikonorov et al. Holographic optical components based on photorefractive crystals and glasses: comparative analysis and development prospects
Moss High 3 Rd Order Optical Nonlinear Performance in CMOS Devices Integrated With 2D Graphene Oxide Films
Wang et al. Nonlinear absorption and refraction of Cs3Cu2Br5 perovskite
Moss Frontiers in Optics Washington Sept 2019 GO Paper JTu3A. 92
Shaikh et al. Making silicon emit light using third harmonic generation
Moss Enhancing the third-order optical nonlinear performance in CMOS devices with integrated 2D graphene oxide films
JPS63163434A (en) Optical waveguide