JPS63218906A - Form refractive index bimodulation type waveguide lens and its manufacture - Google Patents

Form refractive index bimodulation type waveguide lens and its manufacture

Info

Publication number
JPS63218906A
JPS63218906A JP5230887A JP5230887A JPS63218906A JP S63218906 A JPS63218906 A JP S63218906A JP 5230887 A JP5230887 A JP 5230887A JP 5230887 A JP5230887 A JP 5230887A JP S63218906 A JPS63218906 A JP S63218906A
Authority
JP
Japan
Prior art keywords
refractive index
waveguide
waveguide lens
lens
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5230887A
Other languages
Japanese (ja)
Other versions
JPH07101246B2 (en
Inventor
Katsuya Fujisawa
藤沢 克也
Yoshihiro Kawatsuki
喜弘 川月
Masao Uetsuki
植月 正雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP62052308A priority Critical patent/JPH07101246B2/en
Publication of JPS63218906A publication Critical patent/JPS63218906A/en
Publication of JPH07101246B2 publication Critical patent/JPH07101246B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/124Geodesic lenses or integrated gratings
    • G02B6/1245Geodesic lenses

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

PURPOSE:To enlarge an angle allowable degree and a wavelength allowable degree, and also, to improve the efficiency by manufacturing each of a recessed part and a projecting part of an uneven structure formed in a waveguide, by materials whose refractive indexes are different, and allowing the respective indexes to have a difference. CONSTITUTION:Each of binary grating elements consisting of a projecting part and a recessed part is constituted of materials whose refractive indexes are different, and these refractive indexes are allowed to have a difference. That is, in a cross section of the uneven structure, a code L denotes length of a waveguide lens, a code (d) denotes a step difference of the uneven structure, and the projecting part refractive index and the recessed part refractive index are denoted as na and nb, respectively. Accordingly, as for waveguide lenses 10, 20 of a Fresnel type and a Bragg grating type, even in case of the same step difference (d), the length L can be shortened. In such a way, an angle allowable degree and a wavelength allowable degree become larger, and the waveguide length having high efficiency can be formed.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、位相制御によって導波光を制御する導波路
レンズと、その作製方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a waveguide lens that controls guided light by phase control, and a method for manufacturing the same.

[従来の技術] 第1図の斜視図を参照して従来の技術を説明する。第1
図(A)はフルネルレンズ型導波路レンズ10を示し、
基板l上の導波路2内で導波光を収束、発散およびコリ
メートするものである。また、第2図(B)に示すブラ
ッググレーティング型導波路レンズ20も、導波光を基
板l上の導波路2内で収束1発散およびコリメートする
ものである。
[Prior Art] A conventional technology will be described with reference to the perspective view of FIG. 1st
Figure (A) shows a Fresnel lens type waveguide lens 10,
The guided light is converged, diverged, and collimated within the waveguide 2 on the substrate l. Further, the Bragg grating type waveguide lens 20 shown in FIG. 2(B) also converges, diverges, and collimates the guided light within the waveguide 2 on the substrate l.

このような導波路レンズは、従来ガラス、プラスチック
、半導体あるいは誘電体等の基板lに光反応性有機化合
物をスピンコード等の手段を用いて塗布し、フォトマス
クを介して紫外線等を照射することにより反応させた後
、未反応部を除去することによって凹凸構造のフレネル
レンズ3やブラッググレーティング4をそれぞれ基板l
上の導波路2内に形成するようにして作製していた。
Such waveguide lenses have conventionally been produced by coating a substrate such as glass, plastic, semiconductor, or dielectric with a photoreactive organic compound using a method such as a spin code, and then irradiating it with ultraviolet light or the like through a photomask. After reacting, by removing the unreacted parts, the Fresnel lens 3 and the Bragg grating 4 with the uneven structure are attached to the substrate l.
It was manufactured by forming it inside the upper waveguide 2.

ところで、このような方法では、導波路2の露光部と遮
光部の材質に屈折率に差がないか、ありだにしてもたか
だか1%以下と小さく、導波路に形成された凹凸構造に
よって生じる位相差のみが制御されるようになっていた
By the way, in such a method, there is no difference in refractive index between the materials of the exposed part and the light shielding part of the waveguide 2, or even if there is, it is small, at most 1% or less, and is caused by the uneven structure formed in the waveguide. Only the phase difference was controlled.

[発明か解決しようとする問題点コ このような導波路レンズにおいて、その許容作製誤差を
少なくするために、入射角にずれのあった場合の角度許
容度や、波長にずれのあった場合の半値全幅である波長
許容度を大きくすることが望まれている。
[Problems to be solved by the invention] In order to reduce the allowable manufacturing error in such a waveguide lens, it is necessary to improve the angular tolerance when there is a deviation in the incident angle, and the angular tolerance when there is a deviation in the wavelength. It is desired to increase the wavelength tolerance, which is the full width at half maximum.

ここで角度許容度とは、導波路レンズに入射する導波光
の角度に設計値と誤差があった場合、導波路レンズの効
率は低下する。効率か最大値の172となる角度の幅2
Δθを角度許容度とすると、角度許容度2Δθは導波路
レンズの周期をΔとし長さをLとしたとき、C□Δ/L
となる。ここで、C8は導波路レンズの大きさや焦点距
離等によって与えられるfmである。
Here, the angular tolerance means that if there is an error in the angle of the guided light incident on the waveguide lens from the designed value, the efficiency of the waveguide lens will decrease. The width of the angle that gives the efficiency or maximum value of 172 2
If Δθ is the angular tolerance, then the angular tolerance 2Δθ is C□Δ/L, where the period of the waveguide lens is Δ and the length is L.
becomes. Here, C8 is fm given by the size, focal length, etc. of the waveguide lens.

また、波長許容度とは、上記角度許容度と同様に、導波
路レンズに入射する導波光の波長に設計値と誤差かあっ
た場合、導波路レンズの効率は低下する。効率が最大値
の1/2となる波長の幅2Δ入を波長許容度とすると、
波長許容度2Δ入は導波光の波長なんとしたとき、c2
人Δ/Lどなる。ここで、C2は導波路レンズの大きさ
や焦点距離等によって与えられる値である。
Further, the wavelength tolerance refers to the efficiency of the waveguide lens, which is similar to the angular tolerance described above, when the wavelength of the guided light incident on the waveguide lens has an error from the designed value. If the wavelength tolerance is the wavelength width 2Δ where the efficiency is 1/2 of the maximum value, then
The wavelength tolerance 2Δinput is c2 when the wavelength of the guided light is
Person Δ/L yells. Here, C2 is a value given by the size, focal length, etc. of the waveguide lens.

したかって、導波路レンズの長さしか短くなると角度許
容度と波長許容度は大きくなる。
Therefore, if only the length of the waveguide lens is shortened, the angular tolerance and wavelength tolerance become large.

また、一般に効率の低下する原因である導波光の散乱損
失や波面収差を制御するためには、レンズ面に高い平面
性を必要とする。
Furthermore, in order to control scattering loss and wavefront aberration of guided light, which are generally causes of decreased efficiency, the lens surface needs to have high flatness.

第1図(A)、(B)に示すようなフレネル型およびブ
ラックグレーティング型の導波路レンズにおいては、角
度許容度や波長許容度を大きくするために、第1図(A
)、(B)に示したフレネルレンズおよびブラッググレ
ーティングの長さしを短くする必要がある。しかし、こ
の長さしを短くすると効率か低下するので、効率を高め
るためには凹凸構造の段差を大きくしなければならない
、したかって、レンズ面の高平面性と深い凹凸構造を両
立させ得る高度な超精密加工技術が必要であり、角度許
容度や波長許容度が大きく、しかも効率の高いフレネル
型やブラックグレーティング型の導波路レンズを作製す
ることは著しく困難であった。
In the Fresnel type and black grating type waveguide lenses shown in Figure 1 (A) and (B), in order to increase the angle tolerance and wavelength tolerance,
), it is necessary to shorten the length of the Fresnel lens and Bragg grating shown in (B). However, if this length is shortened, the efficiency decreases, so in order to increase the efficiency, it is necessary to increase the height difference in the uneven structure. This requires ultra-precision processing technology, and it has been extremely difficult to produce Fresnel-type or black grating-type waveguide lenses that have large angular tolerances and wavelength tolerances, and are highly efficient.

この発明は、このような点に鑑みてなされたものであり
、導波路に形成する凹凸構造の四部および凸部の各々を
屈折率の異なる材料で作製し、それぞれの屈折率に差を
持たせることによって角度許容度や波長許容度が大きく
、かつ効率の高い形態屈折率双変調型導波路レンズとそ
の作製方法を提供するにある。
This invention was made in view of these points, and the four parts and the convex parts of the uneven structure formed in the waveguide are each made of materials with different refractive indexes, so that the refractive indexes of each part are made different. Accordingly, it is an object of the present invention to provide a shape refractive index twin modulation type waveguide lens that has large angle tolerance and wavelength tolerance and is highly efficient, and a method for manufacturing the same.

以下、図面に基づいてこの発明の構成を詳しく説明する
Hereinafter, the configuration of the present invention will be explained in detail based on the drawings.

第2図(A)は、真空蒸着や電子ビームをはじめとする
従来の方法によって作製される形態変調型導波路レンズ
の凹凸構造の断面図であり、第2図(B)はこの発明の
方法で作製される形態屈折率双変調型導波路レンズの凹
凸構造の断面図である。図において、符号りは導波路レ
ンズの長さであり、dは凹凸構造の段差である。また、
第2図(A)は凸部と四部の屈折率を同し値n、であり
、第2図(B)は凸部の屈折率na、凹部の屈折率はn
bとなっている。
FIG. 2(A) is a cross-sectional view of the concavo-convex structure of a shape-modulating waveguide lens manufactured by conventional methods such as vacuum evaporation and electron beam, and FIG. FIG. 2 is a cross-sectional view of the concavo-convex structure of a form refractive index dual modulation type waveguide lens manufactured in FIG. In the figure, the reference numeral indicates the length of the waveguide lens, and d indicates the step of the concavo-convex structure. Also,
In Fig. 2(A), the refractive index of the convex part and the four parts is the same value n, and in Fig. 2(B), the refractive index of the convex part is na, and the refractive index of the concave part is n.
b.

次に、この第1図(A)、(B)に示したフレネル型と
ブラッググレーティング型の導波路レンズについて、そ
の効率を最大にする段差dと長さしの関係を第3図に示
す。波長入の導波光か導波路を伝播している場合、導波
路の膜厚をTとし、導波路、基板および空気の屈折率を
nr r ns +n0としたとき、この導波路の等価
屈折率Nは次の式で与えられる。
Next, for the Fresnel type and Bragg grating type waveguide lenses shown in FIGS. 1(A) and 1(B), FIG. 3 shows the relationship between the step difference d and the length that maximizes the efficiency. When guided light with a wavelength is propagating through a waveguide, the equivalent refractive index of this waveguide is N, where the film thickness of the waveguide is T and the refractive index of the waveguide, substrate, and air is nr r ns +n0. is given by the following formula.

ky  T=  (m+1  )  π−tan−’ 
  (kg  / ’fm  )−jan−’  (k
x / y。)−−−−(1)たたし、kg  ==k
oコ「27薯pγ、=に、r丁It γ。=に、 vTTτ訂2 に0 =2π/入 したかって、第2図(A)のような従来の方法による形
態変調型導波路レンズでは、膜厚Tを変調することより
等価屈折率Nを変調していることになる。また、MS2
図(B)のような本発明の方法による形態屈折重訳変調
型の導波路レンズでは、膜厚Tと導波路の屈折率n「を
変調することにより等価屈折率Nを変調していることに
なり、等価屈折率変調ΔNは従来のものに比べ大きくな
る。 また、導波路レンズにおける効率を最大にするた
め等価屈折率変調ΔNと長さしの関係は。
ky T= (m+1) π-tan-'
(kg/'fm)-jan-' (k
x/y. )---(1) Tatami, kg ==k
If we want to enter 0 = 2π/ in 27 pγ, =, vTTτ, 0 = 2π/ in vTTτ, the shape modulation type waveguide lens using the conventional method as shown in Fig. 2 (A) , by modulating the film thickness T, the equivalent refractive index N is modulated.
In the waveguide lens of the shape refraction double translation modulation type according to the method of the present invention as shown in Figure (B), the equivalent refractive index N is modulated by modulating the film thickness T and the refractive index n' of the waveguide. Therefore, the equivalent refractive index modulation ΔN is larger than that of the conventional one.In addition, in order to maximize the efficiency of the waveguide lens, the relationship between the equivalent refractive index modulation ΔN and the length is as follows.

フレネル型導波路レンズの場合 L=入/4ΔN・・・・(2) となり、また、ブラッググレーテインク型導波路レンズ
の場合 L=πλ/4ΔN・・・・(3) となる。
In the case of a Fresnel type waveguide lens, L=in/4ΔN (2), and in the case of a Bragg grete ink type waveguide lens, L=πλ/4ΔN (3).

導波光の波長を、例えば632.8nm、導波路の膜厚
を1ルmとし、また、第2図(B)における凸部の屈折
率naを1.525.凹部の屈折率nbを1.520と
したときに、導波路レンズの効率が最大となる段差dと
長さLとの関係を上記(1)、(2)、(3)式を用い
て計算した結果を第3図に示す、ここで、従来の形態変
調型の導波路レンズを実線で、この発明の形態屈折重訳
変調型の導波路レンズを破線によってそれぞれ表してい
る。
The wavelength of the guided light is, for example, 632.8 nm, the thickness of the waveguide is 1 lm, and the refractive index na of the convex portion in FIG. 2(B) is 1.525. When the refractive index nb of the recess is 1.520, calculate the relationship between the step d and the length L that maximizes the efficiency of the waveguide lens using equations (1), (2), and (3) above. The results are shown in FIG. 3, where the conventional shape modulation type waveguide lens is represented by a solid line, and the shape refraction double translation modulation type waveguide lens of the present invention is represented by a broken line.

この図で示されるように、この発明によるフレネル型や
ブラッググレーティング型の導波路レンズは、従来の形
態変調型導波路レンズに比べ、同じ段差dでも長さしを
短くすることかできる。したがって角度許容度や波長許
容度がより大きくなり、効率の高い導波路レンズを形成
することかできる。
As shown in this figure, the Fresnel type or Bragg grating type waveguide lens according to the present invention can be made shorter in length than the conventional shape modulation type waveguide lens for the same step difference d. Therefore, the angular tolerance and wavelength tolerance become larger, and a highly efficient waveguide lens can be formed.

この発明に用いられる光反応性の炭素炭素間二重結合を
有する重合体とは、後述する(4)式で示されるように
アルデヒドまたはケトンとの反応が進行するような分子
内に炭素炭素間二重結合が存在する重合体であればよい
。これらの重合体は、例えば2−ブチノール、ゲラニオ
ール等の分子内に二重結合を有するテルペン系アルコー
ルンをアクリル酸系重合体と反応させること(高分子エ
ステル化反応)により得られるが、分子内に二重結合を
有するアルコールとアクリル酸またはメタクリル酸より
なるエステルを単独で重合するか、あるいは他のメタク
リル酸エステルと共重合することによっても得られる。
The polymer having a photoreactive carbon-carbon double bond used in this invention is a polymer having a carbon-carbon double bond in the molecule that can undergo a reaction with an aldehyde or ketone, as shown in formula (4) below. Any polymer containing double bonds may be used. These polymers are obtained, for example, by reacting terpene-based alcohols having double bonds in the molecule, such as 2-butynol and geraniol, with acrylic acid-based polymers (polymer esterification reaction). It can also be obtained by polymerizing alone an ester consisting of an alcohol having a double bond and acrylic acid or methacrylic acid, or by copolymerizing it with another methacrylic ester.

他のメタクリル酸エステルの代表例としては、メチルメ
タクリレート、エチルメタクリレート、n−プロピルメ
タクリレート、1so−プロピルメタクリレート等があ
り、分子構造に特殊な制約条件はない。しかし、芳香族
の様にπ電子系の環状化合物は分子界か大きいと同時に
多数のπ電子を持っており、体積と屈折率の双方を増加
させる機能を備えているので、芳香族ケトンの光付加反
応によって露光部の膜厚と屈折率を増加させる場合には
、メタクリル酸エステルはπ電子系の環構造を有してい
ないことが望ましい。
Typical examples of other methacrylic acid esters include methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, 1so-propyl methacrylate, etc., and there are no special restrictions on the molecular structure. However, cyclic compounds with π-electron systems, such as aromatics, have large molecular boundaries and a large number of π-electrons, and have the ability to increase both volume and refractive index. When increasing the film thickness and refractive index of the exposed portion by addition reaction, it is desirable that the methacrylic acid ester does not have a π-electron ring structure.

分子内に二重結合を有するアルコールとアクリル酸また
はメタクリル酸よりなるエステルには、このアルコール
残基中の二重結合の数が1個の化合物と、非共役型の炭
素炭素間二重結合を2個以上有する化合物に大別される
。前者の代表例としては、アリルメタクリレート、クロ
チルメタクリレート、2−メチル−2−プロペニルメタ
クリレート、3−メチル−3−プロペニルメタクリレー
ト、2−メチル−2−ブテニルメタクリレート、1.1
−ジメチル−3−ブテニルメタクリレート等があり、凸
部と凹部の段差と屈折率差が比較的小さい導波路レンズ
の作製に適している。後者の代表例としては、ゲラニル
メタクリレート、ゲラニルゲラニルメタクリレート等が
あり、凸部と凹部の段差と屈折率差が比較的大きい導波
路レンズの作製に適している。
Esters consisting of alcohol and acrylic acid or methacrylic acid that have a double bond in the molecule include compounds with one double bond in the alcohol residue and non-conjugated carbon-carbon double bonds. It is broadly classified into compounds having two or more. Representative examples of the former include allyl methacrylate, crotyl methacrylate, 2-methyl-2-propenyl methacrylate, 3-methyl-3-propenyl methacrylate, 2-methyl-2-butenyl methacrylate, 1.1
-dimethyl-3-butenyl methacrylate, etc., and is suitable for producing a waveguide lens in which the step difference between the convex portion and the concave portion and the difference in refractive index are relatively small. Typical examples of the latter include geranyl methacrylate and geranylgeranyl methacrylate, which are suitable for producing a waveguide lens with a relatively large step difference and refractive index difference between the convex portion and the concave portion.

芳香族ケトンは段差と屈折率の双方を増加させる機能を
備えており、カルボニル基を有する化合物と、カルボニ
ル基を2個以上有する化合物に大別される。前者の例と
しては、アセトフェノン。
Aromatic ketones have the function of increasing both the step difference and the refractive index, and are broadly classified into compounds having a carbonyl group and compounds having two or more carbonyl groups. An example of the former is acetophenone.

ベンゾフェノン、ベンズアルデヒド等があり、凸部と凹
部の段差と屈折率差か比較的小さい導波路レンズの作製
に適している。後者の例としては、3−ベンゾイルベン
ゾフェノン、3,3°−ジベンゾイルベンゾフェノン等
があり、凸部と凹部の段差と屈折率差が比較的大きい導
波路レンズの作製に適している。芳香族炭素上にアルキ
ル基やハロゲンをはじめとする置換基を持つ芳香族ケト
ンも、段差と屈折率差を増加させる機能を備えている。
Examples include benzophenone and benzaldehyde, which are suitable for producing waveguide lenses with relatively small steps and refractive index differences between convex and concave portions. Examples of the latter include 3-benzoylbenzophenone, 3,3°-dibenzoylbenzophenone, etc., which are suitable for producing a waveguide lens with a relatively large step and refractive index difference between the convex portion and the concave portion. Aromatic ketones with substituents such as alkyl groups and halogens on aromatic carbon also have the function of increasing the step difference and refractive index difference.

光反応性の炭素炭素間二重結合を有する共重合体と、こ
れらの芳香族ケトンを共存させた状態で、波長が300
〜400nmの紫外線を照射すると、例えば、式(4)
に示すような反応様式で両者はオキセタン環を生成して
結合する。
When a copolymer having a photoreactive carbon-carbon double bond and these aromatic ketones coexist, a wavelength of 300
When irradiated with ultraviolet light of ~400 nm, for example, formula (4)
Both of them form an oxetane ring and combine in the reaction pattern shown in .

ここで、R1とR2は適当な置換基、またはR9は共重
合体の骨格を示す。この光反応を選択的に進行させるた
めの条件として、芳香族ケトンの3重項エネルギーが共
重合体上に炭素炭素間二重結合の3重項エネルギーより
低いことを要し、逆の場合には光励起エネルギーは芳香
族ケトンから炭素炭素間二重結合へ優先的に移動して失
われる。このような観点から共役型の炭素炭素間二重結
合は不適格であると共に、3重項エネルギーが65Kc
a11モル以上77Kca 11モル以下の範囲にある
芳香族ケトンか有用である。また。
Here, R1 and R2 are appropriate substituents, or R9 represents a copolymer skeleton. In order for this photoreaction to proceed selectively, the triplet energy of the aromatic ketone must be lower than the triplet energy of the carbon-carbon double bond on the copolymer, and vice versa. The photoexcitation energy is preferentially transferred from the aromatic ketone to the carbon-carbon double bond and is lost. From this point of view, conjugated carbon-carbon double bonds are not suitable, and the triplet energy is 65Kc.
Aromatic ketones in the range of a from 11 moles to 77 Kca to 11 moles are useful. Also.

減圧加熱法による現像条件を緩和するには、昇華しやす
い芳香族ケトンを使用することが望ましい。
In order to ease the development conditions by the reduced pressure heating method, it is desirable to use an aromatic ketone that easily sublimates.

露光部と遮光部の段差と屈折率差は、素材の種類や濃度
に依存するばかりではなく、紫外線照射前の膜厚、光源
の出力、紫外線の照射時間、温度などによっても変動す
る。このような段差と屈折率差の制御要因の特性を予め
把握しておくことによって、所望の形態屈折重訳変調型
導波路レンズが作成される。
The difference in level and refractive index between the exposed area and the light-blocking area not only depend on the type and concentration of the material, but also vary depending on the film thickness before UV irradiation, the output of the light source, the UV irradiation time, temperature, etc. By understanding in advance the characteristics of the control factors for the step difference and the refractive index difference, a desired form-refraction-translation modulation type waveguide lens can be created.

[実施例コ 以下に実施例を挙げて1本発明による形態屈折重訳変調
型導波路レンズの作成方法と光学特性を詳しく説明する
[Example] The following is a detailed explanation of the manufacturing method and optical characteristics of the shape refraction double translation modulation type waveguide lens according to the present invention by way of an example.

1胤旌−」 メチルメタクリレートとクロチルメタクリレートのモル
比l:1の共重合体を合成した。このクロチルメタクリ
レート成分1モルに対して1モルのベンゾフェノンを添
加して調整した4重量%ベンゼン溶液を、厚さ2mmの
ポリメチルメタクリレート基板上にスピンコードして透
明薄膜を形成した導波路レンズのパターンを有するフォ
トマスクを介して、出力250Wの超高圧水銀灯でこの
薄膜を20分間紫外線照射することにより、クロチルメ
タクリレート成分にベンゾフェノンを結合させた。この
試料を0.2mmHg、100℃の条件て1時間減圧加
熱して未反応ベンゾフェノンを昇華させることにより、
フレネル型、およびブラッググレーティング型の導波路
レンズおよびグレーティングレンズを作製した。触針法
による凹凸構造の段差dの測定値は0.14mであり、
波長632.8nmのHe−Neレーザによる凸部と凹
部の等価屈折率を測定した結果、それぞれ1.510お
よび1.500であった。この条件で効率か最大になる
長さしを検討した結果、フレネル型とブラッググレーテ
ィング型の導波路レンズの最適長さしはそれぞれ654
mと50Bmであった。
A copolymer of methyl methacrylate and crotyl methacrylate in a molar ratio of 1:1 was synthesized. A 4% by weight benzene solution prepared by adding 1 mol of benzophenone to 1 mol of this crotyl methacrylate component was spin-coated onto a 2 mm thick polymethyl methacrylate substrate to form a transparent thin film. Benzophenone was bonded to the crotyl methacrylate component by irradiating this thin film with ultraviolet rays for 20 minutes using an ultra-high pressure mercury lamp with an output of 250 W through a patterned photomask. By heating this sample under reduced pressure at 0.2 mmHg and 100°C for 1 hour to sublimate unreacted benzophenone,
Fresnel type and Bragg grating type waveguide lenses and grating lenses were fabricated. The measured value of the step d of the uneven structure using the stylus method was 0.14 m,
The equivalent refractive indexes of the convex and concave portions were measured using a He--Ne laser with a wavelength of 632.8 nm, and were found to be 1.510 and 1.500, respectively. As a result of examining the length that maximizes efficiency under these conditions, the optimal lengths for Fresnel type and Bragg grating type waveguide lenses are 654.
m and 50 Bm.

実施例 2 実施例1において、ベンゾフェノンの代りに3−ベンゾ
イルベンゾフェノンをクロチルメタクリレート成分1モ
ルに対して0.7モル添加して。
Example 2 In Example 1, 0.7 mole of 3-benzoylbenzophenone was added per mole of crotyl methacrylate component instead of benzophenone.

同様の実験を実施した結果、凹凸構造の段差dは0.1
濤m、凸部と凹部の等価屈折率はそれぞれ1.515g
よび1.500であった。この条件でプレネル型とブラ
ッググレーティング型の導波路レンズの最適長さしはそ
れぞれ42ILmおよび33ルmであった。
As a result of conducting a similar experiment, the level difference d of the uneven structure was 0.1
The equivalent refractive index of the convex and concave parts is 1.515g each.
and 1.500. Under these conditions, the optimal lengths of the Presnel type and Bragg grating type waveguide lenses were 42 ILm and 33 ILm, respectively.

[発明の効果] この発明によれば、従来の導波路レンズよりも角度許容
度や波長許容度が大きく、かつ効率の高い導波路レンズ
が容易に提供され、光集積回路における集光、発散、コ
リメートおよびフーリエ変換等に役立つ。
[Effects of the Invention] According to the present invention, a waveguide lens that has greater angular tolerance and wavelength tolerance than conventional waveguide lenses and is highly efficient can be easily provided, and can be used to improve light concentration, divergence, and Useful for collimation and Fourier transform, etc.

で、第1図(A)はフレネル型、第1図(B)はブラッ
ググレーティング型を示し、 第2図(A)、(B)は、導波路レンズの凹凸構造を示
す拡大して示した断面図で、第2図(A)は従来の形態
変調型、S2図(B)はこの発明の形態屈折重訳変調型
を示し。
Figure 1 (A) shows the Fresnel type, Figure 1 (B) shows the Bragg grating type, and Figures 2 (A) and (B) are enlarged views showing the uneven structure of the waveguide lens. In the cross-sectional views, FIG. 2(A) shows the conventional shape modulation type, and FIG. S2(B) shows the shape refraction double translation modulation type of the present invention.

第3図は、フレネル型とブラッググレーティング型導波
路レンズの効率が最大となる段差と長さの関係を示した
線区である。
FIG. 3 is a line section showing the relationship between the step height and the length at which the efficiency of the Fresnel type and Bragg grating type waveguide lenses is maximized.

l・・・・基板 2・・・・導波路 3・・・・フレネル型導波路レンズ 4・・・・ブラッググレーティング型導波路レンズl...Substrate 2... Waveguide 3... Fresnel type waveguide lens 4... Bragg grating type waveguide lens

Claims (3)

【特許請求の範囲】[Claims] (1)光導波路中に回折格子を形成した回折型導波路レ
ンズにおいて、 凸部および凹部からなる二元格子要素の各々を、屈折率
の異なる材料で構成し、この屈折率に差を待たせたこと
を特徴とする形態屈折率双変調型導波路レンズ。
(1) In a diffractive waveguide lens in which a diffraction grating is formed in an optical waveguide, each of the binary grating elements consisting of a convex portion and a concave portion is made of a material with a different refractive index, and the difference in the refractive index is A form refractive index dual modulation type waveguide lens characterized by:
(2)上記二元格子要素の凸部を形成する材料の屈折率
が凹部を形成する材料の屈折率よりも高いことを特徴と
する特許請求の範囲第1項記載の形態屈折率双変調型導
波路レンズ。
(2) The bimodulated refractive index type according to claim 1, characterized in that the refractive index of the material forming the convex portions of the binary grating element is higher than the refractive index of the material forming the concave portions. waveguide lens.
(3)イ)(A)光反応性の炭素炭素間二重結合を有す
る重合体、 および、(B)非置換または置換基を有する芳香族アル
デヒドおよび芳香族ケトンより選択される化合物の一種
または二種以上を含有する組成物より薄膜を形成する工
程、 ロ)上記薄膜に導波路レンズのパターンを形成したフォ
トマスクを介し紫外線を照射する工程、ハ)未反応の化
合物(B)を除去する工程、を順次行なうようにしたこ
とを特徴とする特許請求の範囲の第1項および第2項記
載の形態屈折率双変調型導波路レンズの作製方法。
(3) A) One or more compounds selected from (A) a polymer having a photoreactive carbon-carbon double bond, and (B) an aromatic aldehyde and an aromatic ketone that are unsubstituted or have a substituent. a step of forming a thin film from a composition containing two or more kinds; b) a step of irradiating the thin film with ultraviolet rays through a photomask in which a waveguide lens pattern is formed; c) removing unreacted compound (B). 3. A method for manufacturing a form refractive index dual modulation type waveguide lens according to claims 1 and 2, characterized in that the steps are performed sequentially.
JP62052308A 1987-03-07 1987-03-07 Morphological index bimodulation waveguide lens Expired - Lifetime JPH07101246B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62052308A JPH07101246B2 (en) 1987-03-07 1987-03-07 Morphological index bimodulation waveguide lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62052308A JPH07101246B2 (en) 1987-03-07 1987-03-07 Morphological index bimodulation waveguide lens

Publications (2)

Publication Number Publication Date
JPS63218906A true JPS63218906A (en) 1988-09-12
JPH07101246B2 JPH07101246B2 (en) 1995-11-01

Family

ID=12911157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62052308A Expired - Lifetime JPH07101246B2 (en) 1987-03-07 1987-03-07 Morphological index bimodulation waveguide lens

Country Status (1)

Country Link
JP (1) JPH07101246B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006071689A (en) * 2004-08-31 2006-03-16 Canon Inc Optical element for electromagnetic wave

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4982352A (en) * 1972-12-11 1974-08-08
JPS60166946A (en) * 1983-10-14 1985-08-30 Kyowa Gas Chem Ind Co Ltd Photosensitive resin composition and formation of pattern having refractive index difference by using it
JPS62111203A (en) * 1985-10-22 1987-05-22 Kuraray Co Ltd Mode refractive-index bimodulation type phase grating
JPS62174703A (en) * 1985-10-22 1987-07-31 Kuraray Co Ltd Manufacture of morphorefractive index bimodulation type phase grating

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4982352A (en) * 1972-12-11 1974-08-08
JPS60166946A (en) * 1983-10-14 1985-08-30 Kyowa Gas Chem Ind Co Ltd Photosensitive resin composition and formation of pattern having refractive index difference by using it
JPS62111203A (en) * 1985-10-22 1987-05-22 Kuraray Co Ltd Mode refractive-index bimodulation type phase grating
JPS62174703A (en) * 1985-10-22 1987-07-31 Kuraray Co Ltd Manufacture of morphorefractive index bimodulation type phase grating

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006071689A (en) * 2004-08-31 2006-03-16 Canon Inc Optical element for electromagnetic wave

Also Published As

Publication number Publication date
JPH07101246B2 (en) 1995-11-01

Similar Documents

Publication Publication Date Title
KR900007554B1 (en) Manufacture of morphorcfrative index bumodulation type phase grating
US6479193B1 (en) Optical recording film and process for production thereof
KR910005879B1 (en) Production of transmissivity modulation type photomask and production of diffraction grating using the photomask
US7738346B2 (en) Polarizing diffraction element and optical head device
US3809732A (en) Photo-locking technique for producing integrated optical circuits
US6969472B2 (en) Method of fabricating sub-micron hemispherical and hemicylidrical structures from non-spherically shaped templates
JP4345256B2 (en) Wavelength selective diffraction element and optical head device
US7400809B2 (en) Optical waveguide devices and method of making the same
WO2007089073A1 (en) Diffraction grating and method of fabrication thereof
US6069859A (en) Polarization separating element having partially polarizing properties for diffracting an ordinary light beam and a process for producing the same
WO2001031401A1 (en) Self-processing of diffractive optical components in hybrid sol-gel glasses
JPH04360037A (en) Draw type optical disk
Marron et al. Higher-order kinoforms
JPS63218906A (en) Form refractive index bimodulation type waveguide lens and its manufacture
EP0219845B1 (en) Phase grating of a combination pattern-refraction modification type
JP2009295233A (en) Optical recording medium and manufacturing method of optical recording medium
Kaniappan et al. A review on photopolymers for polymer nanocomposite applications
JPS63271265A (en) Production of transmissivity modulation type photomask and production of diffraction gtating using the photomask
JPH0551894B2 (en)
JPS63237001A (en) Transmitting phase lattice or lens and production thereof
JPH0750206B2 (en) Phase grating
JP4591602B2 (en) Wavelength selective diffraction element and optical head device
Gale et al. Fabrication of continuous-relief micro-optics: progress in laser writing and replication technology
JP4366862B2 (en) Optical head device
JPS63146001A (en) Manufacture of optical element