JPS6321883A - Pulse laser oscillator - Google Patents

Pulse laser oscillator

Info

Publication number
JPS6321883A
JPS6321883A JP16712586A JP16712586A JPS6321883A JP S6321883 A JPS6321883 A JP S6321883A JP 16712586 A JP16712586 A JP 16712586A JP 16712586 A JP16712586 A JP 16712586A JP S6321883 A JPS6321883 A JP S6321883A
Authority
JP
Japan
Prior art keywords
electrode
main electrode
discharge
electrodes
ultraviolet light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16712586A
Other languages
Japanese (ja)
Inventor
Yukio Sato
行雄 佐藤
Hitoshi Wakata
若田 仁志
Mitsuo Inoue
満夫 井上
Takeo Haruta
春田 健雄
Haruhiko Nagai
治彦 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP16712586A priority Critical patent/JPS6321883A/en
Publication of JPS6321883A publication Critical patent/JPS6321883A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/038Electrodes, e.g. special shape, configuration or composition

Abstract

PURPOSE:To obtain a high efficiency and high quality beam with high output by providing a plurality of holes in a second main electrode, and providing an ultraviolet light generation source for pre-ionizing laser gas between first and second electrodes on the back surface. CONSTITUTION:Electrons are uniformly supplied to the whole surface of a first main electrode 7 by a corona discharge 16 started between the first main electrode 7 and an auxiliary electrode 15 by the charging voltage of a capacitor 3. A second trigger signal is fed at a certain delay to a pre-ionization discharge circuit 4, an arc discharge 8 is performed between the second main electrode 17 and a pin electrode 5, and an ultraviolet light 9 is generated to pre-ionize the laser gas of a discharge exciter 11. Since the discharge path is uniformly weak-ionized by the light 9, even if the interval of the first and second electrodes 7 and 17 is large, it is not converged, but the laser is enhanced in its output, efficiency and quality of beam and simplified by large sectional uniformity main discharge.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、パルスレーザ発振器に関し、特に横方向励
起型パルスレーザ発振器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a pulsed laser oscillator, and particularly to a laterally pumped pulsed laser oscillator.

〔従来の技術〕[Conventional technology]

第6図は例えば雑誌(IEEE Journal of
 QuanTum Electronics、 @QE
−9巻、第2号 @236頁〜第243頁(1973年
))に記載された従来の横方向励起型パルスレーザ発振
器の構成を示すブロック図で、特にエキシマレーザ(例
エバArF 、 KrF 。
Figure 6 shows, for example, a magazine (IEEE Journal of
Quantum Electronics, @QE
This is a block diagram showing the configuration of a conventional lateral excitation type pulsed laser oscillator described in Vol. 9, No. 2 @ pages 236 to 243 (1973), especially for excimer lasers (e.g. EVA ArF, KrF.

XeF * Xe(J3 ) *窒素レーザ、TEA 
CO,レーザなどで使われるパルスレーザ発振器の一例
を示すものである。
XeF *Xe(J3) *Nitrogen laser, TEA
This is an example of a pulsed laser oscillator used in CO, laser, etc.

図において、C1)は時間の間隔を変えて2つのトリガ
ー信号を出すトリガー制御回路、(2)は第1回路で主
放電用パルス充電回路、(3)は主放電を起こすための
エネルギーを蓄えるコンデンサー(4)は主放電に先立
って行なわれる予備電離のためのエネルギーを供給する
第2回路で予備電離用放電回路、(5)は予備電離用の
放電を起さすための複数1例えば4個のピン電極、(6
)は予備電離用放電回路(4)から供給されるエネルギ
ーを均等に複数のピン電極に流すためのインダクタンス
、(7)は複数1例えば、4個の開孔部を有する第1圧
電極、(8)はピン電極(5)と第1圧電極(7)の間
で行なわれる予備電離用のアーク放電、(9)はアーク
放t (8)により発生する紫外光。0Qは第2主電極
、αηは主放電によってレーザが励起される放電励起部
、(2)はレーザ発振光軸、(至)はレーザ筐体である
In the figure, C1) is a trigger control circuit that issues two trigger signals at different time intervals, (2) is the first circuit, which is a pulse charging circuit for main discharge, and (3) stores energy for causing main discharge. The capacitor (4) is a second circuit that supplies energy for pre-ionization performed prior to the main discharge, and is a discharge circuit for pre-ionization, and the capacitor (5) is a plurality of capacitors, for example four, for causing a discharge for pre-ionization. pin electrode, (6
) is an inductance for uniformly flowing the energy supplied from the pre-ionization discharge circuit (4) to a plurality of pin electrodes, (7) is a first piezoelectric electrode having a plurality of holes, for example, four holes, ( 8) is an arc discharge for preliminary ionization performed between the pin electrode (5) and the first piezo electrode (7), and (9) is the ultraviolet light generated by the arc discharge (8). 0Q is the second main electrode, αη is a discharge excitation part where the laser is excited by the main discharge, (2) is the laser oscillation optical axis, and (to) is the laser housing.

次に動作について説明する。レーザ筺体(至)の中にレ
ーザカスが封入されている。トリガー制御回路(1)か
ら主放電用パルス充電回路(2)に第1のトリガー信号
が送られ、コンデンサー(3)の充電が開始される。こ
の時、コンデンサ−(3)の充電電圧が第1主電極(7
)と第2主電極αq間に印加される。@1のトリガー信
号から一定時間遅れて、トリガー制御回路(1)から第
2のトリガー信号が予備電離用放電回路(4)に送られ
る。これによりピン電極(5)と第1主電極(7)の間
にパルス高電圧が印加され、その間でアーク放電(9)
が開始される。ピン電@(5)は第1主電極(7)の背
面に等間隔で多数設置されているが、インダクタンス(
6)の存在(こより、各ピン電極(51には均等にアー
ク放電(8)による電流が流れる。
Next, the operation will be explained. Laser scum is enclosed within the laser housing. A first trigger signal is sent from the trigger control circuit (1) to the main discharge pulse charging circuit (2), and charging of the capacitor (3) is started. At this time, the charging voltage of the capacitor (3) changes to the first main electrode (7).
) and the second main electrode αq. A second trigger signal is sent from the trigger control circuit (1) to the pre-ionization discharge circuit (4) after a fixed time delay from the @1 trigger signal. As a result, a pulsed high voltage is applied between the pin electrode (5) and the first main electrode (7), and an arc discharge (9) occurs between the pin electrode (5) and the first main electrode (7).
is started. A large number of pin electrodes (5) are installed at equal intervals on the back of the first main electrode (7), but the inductance (
6), the current due to the arc discharge (8) flows equally through each pin electrode (51).

ここで、アーク放電(8)は紫外光(9)を発生する。Here, the arc discharge (8) generates ultraviolet light (9).

この紫外光(9)は第1主電極(7)に設けられた多数
の開孔部を通過して第1.@2圧電極(7)、00間を
均一に照射し、その間のレーザガスを均一に弱電離状態
(を子密度ηQ = 106〜1o8z7t−i ) 
 とする。この時、コンデンサー(3)の充電電圧が、
I!1.@2圧電極(1)、00間の放電開始電圧に達
し、コンデンサー(3)に蓄えられた電荷は一気に@1
.@2主電極f7) 、 (10間に流れ、放電励起部
αυにパルス放電が形成される。この放電は、あらかじ
め放電励起部0υが均一な予備電離状態にされているの
で、均一な放電となる。これによりレーザガス中のレー
ザ謹賀が励起され、誘導放出によって、光軸@の方向に
レーザビームが出射する。
This ultraviolet light (9) passes through a large number of openings provided in the first main electrode (7) and passes through the first main electrode (7). @2 Voltage electrode (7), 00 is uniformly irradiated, and the laser gas between them is uniformly weakly ionized (with a particle density ηQ = 106 ~ 1o8z7t-i)
shall be. At this time, the charging voltage of the capacitor (3) is
I! 1. The discharge starting voltage between the @2 piezo electrode (1) and 00 is reached, and the charge stored in the capacitor (3) is suddenly @1
.. @2 main electrode f7), (10), and a pulse discharge is formed in the discharge excitation part αυ.This discharge is a uniform discharge because the discharge excitation part 0υ is brought into a uniform preliminary ionization state in advance. This excites the laser beam in the laser gas, and a laser beam is emitted in the direction of the optical axis due to stimulated emission.

さて、上記の例で示した電極背面からの紫外線による予
備電離方式は、大きな放電断面に渡って均一な放電励起
が可能なことから、レーザ装置の高出力・高効率化、コ
ンパクト化にとって極めて有効な手段であった。しかし
ながら、予備電離のために必要とされるエネルギーが、
主放電のそれの10〜20優と大きい。このため工業的
に有用な。
Now, the pre-ionization method using ultraviolet light from the back of the electrode, as shown in the example above, enables uniform discharge excitation over a large discharge cross section, so it is extremely effective for increasing the output, efficiency, and compactness of laser equipment. It was a great method. However, the energy required for preionization is
It is 10 to 20 times larger than that of the main discharge. Therefore, it is industrially useful.

1秒間に100回以上の発振を行なう高繰返しの装置に
おいては、アーク放t(こよる電極の劣化、レーザガス
の劣化が問題となった。
In high-repetition devices that oscillate more than 100 times per second, deterioration of electrodes and laser gas due to arc radiation has become a problem.

@7図はこの問題を解決するために行なわれた予備電離
方式の例を示すブロック図で、α引ま多数の開孔部に有
する′第1主電極(7)の背面に設置されたガラス、セ
ラミック等の誘電体、(ト)は@1主心極(7)と対向
し、かつ誘電体α弔を介在して設置されている補助電極
、α・は第1圧電$1(7)の開孔部における誘4体0
4表面で行なわれるコロナ放電である。
Figure 7 is a block diagram showing an example of a pre-ionization method used to solve this problem. , a dielectric material such as ceramic, (G) is an auxiliary electrode placed opposite to the @1 main pole (7) with a dielectric material α interposed therebetween, and α is the first piezoelectric $1 (7). The dielectric material 0 in the opening of
This is a corona discharge that occurs on the 4th surface.

第り、@2圧電極(1)、αQ1日電体α弔、補助電極
(ト)、で電極系を構成している。
First, the electrode system is composed of the @2 voltage electrode (1), the αQ1 electric body α, and the auxiliary electrode (G).

次に動作蚤こついて説明する。主放電用パルス充電回路
(2)がコンデンサー(3)をパルス充tする。第1主
電極(7)と補助電極(ト)の間には誘電体α4が挿入
されているため、これにより一種のコンデンサーが形成
され、コンデンサー(3)の充電が開始されると、その
充電電圧に応じた電圧が両電極間に印加され、誘電体α
4の表面においてコロナ放電αQが超こり、@1主電極
(7)の開孔部周辺のレーザガスが均−に弱電離状態と
なる。同時にコンデンサー(3)の充1!ζこより、そ
の充電電圧が@1主電極(7)と第2主電極GOとの間
に印加され、やがて放電開始電圧に達する。故<、H開
始電圧(こ達すると、コンデンサー(3)に蓄えられた
電荷は一気に第1圧電極(1)、@2主7! 極(10
I′!iに流れ、放電励起部αυにパルス放電が形成さ
れる。@1主電極(7)がカソードに設定されている場
合に、コロナ放電α0によりあらかじめ!!1主(17
)の表面全域に渡り均一に電子が供給されCいるため、
これらの電子を核として、電極表面全域に渡る均一なパ
ルス放電となる。この放tによりレーザガス中のレーザ
震質が励起され、誘導放出によって、光軸(9)の方向
にレーザビームが出射する。
Next, I will explain how it works. The main discharge pulse charging circuit (2) pulse-charges the capacitor (3). Since the dielectric α4 is inserted between the first main electrode (7) and the auxiliary electrode (G), this forms a kind of capacitor, and when the capacitor (3) starts charging, the A voltage corresponding to the voltage is applied between both electrodes, and the dielectric α
The corona discharge αQ becomes extremely strong on the surface of the main electrode (7), and the laser gas around the opening of the main electrode (7) becomes uniformly weakly ionized. Charging capacitor (3) at the same time! ζ From this, the charging voltage is applied between the @1 main electrode (7) and the second main electrode GO, and eventually reaches the discharge starting voltage. Therefore, when the H starting voltage (H) is reached, the charge stored in the capacitor (3) is instantly transferred to the first piezo electrode (1), @2 main 7! pole (10
I'! i, and a pulse discharge is formed in the discharge excitation part αυ. @1 When the main electrode (7) is set as a cathode, corona discharge α0 is used in advance! ! 1 Lord (17
) Since electrons are uniformly supplied over the entire surface of C,
With these electrons as the nucleus, a uniform pulse discharge is generated over the entire electrode surface. The laser vibration in the laser gas is excited by this radiation, and a laser beam is emitted in the direction of the optical axis (9) by stimulated emission.

ここで示した方式では、補助放電が誘電体(4)を介し
たコロナ放電によっているため、誘電体のバランス効果
により、広い放電幅の場合も均一に予備電離が行なえる
。その際アーク放電を用いる場合に比べ補助放電のため
に消費されるエネルギーはわずかであり、圧電極の劣化
、レーザガスの劣化の問題は少なくなる。
In the method shown here, since the auxiliary discharge is a corona discharge via the dielectric (4), uniform preliminary ionization can be performed even in the case of a wide discharge width due to the balance effect of the dielectric. In this case, the energy consumed for the auxiliary discharge is small compared to the case where arc discharge is used, and the problems of deterioration of the piezo electrode and laser gas are reduced.

〔発明が解決しようとする貨題点〕[Problem to be solved by the invention]

しかしながら従来のパルスレーザ発振器では。 However, with conventional pulsed laser oscillators.

@8図に示すごとく、大きな放電断面を得ようとして@
1.@2主′IIL極(1)、α0の間隔を広げた場合
I!l主電極(7)の表面では幅の広い放電が得られる
ものの、@2主電極αQに近づくにつれて放電が収束し
、放電の均一性が失なわれていく。これによリレーザの
発振モードの対称性、均一性が失なわれるとともに、放
電の不均一性の発生により励起効率が減少するという問
題点があった。放電の収束は印加電圧が低い程著しく起
こる傾向(こあった。
@ As shown in Figure 8, in an attempt to obtain a large discharge cross section @
1. @2 main 'IIL pole (1), if the interval between α0 is widened, I! Although a wide discharge is obtained on the surface of the l main electrode (7), the discharge converges as it approaches the @2 main electrode αQ, and the uniformity of the discharge is lost. As a result, the symmetry and uniformity of the oscillation mode of the laser are lost, and the excitation efficiency is reduced due to non-uniform discharge. The convergence of discharge tends to occur more significantly as the applied voltage is lower.

この発明は上記のような問題点を解消するためになされ
たもので、高出力で高効率、なおかつ高品質ビームが得
られるパルスレーザ発振器を得ることを目的とする。
The present invention was made to solve the above-mentioned problems, and an object of the present invention is to provide a pulsed laser oscillator that has high output, high efficiency, and can provide a high-quality beam.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係るパルスレーザ発振器は、レーザガス中に
おいて相対向するように配設された複数個の開孔部を有
する第1主電極と第2主電極、第1主電極の背面に配設
された誘電体、および1Jrl主電極と上記誘電体を介
在させて対向する補助電極よりなる電極系、@L、@2
主電極間心電極間電圧を印加する@1回路、および補助
電極を第1圧電極との間に電圧を印加する!g2回路を
備えたパルスレーザ発振器において、@2主電極は複数
の開孔部を有し、その背面に第1.@2電極の間のレー
ザガスを予備電離する紫外光発生源を備えたものである
The pulse laser oscillator according to the present invention includes a first main electrode and a second main electrode each having a plurality of openings arranged to face each other in a laser gas, and arranged on the back surface of the first main electrode. Electrode system consisting of a dielectric and a 1Jrl main electrode and an auxiliary electrode facing each other with the dielectric interposed therebetween, @L, @2
@1 circuit that applies the cardiac interelectrode voltage between the main electrodes, and the voltage is applied between the auxiliary electrode and the first piezoelectric electrode! In a pulsed laser oscillator equipped with a g2 circuit, the @2 main electrode has a plurality of openings, and a first . @Equipped with an ultraviolet light generation source that pre-ionizes the laser gas between the two electrodes.

〔作用〕[Effect]

この発明におけるパルスレーザ発振器の圧電極は、第1
圧電極背面において行なわれるコロナ放電が供給する均
一な電子を核として成長すると共に、第2主′電極背面
で行なわれる弱紫外線による放電励起部の予備電離作用
により、収束することなく第2主電極に到達する。
The piezo electrode of the pulsed laser oscillator in this invention has a first
The uniform electrons supplied by the corona discharge on the back surface of the piezo electrode grow as nuclei, and the pre-ionization effect of the discharge excitation part due to the weak ultraviolet rays on the back surface of the second main electrode causes the second main electrode to grow without convergence. reach.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。@1
図においで、αηは紫外光(9)を透過させるための多
数の開孔部を有する第2主電極である。
An embodiment of the present invention will be described below with reference to the drawings. @1
In the figure, αη is a second main electrode having a large number of openings for transmitting ultraviolet light (9).

この実施例では、@6図において補助電極として用いた
ピン電極(5)を第2主電極の背面に設け、紫外線発生
源を構成している。
In this embodiment, the pin electrode (5) used as the auxiliary electrode in Fig. @6 is provided on the back surface of the second main electrode to constitute an ultraviolet generation source.

この発明の一実施例による動作1作用は次のようになる
。トリガー制御回路(1)からの第1のトリガー信号が
主放電用パルス充電回路(2)に送られ。
Operation 1 according to an embodiment of the present invention is as follows. A first trigger signal from the trigger control circuit (1) is sent to the main discharge pulse charging circuit (2).

コンデンサー(3)の充電が始まる。同時にこの充電電
圧が@1主電極(7)と補助電極αQの間に印加され。
Charging of the capacitor (3) begins. At the same time, this charging voltage is applied between the @1 main electrode (7) and the auxiliary electrode αQ.

コロナ放電α0が始まる。このコロナ放電αeによりコ
ンデンサー(3)の充電期間ζこ渡り、第1主電極(7
)の表面全域に電子が均一に供給される。@1のトリガ
ー信号からいくらかの遅延をおいて、トリガー制御回路
(1)から@2のトリガー信号が予備電離用放電回路(
4)番こ送られ、多数の開孔を有する第2主電極(17
)とピン電極(5)の間でアーク放電(8)が行なわれ
る。こnlこより紫外光(9)が発生し、@2圧電極a
ηの開孔部を通過して放電励起部αυのレーザガスを予
備電離する。@1.第2圧電極(7)、(19間の電圧
が放電開始電圧に達すると、コロナ放電αQにより@1
主電極(7)の表面に均一に供給されている電子を核と
して電子なだれを起こし、第2圧電極αηの間に放電路
を形成する。この際放電路は紫外光(9)によりあらか
じめ均一に弱電離状態とさ几ているため、@1.@2主
電i+7)、α力の間隔が大きい場合でも収束すること
はなく、大断面の放電励起部(ロ)に渡って均一な主放
電が得られる。大断面均−王放電の実現(こより、レー
ザの高出力・高効率化・高ビーム品賞化、コ/パクト化
が可能となる。
Corona discharge α0 begins. This corona discharge αe causes the capacitor (3) to pass through the charging period ζ, and the first main electrode (7
) electrons are uniformly supplied to the entire surface. After some delay from the trigger signal @1, the trigger signal @2 is sent from the trigger control circuit (1) to the pre-ionization discharge circuit (
4) A second main electrode (17
) and the pin electrode (5). Ultraviolet light (9) is generated from this, and @2 piezo electrode a
The laser gas in the discharge excitation part αυ is pre-ionized by passing through the opening of η. @1. When the voltage between the second piezo electrodes (7) and (19 reaches the discharge starting voltage, @1
Electrons uniformly supplied to the surface of the main electrode (7) cause an electron avalanche as nuclei, and a discharge path is formed between the second piezoelectrodes αη. At this time, since the discharge path has been uniformly and weakly ionized in advance by ultraviolet light (9), @1. @2 main electric current i+7), even when the interval between α forces is large, the main discharge does not converge, and a uniform main discharge is obtained over the discharge excitation part (b) with a large cross section. Achieving large cross-section uniform discharge (this makes it possible to achieve high output, high efficiency, high beam quality, and compactness of lasers.

なお、この実施例におけるアーク放電(3)は、コロナ
放電αOの補助的なものであり、紫外光単独で予備電離
する場合に比べて115〜l/10程度に投入エネルギ
ーを押さえることができる。従ってアーク放電(8)に
起因する電極の劣化、レーザガスの劣化の問題はほとん
どなくなる。
Incidentally, the arc discharge (3) in this example is supplementary to the corona discharge αO, and the input energy can be suppressed to about 115 to 1/10 compared to the case of preliminary ionization using ultraviolet light alone. Therefore, problems of electrode deterioration and laser gas deterioration caused by arc discharge (8) are almost eliminated.

なお、上記実施例では多数の開孔部を有する第2圧電極
αηとピン電極(5)の間でアーク族1t (8)を起
こし、紫外光(9)を発生していた。しかし第2図。
In the above embodiment, an arc group 1t (8) was generated between the second piezoelectric electrode αη having a large number of openings and the pin electrode (5), and ultraviolet light (9) was generated. However, Fig. 2.

およびその11線断面図である。@3図に示すごとく第
2主電極aηの背面に設置された絶縁基板口1例えばエ
ボ千ン基板のうえに飛び石状に等間隔に複数の平板成極
α9を並べ、絶縁基板端を介して″vL極Q9に相対向
するよう(こ裏打ち電極のを設置する。そして飛び石状
の@極α9と裏打ち成極ωの間ζこパルス高電圧を′印
加し、 III−III線断面に沿って沿面放@24D
を起こして紫外光(9)を発生してもよい。この方式で
は第2圧電極αηが予備放電に関与しないため、それ;
こ伴なう”を極の劣化は問題なくなる。さらにエポキシ
基板Gに銅を蒸着した後、等間隔に平板電極α9を構成
するようにエツチングして形成すれば、製造の工程は簡
単にできる。
and a sectional view thereof taken along line 11. @3 As shown in Figure 3, a plurality of flat plates polarized α9 are arranged at equal intervals like stepping stones on the insulating substrate port 1 installed on the back side of the second main electrode aη, for example, on an Evosen substrate, and The backing electrode is installed so as to face the vL pole Q9, and a high pulse voltage is applied between the stepping stone-shaped @pole α9 and the backing polarization ω, along the III-III line cross section. Creeping radiation @24D
may be caused to generate ultraviolet light (9). In this method, the second piezoelectrode αη does not participate in preliminary discharge;
There is no problem with the accompanying deterioration of the electrodes.Furthermore, the manufacturing process can be simplified by depositing copper on the epoxy substrate G and then etching it to form the flat plate electrodes α9 at equal intervals.

才だ、第4図、およびそのV−Vm断面である。Figure 4 and its V-Vm cross section.

第5図ζこ示されるごとく、第2圧電極Q′?)の背面
に絶縁材によるパイプのを並べ、このパイプの上に。
As shown in FIG. 5, the second piezoelectric electrode Q'? ) Line up the pipe with insulating material on the back and on top of this pipe.

■−v線断面に沿って等間隔に複数の針状電極のを設置
し、またパイプのの中空部に裏打ち電線例を設置する。
(2) A plurality of needle-like electrodes are installed at regular intervals along the -v line cross section, and a lining electric wire is also installed in the hollow part of the pipe.

そして、針状電極のと裏打ちta(至)の間にパルス高
電圧を印加してアーク放電を起こし、紫外光(9)を発
生しても上記実施例と同様の効果を奏する。
Even if a pulsed high voltage is applied between the needle electrode and the backing ta to cause arc discharge and generate ultraviolet light (9), the same effect as in the above embodiment can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、レーザガス中におい
て相対向するように配設された複数個の開孔部を有する
@l圧電極と第2圧電極、第1圧電極の背面に配設され
た誘電体、および第1圧電極と上記誘電体を介在させて
対向する補助電極よりなる電極系、第【、第2王戒極間
にパルス電圧を印加する第1回路、および補助@極を第
1主電極との間(こ電圧を印加する第2回路を備えたパ
ルスレーザ発振器において、第2圧電極は複数の開孔部
を有し、その背面をこ第1.第2電極の間のレーザガス
を予備電離する紫外光発生源を備えることにより、放電
の収束を防止して高出力で高効率。
As described above, according to the present invention, an @l piezoelectrode having a plurality of openings disposed to face each other in the laser gas, a second piezoelectrode, and a second piezoelectrode disposed on the back surface of the first piezoelectrode. an electrode system consisting of a first piezoelectric electrode and an auxiliary electrode facing each other with the dielectric interposed therebetween; a first circuit for applying a pulse voltage between the second electrode; In a pulse laser oscillator equipped with a second circuit for applying a voltage between the electrode and the first main electrode, the second piezoelectric electrode has a plurality of openings, and the back surface thereof is connected to the first and second electrodes. Equipped with an ultraviolet light generation source that pre-ionizes the laser gas in between, preventing convergence of discharge and achieving high output and efficiency.

かつ鵠品質なビームが取り出させるパルスレーザ発振器
が得られる効果がある。
Moreover, it is possible to obtain a pulsed laser oscillator that outputs a high-quality beam.

【図面の簡単な説明】[Brief explanation of drawings]

@1図はこの発明の一実施例によるパルスレーザ発振器
を示すブロック図、第2図はこの発明の他の実施例によ
る紫外光発生源を拡大して示す断面図、第3図は第2図
の■−■線断面を示す断面図、第4図はこの発明のさら
に他の実施例による紫外光発生源を拡大して示す断面図
、第5図は第4図のV−Va断面を示す断面図、第6図
、第7図はそれぞれ従来のパルスレーザ発振器を示すブ
ロック図、第8図は!7図に示すレーザ筺体(至)を拡
大して示す説明図である。 図において、(2)は主放電用パルス充電回路、(3)
はコンデンサー、(4)は予備電離用放電回路、(5)
はピン電極、(7)は第1主電極、(8)はアーク放電
、(9)は紫外光、α尋は誘電体、(ト)は補助電極、
αηは第2主電極、(181は絶縁基板、 (19は平
板電極、のはパイプ、のは針状電極である。 なお、図中同一符号は同一、又は相当部分を示す。
@ Figure 1 is a block diagram showing a pulsed laser oscillator according to one embodiment of the present invention, Figure 2 is an enlarged sectional view showing an ultraviolet light generation source according to another embodiment of the invention, and Figure 3 is Figure 2. FIG. 4 is an enlarged cross-sectional view showing an ultraviolet light generation source according to another embodiment of the present invention, and FIG. 5 is a cross-sectional view taken along line V-Va in FIG. 4. The sectional view, FIG. 6, and FIG. 7 are block diagrams showing conventional pulse laser oscillators, and FIG. 8 is! FIG. 8 is an explanatory diagram showing an enlarged view of the laser casing shown in FIG. 7; In the figure, (2) is the main discharge pulse charging circuit, (3)
is a capacitor, (4) is a pre-ionization discharge circuit, (5)
is a pin electrode, (7) is the first main electrode, (8) is an arc discharge, (9) is an ultraviolet light, α fathom is a dielectric, (g) is an auxiliary electrode,
αη is the second main electrode, (181 is an insulating substrate, (19 is a flat plate electrode, is a pipe, and is a needle electrode. In the figures, the same reference numerals indicate the same or corresponding parts.

Claims (4)

【特許請求の範囲】[Claims] (1)レーザガス中において相対向するように配設され
た複数個の開孔部を有する第1主電極と第2主電極、第
1主電極の背面に配設された誘電体および第1主電極と
上記誘電体を介在させて対向する補助電極よりなる電極
系、第1、第2主電極間にパルス電圧を印加する第1回
路、および上記補助電極と第1主電極との間に電圧を印
加する第2回路を備えたパルスレーザ発振器において、
第2主電極は複数の開孔部を有し、その背面に第1及び
第2電極間のレーザガスを予備電離する紫外光発生源を
備えたことを特徴とするパルスレーザ発振器。
(1) A first main electrode and a second main electrode having a plurality of openings arranged to face each other in the laser gas, a dielectric material arranged on the back surface of the first main electrode, and a first main electrode. An electrode system consisting of an electrode and an auxiliary electrode facing each other with the dielectric interposed therebetween, a first circuit that applies a pulse voltage between the first and second main electrodes, and a voltage between the auxiliary electrode and the first main electrode. In a pulsed laser oscillator equipped with a second circuit that applies
A pulsed laser oscillator characterized in that the second main electrode has a plurality of openings, and is equipped with an ultraviolet light generation source on the back surface of the second main electrode for pre-ionizing the laser gas between the first and second electrodes.
(2)紫外光発生源は、第2主電極の背面に等間隔に並
べられた複数個のピン電極、および上記第2主電極とピ
ン電極の間に電圧を印加する回路を有し、上記第2主電
極とピン電極の間で行なわれるアーク放電により紫外光
を発生することを特徴とする特許請求の範囲第1項記載
のパルスレーザ発振器。
(2) The ultraviolet light generation source includes a plurality of pin electrodes arranged at equal intervals on the back surface of the second main electrode, and a circuit for applying a voltage between the second main electrode and the pin electrode, and 2. The pulsed laser oscillator according to claim 1, wherein ultraviolet light is generated by arc discharge occurring between the second main electrode and the pin electrode.
(3)紫外光発生源は、第2主電極の背面に設置された
絶縁基板、この絶縁基板上で、上記第2主電極と対向す
る面に等間隔に設置された複数の平板電極、およびこの
平板電極間に電圧を印加する回路を有し、上記平板電極
間で行なわれる沿面放電により紫外光を発生することを
特徴とする特許請求の範囲第1項記載のパルスレーザ発
振器。
(3) The ultraviolet light generation source includes an insulating substrate installed on the back side of the second main electrode, a plurality of flat plate electrodes installed at equal intervals on the surface facing the second main electrode on this insulating substrate, and 2. The pulse laser oscillator according to claim 1, further comprising a circuit for applying a voltage between the flat electrodes, and generating ultraviolet light by creeping discharge occurring between the flat electrodes.
(4)紫外光の発生源は、第2主電極の背面に設置され
た絶縁材によるパイプ、このパイプに等間隔に設置され
た複数の針状電極、この針状電極間に電圧を印加する回
路を有し、上記針状電極間の放電により紫外光を発生す
ることを特徴とする特許請求の範囲第1項記載のパルス
レーザ発振器。
(4) The source of the ultraviolet light is a pipe made of insulating material installed on the back of the second main electrode, a plurality of needle-like electrodes installed on this pipe at equal intervals, and a voltage is applied between the needle-like electrodes. 2. The pulse laser oscillator according to claim 1, further comprising a circuit, and generating ultraviolet light by discharge between the needle electrodes.
JP16712586A 1986-07-15 1986-07-15 Pulse laser oscillator Pending JPS6321883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16712586A JPS6321883A (en) 1986-07-15 1986-07-15 Pulse laser oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16712586A JPS6321883A (en) 1986-07-15 1986-07-15 Pulse laser oscillator

Publications (1)

Publication Number Publication Date
JPS6321883A true JPS6321883A (en) 1988-01-29

Family

ID=15843899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16712586A Pending JPS6321883A (en) 1986-07-15 1986-07-15 Pulse laser oscillator

Country Status (1)

Country Link
JP (1) JPS6321883A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02177487A (en) * 1988-12-28 1990-07-10 Komatsu Ltd Preliminary ionization circuit for discharge type gas laser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02177487A (en) * 1988-12-28 1990-07-10 Komatsu Ltd Preliminary ionization circuit for discharge type gas laser

Similar Documents

Publication Publication Date Title
US4468776A (en) Reinjection laser oscillator and method
Kitaeva et al. Continuously operating argon ion lasers
JPH02248094A (en) X-ray pre-ionization pulse laser device
JPS6321883A (en) Pulse laser oscillator
US20050058172A1 (en) System and method for segmented electrode with temporal voltage shifting
CA1187926A (en) Multiple pulse tea laser
JP3432854B2 (en) Pulse gas laser oscillator
JP2753088B2 (en) Pulse gas laser oscillator
Sato et al. Development of a 2-kW XeCl laser with a surface corona preionization scheme and a spiker-sustainer circuit
JPS61137380A (en) Lateral-excited gas laser oscillator
JPH05283777A (en) Gas laser oscillation device
JPH11112300A (en) Discharge circuit for pulse laser
JPH02268476A (en) Pulse gas laser oscillator
JP2734191B2 (en) Laser device
JPS63228681A (en) Gas laser oscillator
JPH0361376A (en) Method and device for forming thin film
JPS61168973A (en) Gas laser unit
JPS63304682A (en) Excimer laser system
JPH0535585B2 (en)
JPH03259581A (en) X-ray preionized discharge excitation pulsed gas laser apparatus
JPH0276281A (en) Pulse laser oscillator
JPS63136679A (en) Gas laser oscillation equipment
JPH0340476A (en) Gas laser exciting method and gas laser device
JPS63228682A (en) Gas laser oscillator
McLellan Reinjection laser oscillator and method