JPS63218838A - Method for checking cut-off wavelength of optical fiber - Google Patents

Method for checking cut-off wavelength of optical fiber

Info

Publication number
JPS63218838A
JPS63218838A JP5219287A JP5219287A JPS63218838A JP S63218838 A JPS63218838 A JP S63218838A JP 5219287 A JP5219287 A JP 5219287A JP 5219287 A JP5219287 A JP 5219287A JP S63218838 A JPS63218838 A JP S63218838A
Authority
JP
Japan
Prior art keywords
wavelength
optical fiber
light
fiber
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5219287A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Tatsuta
立田 光廣
Katsuya Yamashita
克也 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP5219287A priority Critical patent/JPS63218838A/en
Publication of JPS63218838A publication Critical patent/JPS63218838A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/33Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face
    • G01M11/335Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face using two or more input wavelengths

Abstract

PURPOSE:To rapidly detect an optical fiber cut-off wavelength, by investigating the magnitude relation between the light output change quantities after and before bending is imparted to an optical fiber, and a predetermined threshold value and judging the magnitude relation between the cut-off wavelength of the optical fiber and the wavelength of a light source. CONSTITUTION:At first, an optical switch 7 couples an optical cord 6A and an optical fiber 3 to be measured, and the light of a light source 5A having a wavelength lambda1 is incident to the fiber 3 in such a state that the fiber 3 is straight and the light output P1 thereof is measured by a light detector 4. Next, light output P2 is measured by the detector 4 in such a state 3A that the fiber 3 is bent by a bending imparting part 8. Next, the switch 7 is changed over to successively couple the fiber 3 with optical cords 6B, 6C. The light outputs P3-P6 are measured with respect to respective couplings in the straight and bent states of the fiber 3. From the light outputs P1-P6 thus calculated, the magnitude relation between the cut-off wavelength of the fiber 3 and the wavelengths lambda1, lambda2, lambda3 of the light source is judged. By this method, the cut-off wavelength of the optical fiber can be rapidly checked.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は単一モード光ファイバの遮断波長が所定の規格
範囲内にあるかどうかを迅速に検定するための方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for rapidly testing whether the cutoff wavelength of a single mode optical fiber is within a predetermined standard range.

【従来の技術] 光ファイバの伝搬モード数は波長により変化する。広帯
域伝送特性を与える単一モード動作波長域を、使用する
光源波長に合わせて規格として定めることが重要である
。単一モード動作をする最短波長が遮断波長とよばれる
。その定義についての国際的議論がCCITYの場にお
いて行われており、厳密な意味での合意は未だ得られて
いないが大筋では以下に述べる内容で議論がすすめられ
ている。すなわち、光ファイバに光が入射されていると
き、入射端から約2m程度の位置で一定曲げ半径の曲り
を与えたときに出射端における光パワーが大きく変化す
る波長の上限を遮断波長と定義している。
[Prior Art] The number of propagation modes in an optical fiber changes depending on the wavelength. It is important to define a single mode operating wavelength range that provides broadband transmission characteristics as a standard according to the wavelength of the light source used. The shortest wavelength for single mode operation is called the cutoff wavelength. An international discussion on its definition is being held at the CCITY, and although agreement in the strict sense has not yet been reached, the general discussion is proceeding on the following points. In other words, when light is input into an optical fiber, the upper limit of the wavelength at which the optical power at the output end changes significantly when a bend with a constant bending radius is applied at a position approximately 2 m from the input end is defined as the cutoff wavelength. ing.

第2図は上述の定義に従って遮断波長を測定する従来の
方法(Y、KatsuyaIla et al、 ”N
ew Methodfor  Measuring  
V−Value  of  a  Single  −
ModeOptlcal  Fibre、  ” 、 
 Electron、  Lett、12. 25゜p
p668−670.1976、)を示す図であって、1
は白色光源、2は分光器、3は被測定光ファイバ、4は
光検出器である。測定手順は、まずはじめに第2図(A
) に示すように被測定光ファイバに曲りを与えない状
態で分光器2を駆動して、あらかじめ定められた波長範
囲の光出力PA(λ)を各波長λ毎に連続的に光検出器
4で受講し、記録する。次に第2図(B) に示すよう
に被測定光ファイバに曲りを与え、同様の測定を行ない
光出力の波長依存性pe(λ)を求める。次に、曲り損
失の波長依存性α(λ)を時代で算出する。
Figure 2 shows the conventional method of measuring the cutoff wavelength according to the above definition (Y, Katsuya Ila et al, ``N
ew Method for Measuring
V-Value of a Single -
ModeOptlcal Fiber, ”,
Electron, Lett, 12. 25゜p
p668-670.1976,), 1
2 is a white light source, 2 is a spectroscope, 3 is an optical fiber to be measured, and 4 is a photodetector. The measurement procedure begins with Figure 2 (A
), the spectrometer 2 is driven without bending the optical fiber to be measured, and the optical output PA (λ) in a predetermined wavelength range is continuously transmitted to the photodetector 4 for each wavelength λ. Take the course and record it. Next, as shown in FIG. 2(B), the optical fiber to be measured is bent and similar measurements are performed to determine the wavelength dependence pe(λ) of the optical output. Next, the wavelength dependence α(λ) of the bending loss is calculated in terms of age.

α(λ) −10108to [PA(λ)/Pa(λ
)] 第3図はこのような方法で得られた実験データの
一例である。
α(λ) −10108to [PA(λ)/Pa(λ
)] Figure 3 is an example of experimental data obtained by such a method.

遮断波長λ。はα (λ)〉0となる最長波長として求
められ、第3図の例では曲率半径Rの値にかかわらず、
λ、=1.24μmとなる。
Cutoff wavelength λ. is determined as the longest wavelength such that α (λ)〉0, and in the example in Figure 3, regardless of the value of the radius of curvature R,
λ=1.24 μm.

[発明が解決しようとする問題点1 以上の説明かられかるように遮断波長の測定には曲りの
あるときとないときの2度の分光測定が必要であり、1
心当り通常10分程度の時間を要する。このため、例え
ば600心ケーブルの完成検査では、遮断波長の検査だ
けでも、のべ100時間もかかるという欠点があった。
[Problem to be solved by the invention 1 As can be seen from the above explanation, measurement of the cutoff wavelength requires two spectroscopic measurements, one with bending and one without bending.
It usually takes about 10 minutes. For this reason, for example, in the final inspection of a 600-fiber cable, there was a drawback that it took a total of 100 hours just to inspect the cutoff wavelength.

本発明の目的は遮断波長の検定を迅速に行い、検査に要
する時間を短縮し、低価格な光ファイバケーブルを提供
することにある。
An object of the present invention is to quickly verify the cutoff wavelength, shorten the time required for the test, and provide a low-cost optical fiber cable.

[問題点を解決するための手段] このような目的を達成するために、本発明は、被測定光
ファイバに曲げを与えない状態および曲げを与えた状態
で特定波長の光を入射して、それぞれ被測定光ファイバ
の出射光を測定し、曲げの有無による出射光の強度変化
量と、あらかじめ定めた閾値との大小関係を調べ、大小
関係から遮断波長と入射光の波長との大小関係を判定す
ることを特徴とする。
[Means for Solving the Problems] In order to achieve such an object, the present invention involves injecting light of a specific wavelength into an optical fiber to be measured in an unbent state and in a bent state, The output light of each optical fiber to be measured is measured, and the magnitude relationship between the intensity change of the output light due to the presence or absence of bending and a predetermined threshold value is investigated, and the magnitude relationship between the cutoff wavelength and the wavelength of the incident light is determined from the magnitude relationship. It is characterized by making a judgment.

[作 用] 本発明によれば、光ファイバに曲げを与える前後の光出
力変化量とあらかじめ定めた閾値との大小関係で、その
光ファイバの遮断波長と光源波長との大小関係を判定す
ることにより、光ファイバの遮断波長の検定を従来法に
比べ100倍以上に迅速に行うことができる。
[Function] According to the present invention, the magnitude relationship between the cutoff wavelength of the optical fiber and the light source wavelength is determined based on the magnitude relationship between the amount of change in optical output before and after bending the optical fiber and a predetermined threshold value. As a result, the cutoff wavelength of an optical fiber can be verified more than 100 times faster than conventional methods.

[実施例] 以下に図面を参照して本発明の実施例を詳細に説明する
[Examples] Examples of the present invention will be described in detail below with reference to the drawings.

第1図は本発明の詳細な説明する図であって、5A、5
8.5Gは波長がそれぞれλ墓、λ2.λ3の光源、 
6A、8B、6Gはそれぞれ光コード、7は光スィッチ
、8は曲げ付与部である。遮断波長検定操作は以下の如
〈実施される。
FIG. 1 is a diagram illustrating the present invention in detail, 5A, 5
8.5G has wavelengths of λ, λ2, and λ2, respectively. λ3 light source,
6A, 8B, and 6G are optical cords, 7 is an optical switch, and 8 is a bending section. The cutoff wavelength verification operation is carried out as follows.

■はじめに光スィッチ7は光コード6Aと被測定ファイ
バ3を結合し、被測定光ファイバ3が真直な状態で波長
λ、の光源5Aの光を入射し、その光出力P、が光検出
器4で測定される。
■Introduction The optical switch 7 connects the optical cord 6A and the fiber under test 3, and when the optical fiber 3 under test is in a straight state, the light from the light source 5A with the wavelength λ is input, and the optical output P is transmitted to the photodetector 4. It is measured in

■次に曲げ付与部8により被測定光ファイバが3Aに示
すように曲げられた状態で光出力P2を光検出器4で測
定する。
(2) Next, the optical fiber to be measured is bent by the bending unit 8 as shown in 3A, and the optical output P2 is measured by the photodetector 4.

■次に光スィッチ7を切りかえて光コード6Bと被測定
光ファイバ3を結合させ、波長λ、の光源5Bの光を曲
げられた状態の被測定光ファイバ3Bに導く。このとき
の光出力P、を測定した後、 ■曲げを解除し、光出力P4を測る。  ′■次に、光
スィッチ7を切りかえて光コード6Cと被測定光ファイ
バ3を結合させ、波長λ3の光源5Cの光を真直な状態
の被測定光ファイバ3に導き、このときの光出力P、を
測定した後、 ■曲げを与え、光出力P6を測定する。
(2) Next, the optical switch 7 is switched to couple the optical cord 6B and the optical fiber 3 to be measured, and the light from the light source 5B having the wavelength λ is guided to the bent optical fiber 3B to be measured. After measuring the optical output P at this time, (1) Release the bending and measure the optical output P4. '■Next, the optical switch 7 is switched to couple the optical cord 6C and the optical fiber 3 to be measured, and the light from the light source 5C with wavelength λ3 is guided to the optical fiber 3 to be measured in a straight state, and the optical output P at this time is After measuring , (2) Apply bending and measure the optical output P6.

曲りによる損失は第3図に示したようなふるまいをする
から以上求めた6つの光出力PI、P2゜Ps+ P4
.Ps、Paから光ファイバ3の遮断波長λ。と光源波
長λ1.λ2.λ3との大小関係を以下の如く判定する
ことができる。
Since the loss due to bending behaves as shown in Figure 3, the six optical outputs PI obtained above are P2゜Ps+P4
.. The cutoff wavelength λ of the optical fiber 3 is determined from Ps and Pa. and the light source wavelength λ1. λ2. The magnitude relationship with λ3 can be determined as follows.

まず、曲りによる損失値α(λ1)、α(λ2)。First, loss values α(λ1) and α(λ2) due to bending.

α(λ3)を次式で算出する。α(λ3) is calculated using the following formula.

、(λI)=101ag (p+/p2)  (da)
       D)α(λ2) = 10 log  
(P4/ P3)  (dB)       (2)α
(λ3) = 10 log (Ps/ Pa)  (
dB)       (3)次に判定閾値をΔP (d
B)として、α(λ1)〉ΔPなら λ。〉λ+ (i
−1,2,3)  (4)αζλ+)<ΔPなら λ。
, (λI)=101ag (p+/p2) (da)
D) α(λ2) = 10 log
(P4/P3) (dB) (2) α
(λ3) = 10 log (Ps/Pa) (
dB) (3) Next, set the judgment threshold to ΔP (d
As B), if α(λ1)>ΔP, then λ. 〉λ+ (i
-1, 2, 3) (4) If αζλ+)<ΔP then λ.

〈λ+ (i−1,2,3)  (5)と判定する。Δ
Pの値の選び方は遮断波長と試験波長との大小関係判定
の精度に影響を与えるが、CCITTの議論にみられる
ように、ΔP = 0.1dB程度とすることにより、
遮断波長検定精度を0.01μm程度とすることができ
、実用上十分な精度が得られる。
It is determined that <λ+ (i-1, 2, 3) (5). Δ
How to choose the value of P affects the accuracy of determining the magnitude relationship between the cutoff wavelength and the test wavelength, but as seen in the CCITT discussion, by setting ΔP = about 0.1 dB,
The cutoff wavelength verification accuracy can be set to about 0.01 μm, which is sufficient for practical use.

例えば1.3μmで使用する単一モード光ファイバの遮
断波長規格は、Q、10<λc < 1.29μmであ
るから、例えば光源5Aを波長1.10μmのレーザダ
イオード、光源5Bを波長1.29μmのレーザダイオ
ードとし、曲げ半径R= 10amとすることにより、
α(1,10) > 0.1dBかつα(1,29) 
< 0.1dBのとき1.10<λc <1.29μm
であり合格。
For example, the cutoff wavelength standard for a single mode optical fiber used at 1.3 μm is Q, 10 < λc < 1.29 μm, so for example, the light source 5A is a laser diode with a wavelength of 1.10 μm, and the light source 5B is a wavelength of 1.29 μm. By setting the laser diode to , and the bending radius R = 10 am,
α(1,10) > 0.1dB and α(1,29)
When < 0.1 dB, 1.10 < λc < 1.29 μm
And passed.

a (1,10)<O,ldBならばλ、 <1.10
μmで不合格、 a (1,28)>0.1dBならば
λc)1.29μmで不合格と検定される。さらに光源
5Cの波長λ3を例えば1.20μmとすれば、検定合
格光ファイバ(1,10<λc<1.29μm)に対し
てa (1,20)の値とΔPの大小関係から1.10
<λc<1.20μm、または1.20<λ。<1.2
9μmのいずれであるかの判定もできる。(1) 、 
(2) 、 (31式と第1図の構成から理解できるよ
うに、この測定では光源5A。
If a (1, 10) < O, ldB then λ, < 1.10
If a (1, 28) > 0.1 dB, then λc) 1.29 μm, the test will fail. Furthermore, if the wavelength λ3 of the light source 5C is, for example, 1.20 μm, then the magnitude relationship between the value of a (1, 20) and ΔP is 1.10 for a certified optical fiber (1, 10 < λc < 1.29 μm).
<λc<1.20μm, or 1.20<λ. <1.2
It is also possible to determine which one is 9 μm. (1),
(2) (As can be understood from Equation 31 and the configuration in Figure 1, the light source 5A was used in this measurement.

5B、5Cと光コード6A、6B、6Cとの結合損失や
、光スィッチ7の挿入損失の影響を全く受けないという
利点がある。また、光源としては従来の分光器出力と比
べて1000倍以上光出力が大きいレーザダイオードを
用いることができるため、高効率光入射のための高精度
軸合わせが不要であり、かつ確度の高い検定が可能とな
る。
It has the advantage that it is completely unaffected by the coupling loss between 5B, 5C and the optical cords 6A, 6B, 6C and the insertion loss of the optical switch 7. In addition, as a light source, a laser diode with an optical output 1000 times larger than that of a conventional spectrometer can be used, eliminating the need for high-precision axis alignment for highly efficient light input, and enabling highly accurate verification. becomes possible.

光源5A、5B、5Cとして発光ダイオードと狭帯域フ
ィルタの組み合せを用いることもできる。すなわち、通
常の発光ダイオードは発光スペクトル幅が0.1 μm
以上あり、そのままでは高精度検定ができないが、例え
ば誘電体多層膜で作成した波長フィルタで透過光のスペ
クトル幅を0.O1μm程度にすることにより高精度な
検定が可能となる。このとき透過光の光出力は発光ダイ
オード出力の約1/10程度に低下するが、ハロゲンラ
ンプの光を分光器で分光して用いる従来法に比べれば十
分大きい光量を受けることができ、かつ発光ダイオード
は非常に安価で温度制御装置を用いなくとも出力安定性
にすぐれているという利点がある。
A combination of light emitting diodes and narrow band filters can also be used as the light sources 5A, 5B, 5C. In other words, a normal light emitting diode has an emission spectrum width of 0.1 μm.
Due to the above, it is not possible to perform high-accuracy verification as is, but for example, a wavelength filter made of a dielectric multilayer film can be used to reduce the spectral width of transmitted light to 0. By setting the diameter to about 1 μm, highly accurate verification becomes possible. At this time, the optical output of the transmitted light decreases to about 1/10 of the light emitting diode output, but compared to the conventional method in which the light from a halogen lamp is separated using a spectrometer, it is possible to receive a sufficiently large amount of light and emit light. Diodes have the advantage of being very inexpensive and having excellent output stability without the need for a temperature control device.

ここに述べた実施例では光源の数を3個としているが、
光源の数をふやすことにより遮断波長の存在範囲をより
詳細に知ることができる。また、目的を規格検定に限る
場合には光源は規格上限波長と規格下限波長の2波長と
することにより検定作業を高速化することができる。
In the embodiment described here, the number of light sources is three, but
By increasing the number of light sources, the range in which the cutoff wavelength exists can be known in more detail. Further, when the purpose is limited to standard verification, the verification work can be speeded up by using a light source with two wavelengths, the standard upper limit wavelength and the standard lower limit wavelength.

以上述べたような工程で遮断波長の検定を行うことがで
きるから、その所要時間は光検出器の安定時間できまり
、例えば5秒以内で可能である。
Since the cutoff wavelength can be verified through the steps described above, the required time is determined by the stabilization time of the photodetector, and can be done within 5 seconds, for example.

すなわち、従来法ではIO分程度必要であ)たのに比べ
100倍もの高速検定が可能となる。
In other words, it is possible to perform verification 100 times faster than the conventional method, which required about IO minutes.

[発明の効果] 以上説明したように、光ファイバに曲げを与える前後の
光出力変化量とあらかじめ定めた閾値との大小関係で、
その光ファイバの遮断波長と光源波長との大小関係を判
定することにより、光ファイバの遮断波長の検定を従来
法に比べ100倍以上に迅速に行うことができる。
[Effects of the Invention] As explained above, depending on the magnitude relationship between the amount of change in optical output before and after bending the optical fiber and a predetermined threshold value,
By determining the magnitude relationship between the cutoff wavelength of the optical fiber and the light source wavelength, the cutoff wavelength of the optical fiber can be verified more than 100 times faster than conventional methods.

また、光源として出力の大きいレーザダイオードや、安
価で安定性のすぐれた発光ダイオードを用いることがで
きるため、確度の高い検定が可能となる利点がある。
Furthermore, since a laser diode with a large output or a light emitting diode with low cost and excellent stability can be used as a light source, there is an advantage that highly accurate verification is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構成図、 第2図は遮断波長を測定するための従来の方法を説明す
る図、 第3図は曲げ損失の波長依存性特性図である。 1・・・白色光源、 2・・・分光器、 3.3A・・・被測定光ファイバ、 4・・・光検出器、 5A、5B、5C・・・光源、 6A、6B、6C・・・光コード、 7・・・光スィッチ、 8・・・曲げ付与部。
FIG. 1 is a block diagram of an embodiment of the present invention, FIG. 2 is a diagram illustrating a conventional method for measuring a cutoff wavelength, and FIG. 3 is a diagram of wavelength dependence characteristics of bending loss. DESCRIPTION OF SYMBOLS 1...White light source, 2...Spectroscope, 3.3A...Optical fiber to be measured, 4...Photodetector, 5A, 5B, 5C...Light source, 6A, 6B, 6C... - Optical cord, 7... Optical switch, 8... Bending section.

Claims (1)

【特許請求の範囲】 1)被測定光ファイバに曲げを与えない状態および曲げ
を与えた状態で特定波長の光を入射して、それぞれ該被
測定光ファイバの出射光を測定し、曲げの有無による出
射光の強度変化量と、あらかじめ定めた閾値との大小関
係を調べ、該大小関係から遮断波長と前記入射光の波長
との大小関係を判定することを特徴とする光ファイバ遮
断波長検定方法。 2)前記入射光の波長が検定すべき遮断波長範囲の上限
および下限の二つの波長であることを特徴とする特許請
求の範囲第1項記載の光ファイバ遮断波長検定方法。
[Claims] 1) Light of a specific wavelength is incident on the optical fiber to be measured in an unbent state and in a bent state, and the output light of the optical fiber to be measured is measured, and the presence or absence of bending is determined. A method for testing an optical fiber cutoff wavelength, characterized in that the magnitude relationship between the amount of change in the intensity of the emitted light and a predetermined threshold is determined, and the magnitude relationship between the cutoff wavelength and the wavelength of the incident light is determined from the magnitude relationship. . 2) The optical fiber cutoff wavelength testing method according to claim 1, wherein the wavelengths of the incident light are two wavelengths, an upper limit and a lower limit of a cutoff wavelength range to be tested.
JP5219287A 1987-03-09 1987-03-09 Method for checking cut-off wavelength of optical fiber Pending JPS63218838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5219287A JPS63218838A (en) 1987-03-09 1987-03-09 Method for checking cut-off wavelength of optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5219287A JPS63218838A (en) 1987-03-09 1987-03-09 Method for checking cut-off wavelength of optical fiber

Publications (1)

Publication Number Publication Date
JPS63218838A true JPS63218838A (en) 1988-09-12

Family

ID=12907930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5219287A Pending JPS63218838A (en) 1987-03-09 1987-03-09 Method for checking cut-off wavelength of optical fiber

Country Status (1)

Country Link
JP (1) JPS63218838A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2237010A3 (en) * 2009-03-30 2016-11-02 Sumitomo Electric Industries, Ltd. Cutoff wavelength measuring method and optical communication system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2237010A3 (en) * 2009-03-30 2016-11-02 Sumitomo Electric Industries, Ltd. Cutoff wavelength measuring method and optical communication system

Similar Documents

Publication Publication Date Title
CN109416438B (en) Optical fiber evaluation method and optical fiber evaluation device
US9377377B2 (en) Methods and apparatus for measuring multimode optical fiber bandwidth
JPS62110160A (en) Optical time-region reflection measurement
US8223323B2 (en) Cutoff wavelength measuring method and optical communication system
CN104613889B (en) A kind of crooked sensory measuring system based on optical fiber ring laser
US6650810B1 (en) Tunable filter
US8154715B2 (en) Method for monitoring and measuring optical properties of device in polarization maintaining fibers by using reference fiber bragg grating and fiber components manufactured thereby
FR2597986A1 (en) OPTICAL COUPLER DEVICE FOR CALIBRATING OR CALIBRATING A REFLECTOMETER, ECHOMETRY SYSTEM, AND METHODS OF CHARACTERIZING A COUPLER AND MEASURING ATTENUATIONS USING THE DEVICE
JP2004502160A (en) Apparatus and method for measuring emissions substantially simultaneously
JPS63218838A (en) Method for checking cut-off wavelength of optical fiber
JP2004505240A (en) Measurement of insertion loss by reflection measurement for optical components
CN111157467A (en) Active optical fiber core absorption coefficient measuring device and method
US6614527B2 (en) Spectral bandwidth calibration of an optical spectrum analyzer
CN111256960B (en) Optical device, optical chip loss testing device and method
JP3388496B2 (en) Characteristic evaluation method of single mode optical fiber
US20210296848A1 (en) Laser diagnostics apparatus
CN109506788A (en) Optical wavelength measurement system based on Fourier&#39;s mode-locked laser
JPH10160636A (en) Method for evaluating characteristic of optical fiber constituted of a plurality of single-mode optical fibers
JPH0953999A (en) Optical external force detector
JP2004205271A (en) Wavemeter and fbg sensing apparatus using the same
JPS6147534A (en) Method and apparatus for measuring light loss characteristic of optical fiber
CN105784641A (en) Method for measuring refractive index based on cascade Sagnac interferometer
JPH0829293A (en) Apparatus and method for measurement of polarization mode dispersion
JPH0416735A (en) Method for measuring optical part
JPS63205531A (en) Measuring method for temperature by optical fiber