JPS6321835B2 - - Google Patents

Info

Publication number
JPS6321835B2
JPS6321835B2 JP57072382A JP7238282A JPS6321835B2 JP S6321835 B2 JPS6321835 B2 JP S6321835B2 JP 57072382 A JP57072382 A JP 57072382A JP 7238282 A JP7238282 A JP 7238282A JP S6321835 B2 JPS6321835 B2 JP S6321835B2
Authority
JP
Japan
Prior art keywords
wave
main chamber
chamber
air
air duct
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57072382A
Other languages
Japanese (ja)
Other versions
JPS58187586A (en
Inventor
Akira Ichikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57072382A priority Critical patent/JPS58187586A/en
Publication of JPS58187586A publication Critical patent/JPS58187586A/en
Publication of JPS6321835B2 publication Critical patent/JPS6321835B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/141Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy with a static energy collector
    • F03B13/142Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy with a static energy collector which creates an oscillating water column
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Description

【発明の詳細な説明】 本発明は海などに生じる波のエネルギーを空気
エネルギーに変換して動力や熱などを取り出すた
めの沿岸固定形の波力エネルギー変換装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a shore-fixed type wave energy conversion device for converting the energy of waves generated in the sea or the like into air energy and extracting power, heat, etc.

従来この種の装置として第1図に示すものがあ
る。図において、1は防波堤あるいは岸壁、2は
海底(水深10m〜20m位)、3は前記防波堤ある
いは岸壁1と海底2に強固に固定した堅牢な主チ
ヤンバー(例えば幅10m、奥行5m〜6m位)で
あつて、その波受け側下部には海水を出入せしめ
るための通水口4を、また頂部には空気を出入せ
しめるための通気口5を有している。6は前記主
チヤンバー3の通気口5に一端を接続した前記主
チヤンバー3の水平面断面積より非常に狭い流路
断面積(例えば50対1)を有する空気ダクトであ
つて、その他端側は大気中に開放してある。7は
前記空気ダクト6内に装着した空気タービン、8
は空気タービン7に連結した発電機である。
A conventional device of this type is shown in FIG. In the figure, 1 is a breakwater or quay, 2 is the seabed (water depth of about 10m to 20m), and 3 is a solid main chamber firmly fixed to the breakwater or quay 1 and the seabed 2 (for example, 10m wide and 5m to 6m deep). It has a water inlet 4 at the lower part on the wave receiving side for letting seawater in and out, and a vent 5 at the top part for letting air in and out. Reference numeral 6 denotes an air duct having one end connected to the vent 5 of the main chamber 3 and having a flow passage cross-sectional area much narrower (for example, 50:1) than the horizontal cross-sectional area of the main chamber 3, and the other end is connected to the atmosphere. It is open inside. 7 is an air turbine installed in the air duct 6;
is a generator connected to an air turbine 7.

次に動作について説明する。主チヤンバー3の
前面に波9が押し寄せると通水口4から海水が主
チヤンバー3内に流入して主チヤンバー3内の海
面10が上昇し逆に波9が引くときには通水口4
から主チヤンバー3内の海水が流出して主チヤン
バー3内の海面10が下降するので主チヤンバー
3内の海面10は波9が押し寄せて引く度に上下
に変位する。この海面10の変位により海面10
上部の主チヤンバー3内空間の空気が圧縮、膨張
を繰り返すので空気ダクト6内に空気の流れが生
じる。この空気の流れが空気ダクト6内で空気タ
ービン7を駆動するので空気タービン7に連結さ
れた発電機8によつて発電が行なわれる。その際
空気ダクト6内の空気の流れは往復方向の流れと
なるので通常の空気タービンを用いる場合にはタ
ービン部での空気の流れが一方向の流れになるよ
うに整流機構を設ける必要があるが、しかし往復
空気流れ中においても常に同一方向に回転する特
殊な空気タービンを用いれば整流機構は不必要と
なる。従つて以下の詳細ではその説明を簡単にす
るために整流機構の不必要な特殊な空気タービン
を用いた場合について説明する。
Next, the operation will be explained. When the waves 9 rush onto the front surface of the main chamber 3, seawater flows into the main chamber 3 from the water inlet 4, causing the sea level 10 inside the main chamber 3 to rise, and conversely, when the waves 9 recede, the water inlet 4
Since the seawater in the main chamber 3 flows out and the sea level 10 in the main chamber 3 falls, the sea level 10 in the main chamber 3 is displaced up and down each time a wave 9 rises and recedes. Due to this displacement of sea level 10, sea level 10
Since the air in the space inside the upper main chamber 3 is repeatedly compressed and expanded, an air flow is generated in the air duct 6. This air flow drives an air turbine 7 within the air duct 6, so that a generator 8 connected to the air turbine 7 generates electricity. At this time, the air flow in the air duct 6 is a reciprocating flow, so when using a normal air turbine, it is necessary to provide a rectifying mechanism so that the air flow in the turbine section is unidirectional. However, if a special air turbine is used that always rotates in the same direction even during reciprocating air flow, a flow straightening mechanism is unnecessary. Therefore, in the following details, in order to simplify the explanation, a case will be described in which a special air turbine that does not require a rectifying mechanism is used.

従来の波力エネルギー変換装置は以上のように
構成されているので、異常に高い波高の波(以後
大波という)がこの装置に到達して主チヤンバー
3内の海面の最高位置が異常に上昇すると空気ダ
クト6内の空気流速が非常に増大して空気タービ
ン7および発電機8の回転を異常に高め、はては
これを破損に至らしめ、さらには空気タービン7
および発電機8までに海水が侵入するなどの欠点
があつた。
Since the conventional wave energy conversion device is configured as described above, if a wave with an abnormally high wave height (hereinafter referred to as a large wave) reaches this device and the highest sea level in the main chamber 3 rises abnormally, The air velocity in the air duct 6 increases significantly, causing the rotation of the air turbine 7 and the generator 8 to become abnormally high, which may even lead to damage to the air turbine 7 and the generator 8.
Also, there were drawbacks such as seawater entering the generator 8.

本発明は上記した従来装置の欠点を除去するた
めになされたもので、上部開口と下部開口を有す
る副チヤンバーを主チヤンバーの波受け側上部に
固定すると共にその上部開口は空気ダクトの他端
側に接続しかつ下部開口は主チヤンバーの通水口
よりも上方に位置させてこれが異常波高の波の時
のみ水によつて密封されるようにすることによつ
て、大波の時には空気流路が密封されるようにし
て空気ダクト内の空気流量の過大増化を防止でき
る安全性の高い波力エネルギー変換装置を提供す
ることを目的とする。
The present invention has been made in order to eliminate the drawbacks of the conventional device described above, in which a sub-chamber having an upper opening and a lower opening is fixed to the upper part of the wave-receiving side of the main chamber, and the upper opening is located at the other end of the air duct. By connecting the lower opening to the main chamber and locating it above the water inlet of the main chamber so that it is sealed by water only during waves of abnormal wave height, the air flow path is sealed during large waves. An object of the present invention is to provide a highly safe wave energy conversion device that can prevent an excessive increase in the air flow rate in an air duct.

以下本発明の一実施例を第2図について説明す
る。図において、11は主チヤンバー3の波受け
側上部に強固に固定した主チヤンバー3より小型
の副チヤンバーであつて、この副チヤンバー11
は前記主チヤンバー3の通水口4よりも上方にあ
つてしかも通常の波高の場合には海水に浸漬され
ない位置に設けられた下部開口12と、前記空気
ダクト6の他端側に接続した上部開口14とを有
している。またこの副チヤンバー11の波受け側
前面は大波を受けた時に副チヤンバー11に加わ
る波力を弱めるために波の進行方向に傾斜させて
あり、さらにその傾斜面に多数の消波突起13を
付加してある。
An embodiment of the present invention will be described below with reference to FIG. In the figure, reference numeral 11 denotes a subchamber smaller than the main chamber 3 that is firmly fixed to the upper part of the wave receiving side of the main chamber 3.
A lower opening 12 is provided above the water inlet 4 of the main chamber 3 and is not immersed in seawater at normal wave height, and an upper opening is connected to the other end of the air duct 6. 14. In addition, the wave-receiving front surface of the sub-chamber 11 is inclined in the direction of wave propagation in order to weaken the wave force applied to the sub-chamber 11 when a large wave is received, and a large number of wave-dissipating protrusions 13 are added to the inclined surface. It has been done.

次に動作について説明する。通常の波高の波が
押し寄せる場合には副チヤンバー11の下部開口
12は海水に接しないのでこの下部開口12から
空気が出入し前記した従来装置とまつたく同様に
動作する。次に、大波が15,16,17のよう
に押し寄せてくると、副チヤンバー11直下の海
面が主チヤンバー3内の海面と同様に18,1
9,20のように上昇する。その際海面が19の
位置にくると副チヤンバー11の下部開口12が
閉じられてしまうので主チヤンバー3から空気ダ
クト6内に流れ込む空気流量が制限され、したが
つて空気タービン7を通過する空気流速は過大に
増大せず、空気タービン7は過回転に至らない。
また大波が引いて主チヤンバー3内の海面が下降
する場合も、副チヤンバー11の下部開口12が
海水によつて閉じられている間は空気ダクト6か
ら主チヤンバー3内に流れ込む空気流量が制限さ
れるので空気タービン7の過回転は起らない。こ
のように副チヤンバー11の下部開口12が大波
時の海水によつて閉じられた状態では空気ダクト
6内および両チヤンバー3および11内の上方部
に空気室が形成されるので空気タービン7および
発電機8が海水に浸かるということがない。
Next, the operation will be explained. When waves of a normal wave height surge, the lower opening 12 of the auxiliary chamber 11 does not come into contact with seawater, so air enters and exits through the lower opening 12, and the device operates in the same manner as the conventional device described above. Next, when large waves come in waves 15, 16, 17, the sea level directly below the subchamber 11 becomes 18, 1, just like the sea level in the main chamber 3.
It goes up like 9, 20. At this time, when the sea level reaches position 19, the lower opening 12 of the secondary chamber 11 is closed, so the flow rate of air flowing into the air duct 6 from the main chamber 3 is restricted, and therefore the air flow rate passing through the air turbine 7 does not increase excessively and the air turbine 7 does not reach overspeed.
Furthermore, even when the sea level inside the main chamber 3 falls due to receding large waves, the flow rate of air flowing into the main chamber 3 from the air duct 6 is restricted while the lower opening 12 of the sub-chamber 11 is closed by seawater. Therefore, over-rotation of the air turbine 7 does not occur. In this way, when the lower opening 12 of the sub chamber 11 is closed by seawater during a large wave, an air chamber is formed in the air duct 6 and in the upper part of both chambers 3 and 11, so that the air turbine 7 and power generation There is no chance that Aircraft 8 will be submerged in seawater.

また大波時に海水は消波突起13を付加した副
チヤンバー11の傾斜面を駆け上がつてその間に
波力エネルギーの相当分を消費するために主チヤ
ンバー3に過大な波力エネルギーが到達せず、さ
らに装置に加わる波の力も小さくなつて装置の安
全性が高くなる。
In addition, during large waves, seawater runs up the slope of the subchamber 11 to which the wave-dissipating protrusion 13 is added, consuming a considerable portion of the wave energy during that time, so that excessive wave energy does not reach the main chamber 3. Furthermore, the force of the waves applied to the device is also reduced, making the device safer.

上記実施例においては副チヤンバー11の波受
け側前面を波の進行方向に向けて傾斜させてある
がこれを鉛直に設けてもよいし、またその傾斜面
の消波突起13は必ずしも設ける必要はない。さ
らに副チヤンバー11を主チヤンバー3よりも小
型にしたのは副チヤンバー11が平常時には全く
不必要で使用度が極めて少ないということから経
済面を考えてのことである。
In the above embodiment, the front surface of the subchamber 11 on the wave receiving side is inclined toward the direction of wave propagation, but it may be provided vertically, and the wave-dissipating protrusion 13 on the inclined surface is not necessarily provided. do not have. Furthermore, the reason why the auxiliary chamber 11 is made smaller than the main chamber 3 is because the auxiliary chamber 11 is completely unnecessary in normal times and is used very rarely, so it is economical.

以上のように本発明は上部開口と下部開口を有
する副チヤンバーを主チヤンバーの波受け側上部
に固定すると共にその上部開口は空気ダクトの他
端側に接続しかつ下部開口は主チヤンバーの通水
口よりも上方に位置させてこれが異常波高の波の
時のみ水によつて密封されるようにしたものであ
るから空気タービンおよび発電機の過回転による
破損、水侵入による空気タービンおよび発電機の
機能障害を防止でき、安全性および信頼性の高い
波力エネルギー変換装置が得られる効果がある。
As described above, the present invention fixes a sub chamber having an upper opening and a lower opening to the upper part of the wave receiving side of the main chamber, and the upper opening is connected to the other end of the air duct, and the lower opening is the water inlet of the main chamber. This structure is located above the water so that it is sealed by water only during waves of abnormal wave height, which can cause damage to the air turbine and generator due to overspeeding, and damage to the air turbine and generator due to water intrusion. This has the effect of preventing failures and providing a wave energy conversion device that is highly safe and reliable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来装置を示す縦断側面図、第2図は
本発明装置の一実施例を示す縦断側面図である。
なお、図中同一符号は同一または相当部分を示
す。 1は防波堤あるいは岸壁、2は海底、3は主チ
ヤンバー、4は通水口、5は通気口、6は空気ダ
クト、7は空気タービン、8は発電機、9は波、
10は海面、11は副チヤンバー、12は下部開
口、13は消波突起、14は上部開口、15,1
6,17は大波、18,19,20は副チヤンバ
ー11直下の海面である。
FIG. 1 is a vertical side view showing a conventional device, and FIG. 2 is a vertical side view showing an embodiment of the device of the present invention.
Note that the same reference numerals in the figures indicate the same or corresponding parts. 1 is a breakwater or quay, 2 is a seabed, 3 is a main chamber, 4 is a water inlet, 5 is a vent, 6 is an air duct, 7 is an air turbine, 8 is a generator, 9 is a wave,
10 is the sea surface, 11 is the subchamber, 12 is the lower opening, 13 is the wave-dissipating protrusion, 14 is the upper opening, 15,1
6 and 17 are large waves, and 18, 19, and 20 are the sea surface directly below the subchamber 11.

Claims (1)

【特許請求の範囲】 1 波受け側下部に通水口をまた上部に通気口を
それぞれ有する主チヤンバーと、この主チヤンバ
ーの前記通気口に一端が接続された空気ダクト
と、この空気ダクト内に設けた空気タービンとを
備えて前記主チヤンバー内の水位の変動により前
記空気ダクト内に生じる空気の流れによつて前記
空気タービンを駆動するようにした波力エネルギ
ー変換装置において、上部開口と下部開口を有す
る副チヤンバーを前記主チヤンバーの波受け側上
部に固定すると共にその上部開口は前記空気ダク
トの他端側に接続しかつ下部開口は前記主チヤン
バーの通水口よりも上方に位置させてこれが異常
波高の波の時のみ水によつて密封されるようにし
たことを特徴とする波力エネルギー変換装置。 2 前記副チヤンバーが主チヤンバーよりも小型
である特許請求の範囲第1項記載の波力エネルギ
ー変換装置。 3 前記副チヤンバーの波受け側前面を波の進行
方向に向けて傾斜させた特許請求の範囲第1項ま
たは第2項記載の波力エネルギー変換装置。 4 前記副チヤンバーの波受け側前面の傾斜面に
多数の消波突起を設けた特許請求の範囲第3項記
載の波力エネルギー変換装置。
[Scope of Claims] 1. A main chamber having a water inlet at the lower part of the wave receiving side and a vent at the upper part, an air duct whose one end is connected to the vent of the main chamber, and a main chamber provided in the air duct. a wave energy converter comprising an air turbine having an upper opening and a lower opening, the air turbine being driven by an air flow generated within the air duct due to fluctuations in water level within the main chamber; A secondary chamber having a sub-chamber is fixed to the upper part of the wave receiving side of the main chamber, and its upper opening is connected to the other end side of the air duct, and its lower opening is located above the water inlet of the main chamber to prevent abnormal wave height. A wave energy conversion device characterized in that it is sealed by water only when there are waves. 2. The wave energy conversion device according to claim 1, wherein the auxiliary chamber is smaller than the main chamber. 3. The wave energy conversion device according to claim 1 or 2, wherein the wave-receiving side front surface of the sub-chamber is inclined toward the wave traveling direction. 4. The wave energy conversion device according to claim 3, wherein a large number of wave-dissipating protrusions are provided on the inclined surface of the front surface of the wave receiving side of the sub-chamber.
JP57072382A 1982-04-26 1982-04-26 Wave energy converting device Granted JPS58187586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57072382A JPS58187586A (en) 1982-04-26 1982-04-26 Wave energy converting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57072382A JPS58187586A (en) 1982-04-26 1982-04-26 Wave energy converting device

Publications (2)

Publication Number Publication Date
JPS58187586A JPS58187586A (en) 1983-11-01
JPS6321835B2 true JPS6321835B2 (en) 1988-05-09

Family

ID=13487678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57072382A Granted JPS58187586A (en) 1982-04-26 1982-04-26 Wave energy converting device

Country Status (1)

Country Link
JP (1) JPS58187586A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111350625A (en) * 2020-04-10 2020-06-30 中山大学 Compound induction type wave power generation energy gathering device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2753824B1 (en) * 2011-09-06 2016-01-06 Electric Waves, S.L. Caisson breakwater module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111350625A (en) * 2020-04-10 2020-06-30 中山大学 Compound induction type wave power generation energy gathering device
CN111350625B (en) * 2020-04-10 2021-07-20 中山大学 Compound induction type wave power generation energy gathering device

Also Published As

Publication number Publication date
JPS58187586A (en) 1983-11-01

Similar Documents

Publication Publication Date Title
US4258269A (en) Wave power generator
JPH0151673B2 (en)
US10989164B2 (en) Resonant unidirectional wave energy converter
JPS6123877A (en) Air circulation type wave-power generation set
US7726123B2 (en) Wave energy device
CN104153330B (en) Be provided with the breakwater of wave-type electric generator
JPS5572665A (en) Flow generating set
GB2340892A (en) Water driven pump
JPS6321835B2 (en)
WO2005095790A1 (en) Wave energy conversion apparatus
JPS6343581B2 (en)
KR101032988B1 (en) protection apparatus of oscillating water column type wave generation system
JPS6329063A (en) Flow turbine with draft tube
AU2018202718A1 (en) Wave Energy Converter
CN205501930U (en) Breakwater with wave power generating device
JPH0419362A (en) Wave power energy converter
KR102656251B1 (en) Tidal power generation device using surface water
JPS5844277A (en) Omnidirectional wave force converter
Moody The NEL oscillating water column: recent developments
CN108999146A (en) Height adjustable breakwater and method
JP7199001B1 (en) Tidal power generation device and tidal power generation method
CN109236547A (en) A kind of combined multi-stage capacitation marine tidal-current energy generation platform
GB2108590A (en) Liquid wave energy absorber
RU2046207C1 (en) Marine power generating plant
JPH09242657A (en) Module type wave activated power generating device