JPS63217627A - Electron beam lithography device - Google Patents

Electron beam lithography device

Info

Publication number
JPS63217627A
JPS63217627A JP4998587A JP4998587A JPS63217627A JP S63217627 A JPS63217627 A JP S63217627A JP 4998587 A JP4998587 A JP 4998587A JP 4998587 A JP4998587 A JP 4998587A JP S63217627 A JPS63217627 A JP S63217627A
Authority
JP
Japan
Prior art keywords
current
coil
electron beam
induction
main focus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4998587A
Other languages
Japanese (ja)
Inventor
Katsuhiro Kawasaki
河崎 勝浩
Hiroyuki Ito
博之 伊藤
Hiroyasu Kaga
広靖 加賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4998587A priority Critical patent/JPS63217627A/en
Publication of JPS63217627A publication Critical patent/JPS63217627A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electron Beam Exposure (AREA)

Abstract

PURPOSE:To enable the writing with high accuracy to be performed without deteriorating the throughput by a method wherein an induction compensating circuit to supply a main focus coil with current compensating an electromagnetic induction current generated in a main focus coil by the changing dynamic focus compensation coil is made in the title device. CONSTITUTION:When a dynamic focus compensation coil 13 is supplied with focus compensation current 51 at a time t1, a main focus coil 4 is supplied with induction current 52. On the other hand, induction current 53, which has the same intensity as, but in the reverse direction to, said current 52 produced by the focus compensation current 51 in the main focus coil 4, is produced through an induction compensating circuit 14 and flows into the main focus coil 4. In other words, the magnetic induction current 52 generated in the main focus coil 4 is offset by the induction current 53 flowing from the induction compensating circuit 14 to make main focus coil current 54 equivalent to the subjected to no change. Resultantly, even if the dynamic focus compensating circuit 13 is changed, the main focus coil 4 is apparently subjected to no electromagnetic induction current generated. Through these procedures, the writing accuracy can be increased without deteriorating the throughput.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電子線描画装置に係り、特に高速、高精度描画
に好適な電子線描画装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electron beam lithography system, and particularly to an electron beam lithography system suitable for high-speed, high-precision lithography.

〔従来の技術〕[Conventional technology]

従来技術を第5図を用いて説明する。電子銃1から放射
された電子4!2は、収束レンズ3により収束され、主
焦点コイル4により試料5上でフォーカスされる。一方
、描画データはCPU6から偏向信号発生部7に送られ
、描画パターンに応じた偏光信号を静電偏向器8、電磁
偏向器9に与え、電子線2を制御する。電子線2の位置
が決まると、ブランカ10に信号を与えて電子線2をオ
ン/オフさせて試料5を露光する。決められた領域の描
画を終了すると、ステージ制御回路11を介して試料5
を載せるステージ12を次の位置に移動させる。
The prior art will be explained using FIG. 5. Electrons 4!2 emitted from the electron gun 1 are converged by a converging lens 3 and focused onto a sample 5 by a principal focus coil 4. On the other hand, the drawing data is sent from the CPU 6 to the deflection signal generator 7, which applies polarization signals corresponding to the drawing pattern to the electrostatic deflector 8 and the electromagnetic deflector 9, thereby controlling the electron beam 2. Once the position of the electron beam 2 is determined, a signal is given to the blanker 10 to turn the electron beam 2 on and off to expose the sample 5. When the drawing of the determined area is completed, the sample 5 is transferred via the stage control circuit 11.
The stage 12 on which the image is placed is moved to the next position.

次に、描画方法を第6図によって説明する。ウェハ21
上のチップ22は、任意のフィールド23に分けられる
。第6図の例では、4フイールドで1チツプを構成しで
ある。フィールドとは、電磁偏向で電子線を制御する領
域のことである。
Next, the drawing method will be explained with reference to FIG. wafer 21
The upper chip 22 is divided into arbitrary fields 23. In the example shown in FIG. 6, one chip is composed of four fields. A field is an area where an electron beam is controlled by electromagnetic deflection.

フィールド23は、サブフィールド24と呼ばれる小さ
い領域に分割される。まず、サブフィールド■内を静電
偏向にて高速に描画し1次に、電磁偏向でサブフィール
ド■の位置決めを行う。このとき、発生する電子線の焦
点ぼけを補償するために、第5図の動的焦点補償率コイ
ル13に補償電(流を流す。電磁偏向器9に流す電磁偏
向信号と動的焦点補償コイル13に流す動的焦点補償信
号が十分整定された後、静電偏向器8による静電偏向に
てサブフィールド■を描画する。これをサブフィールド
■以降も繰り返してフィールドa全面を描画する。次に
、ステージ12を移動させ、フィールドbの位置決めを
行った後、同様にしてフィールドbを描画する。動的焦
点補償コイル13の働きは、いわば主焦点コイル4の焦
点距離を変えることであり、主焦点コイル4と近接して
設置される。そのため、動的焦点補償コイル13に補償
電流を流したときに発生する磁束が、主焦点コイル4と
鎖交し、主焦点コイル4に磁気誘導電流を発生させる。
Field 23 is divided into small areas called subfields 24. First, subfield (2) is drawn at high speed using electrostatic deflection, and then subfield (2) is positioned using electromagnetic deflection. At this time, in order to compensate for the defocus of the electron beam that occurs, a compensation current is passed through the dynamic focus compensation rate coil 13 shown in FIG. After the dynamic focus compensation signal sent to 13 is sufficiently settled, subfield ■ is drawn by electrostatic deflection by electrostatic deflector 8. This is repeated after subfield ■ to draw the entire field a.Next After moving the stage 12 and positioning field b, field b is drawn in the same way.The function of the dynamic focus compensation coil 13 is to change the focal length of the principal focus coil 4, so to speak. It is installed in close proximity to the main focus coil 4. Therefore, the magnetic flux generated when a compensation current is passed through the dynamic focus compensation coil 13 interlinks with the main focus coil 4, causing a magnetic induction current in the main focus coil 4. to occur.

この主焦点コイル4に発生した磁気誘導電流により電子
線2は偏向及びフォーカスされ、描画精度を顕しく低下
される。また、描画精度を向上させるために、磁気誘導
電流が十分整定された後描画すると、磁気誘導電流が整
定するまでに約500μsかかり、スループットが大幅
に低下してしまう。
The electron beam 2 is deflected and focused by the magnetically induced current generated in the main focus coil 4, and the drawing accuracy is noticeably reduced. Furthermore, if writing is performed after the magnetically induced current has sufficiently stabilized in order to improve the writing accuracy, it will take approximately 500 μs for the magnetically induced current to settle, resulting in a significant decrease in throughput.

〔発明を解決しようとする問題点〕[Problems that the invention attempts to solve]

上記従来技術によれば、動的焦点補償コイルに補償電流
を流したときに発生する磁束が主焦点コ清。
According to the above-mentioned conventional technology, the magnetic flux generated when a compensation current is passed through the dynamic focus compensation coil is used as a main focus compensation coil.

イルに鎖交し、主部点コイルに磁気誘導電流を発生し、
電子線は偏向、フォーカスされ、描画精度を顕しく低下
させるという問題があった。
generates a magnetically induced current in the main point coil,
There is a problem in that the electron beam is deflected and focused, which significantly reduces drawing accuracy.

本発明の目的は主焦点コイルに発生する磁気誘導電流を
補償し、スループットを落すことなく描画精度を向上す
ることができる電子線描画装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an electron beam lithography apparatus that can compensate for magnetically induced current generated in a main focus coil and improve lithography accuracy without reducing throughput.

〔問題点を解決しようとする問題点〕[Problems to be solved]

上記i的は一1動的焦点補償コイル電流の変化により主
焦点コイルに発生する電磁誘導電流を補償する電流を上
記主焦点コイルに流し込む誘導補償回路を設けた構成と
して達成するようにした。
The above-mentioned objective (i) is achieved by a configuration including an induction compensation circuit that flows into the main focus coil a current that compensates for an electromagnetic induction current generated in the main focus coil due to a change in the dynamic focus compensation coil current.

〔作用〕[Effect]

本発明では、動的焦点補償コイルの励磁電流の変化によ
り主焦点コイルに発生する磁気誘導電流と同量、逆方向
の電流を主焦点コイルに流し込むようにしたので、主焦
点コイルに発生した磁気誘導電流を補償することができ
、スループットを落すことなく描画精度を向上すること
ができる。
In the present invention, a current of the same amount and in the opposite direction as the magnetic induction current generated in the prime focus coil is caused to flow into the prime focus coil due to a change in the excitation current of the dynamic focus compensation coil, so that the magnetic induction generated in the prime focus coil is The induced current can be compensated for, and writing accuracy can be improved without reducing throughput.

〔実施例〕〔Example〕

以下本発明を第1図、第2図、第4図に示した実施例お
よび第3図を用いて詳細に説明する。
The present invention will be explained in detail below with reference to the embodiments shown in FIGS. 1, 2, and 4, and FIG. 3.

第1図は本発明の電子線描画装置の一実施例を示す概略
構成図である。第1図において5第5図と同一部分は同
じ符号で示し、ここでは説明を省略する。第1図におい
ては、従来の主焦点コイル4と動的焦点補償コイル13
との間に誘導補償回路14を設け、従来通り電子銃1か
ら放射された電子線2は、描画パターンに応じて試料5
上で偏向され、試料5に露光される。サブフィールド位
置決め信号が電磁偏向信号9に出力されると同時(tl
)に動的焦点補償コイル13に焦点補償電流が流れる。
FIG. 1 is a schematic diagram showing an embodiment of an electron beam lithography apparatus according to the present invention. In FIG. 1, the same parts as those in FIG. In FIG. 1, a conventional principal focus coil 4 and a dynamic focus compensation coil 13 are shown.
An induction compensation circuit 14 is provided between the electron beam 2 and the electron beam 2 emitted from the electron gun 1 as before.
The sample 5 is exposed to light. At the same time as the subfield positioning signal is output to the electromagnetic deflection signal 9 (tl
), a focus compensation current flows through the dynamic focus compensation coil 13.

第2図は第1図の主焦点コイル部の詳細の一実施例を示
す回路図である。4は主焦点コイル。
FIG. 2 is a circuit diagram showing a detailed example of the main focus coil section of FIG. 1. 4 is the main focus coil.

13が動的焦点補償コイルで、14は誘導補償回路であ
る。
13 is a dynamic focus compensation coil, and 14 is an induction compensation circuit.

第3図は第2図におけるコイル電流の時間的変化を示す
線図で、動的焦点補償コイル13に時刻L1において焦
点補償電流51が流れると、第3図(a)に示すように
主焦点コイル4に磁気誘導電流52が流れる。一方、焦
点補償電流51により誘導補償回路14で主焦点コイル
4で発生した磁気誘導電流52と同量で逆方向の誘電導
流53が第3図(b)に示すように発生し、これが主焦
点コイル4に流れ込む。つまり、主焦点コイル4で発生
した磁気誘導電流52は、誘導補償回路14から流れ込
む誘導電流53によって相殺され、第3図(c)に示す
ように、主焦点コイル電流54は変化しなかったことと
同価になる。
FIG. 3 is a diagram showing temporal changes in the coil current in FIG. 2. When the focus compensation current 51 flows through the dynamic focus compensation coil 13 at time L1, the main focus is A magnetically induced current 52 flows through the coil 4 . On the other hand, due to the focus compensation current 51, an induction current 53 of the same amount and in the opposite direction as the magnetic induction current 52 generated in the main focus coil 4 is generated in the induction compensation circuit 14 as shown in FIG. 3(b), and this is the main focus. It flows into the focusing coil 4. In other words, the magnetically induced current 52 generated in the main focus coil 4 is canceled out by the induced current 53 flowing from the induction compensation circuit 14, and the main focus coil current 54 does not change as shown in FIG. 3(c). will be equivalent to

以上により、動的焦点補償電流が変化しても。As described above, even if the dynamic focus compensation current changes.

主焦点コイル4には見かけ上電磁誘導電流が発生しない
ことになり、スループットを落すことなく、描画精度を
向上することができる。
No apparent electromagnetic induction current is generated in the main focus coil 4, and drawing accuracy can be improved without reducing throughput.

第4図は本発明の他の実施例を示す第2図に相当する回
路図で、第4図においては、第2図の誘導補償回路14
として微分回路15を設けてあり、このようにしても同
様の効果を得ることができる。
FIG. 4 is a circuit diagram corresponding to FIG. 2 showing another embodiment of the present invention, and in FIG. 4, the induction compensation circuit 14 of FIG.
A differentiating circuit 15 is provided as a differential circuit, and the same effect can be obtained even in this case.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、動的焦点補償電
流の変化にともなう主焦点コイルへの電磁誘導電流を補
償することができるため、誘導電流の整定を持つ必要が
ないので、スループットを低下することなく高精度の描
画が可能になるという効果がある。
As explained above, according to the present invention, it is possible to compensate for the electromagnetic induction current to the main focus coil due to changes in the dynamic focus compensation current, so there is no need to set the induction current, thereby reducing throughput. This has the effect of enabling high-precision drawing without deterioration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の電子線描画装置の一実施例を示す構成
図、第2図の主焦点コイル部の一実施例を示す配線図、
第3図は第2図におけるコイル電流の時間的変化を示す
線図、第4図は本発明の他の実施例を示す第2図に相当
する回路図、第5図は従来の電子線描画装置の構成図、
第6図は描画方法の説明図である。 1・・・電子銃、2・・・電子線、3・・・収束レンズ
、4・・・主焦点コイル、5・・・試料、6・・・CP
U、7・・・偏向信号発生部、8・・・静電偏向器、9
・・・電磁偏向器、10・・・ブランカ、11・・・ス
テージ制御回路、12・・・ステージ、13・・・動的
焦点補償コイル、14・・・誘導補償回路、15・・・
微分回路、51・・・焦点補償電流、52・・・磁気誘
導電流、53・・・誘導電流、54・・・主焦点コイル
電流。 皐2図 (C)
FIG. 1 is a configuration diagram showing an embodiment of the electron beam lithography apparatus of the present invention, a wiring diagram showing an embodiment of the main focus coil section in FIG. 2,
Fig. 3 is a diagram showing the temporal change in the coil current in Fig. 2, Fig. 4 is a circuit diagram corresponding to Fig. 2 showing another embodiment of the present invention, and Fig. 5 is a diagram using conventional electron beam drawing. Configuration diagram of the device,
FIG. 6 is an explanatory diagram of the drawing method. DESCRIPTION OF SYMBOLS 1...Electron gun, 2...Electron beam, 3...Converging lens, 4...Primary focus coil, 5...Sample, 6...CP
U, 7... Deflection signal generator, 8... Electrostatic deflector, 9
... Electromagnetic deflector, 10... Blanker, 11... Stage control circuit, 12... Stage, 13... Dynamic focus compensation coil, 14... Induction compensation circuit, 15...
Differential circuit, 51... Focus compensation current, 52... Magnetic induction current, 53... Induction current, 54... Main focus coil current. Figure 2 (C)

Claims (1)

【特許請求の範囲】[Claims] 1、電子線を発生する手段と、前記電子線を収束する手
段と、該手段によつて収束された電子線を試料上にフォ
ーカスする主焦点コイルと、前記試料上で前記収束され
た電子線を走査する偏向手段と、前記電子線の偏向量に
応じて該電子線を前記試料上でフォーカスさせる動的焦
点補償コイルと、前記電子線を前記試料上にオン/オフ
させるブランキング手段とを備えた電子線描画装置にお
いて、動的焦点補償コイル電流の変化によつて前記主焦
点コイルに発生する電磁誘導電流を補償する電流を前記
主焦点コイルに流し込む誘導補償回路を設けたことを特
徴とする電子線描画装置。
1. means for generating an electron beam, means for converging the electron beam, a main focus coil for focusing the electron beam focused by the means onto a sample, and the focused electron beam on the sample; a dynamic focus compensation coil that focuses the electron beam on the sample according to the amount of deflection of the electron beam; and a blanking means that turns the electron beam on and off on the sample. The electron beam lithography apparatus is characterized by being provided with an induction compensation circuit that flows into the main focus coil a current that compensates for an electromagnetic induction current generated in the main focus coil due to a change in the dynamic focus compensation coil current. Electron beam lithography equipment.
JP4998587A 1987-03-06 1987-03-06 Electron beam lithography device Pending JPS63217627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4998587A JPS63217627A (en) 1987-03-06 1987-03-06 Electron beam lithography device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4998587A JPS63217627A (en) 1987-03-06 1987-03-06 Electron beam lithography device

Publications (1)

Publication Number Publication Date
JPS63217627A true JPS63217627A (en) 1988-09-09

Family

ID=12846310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4998587A Pending JPS63217627A (en) 1987-03-06 1987-03-06 Electron beam lithography device

Country Status (1)

Country Link
JP (1) JPS63217627A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6244943A (en) * 1985-08-22 1987-02-26 Hitachi Ltd Dynamic focus correcting device for electron beam exposure apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6244943A (en) * 1985-08-22 1987-02-26 Hitachi Ltd Dynamic focus correcting device for electron beam exposure apparatus

Similar Documents

Publication Publication Date Title
US4376249A (en) Variable axis electron beam projection system
JPS6010721A (en) Lens unit
US5635719A (en) Variable curvilinear axis deflection means for particle optical lenses
EP0178156A2 (en) Method of drawing a desired pattern on a target through exposure thereof with an electron beam
EP0813745B1 (en) Electron beam pattern-writing column
JPH02281612A (en) Electron beam projection system
JP2000150367A (en) Charged beam drawer
US5757010A (en) Curvilinear variable axis lens correction with centered dipoles
US5793048A (en) Curvilinear variable axis lens correction with shifted dipoles
US4393312A (en) Variable-spot scanning in an electron beam exposure system
US5631113A (en) Electron-beam exposure system for reduced distortion of electron beam spot
US5708274A (en) Curvilinear variable axis lens correction with crossed coils
US5382800A (en) Charged particle beam exposure method and apparatus
US4929838A (en) Magnetic object lens for an electron beam exposure apparatus which processes a wafer carried on a continuously moving stage
US6130432A (en) Particle beam system with dynamic focusing
EP0088457A2 (en) Charged particle beam apparatus
US4891524A (en) Charged particle beam exposure system and method of compensating for eddy current effect on charged particle beam
JP2946537B2 (en) Electron optical column
JPH11283544A (en) Electron beam irradiating device
JPS63217627A (en) Electron beam lithography device
US5850083A (en) Charged particle beam lithograph apparatus
JP2009065193A (en) Electron beam plotting method and device therefor
CN115202158A (en) Charged particle beam lithography apparatus
US20050035308A1 (en) Pattern writing equipment
US5387799A (en) Electron beam writing system