JPS63217480A - Shape measuring method for object having similar circular sections - Google Patents

Shape measuring method for object having similar circular sections

Info

Publication number
JPS63217480A
JPS63217480A JP62051566A JP5156687A JPS63217480A JP S63217480 A JPS63217480 A JP S63217480A JP 62051566 A JP62051566 A JP 62051566A JP 5156687 A JP5156687 A JP 5156687A JP S63217480 A JPS63217480 A JP S63217480A
Authority
JP
Japan
Prior art keywords
circle
approximate
approximate circle
circles
image information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62051566A
Other languages
Japanese (ja)
Inventor
Hidetomo Akaha
秀友 赤羽
Masatoshi Toda
正利 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP62051566A priority Critical patent/JPS63217480A/en
Publication of JPS63217480A publication Critical patent/JPS63217480A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Image Analysis (AREA)

Abstract

PURPOSE:To facilitate the measurement of a shape by defining an approximate circle having many contour points as a precisely measured circle or an approximate circle having a small minimum square error as a precisely measured circle after calculating the minimum square error among a registered approximate circle, a final approximate circle and contour points forming said two circles. CONSTITUTION:In case coverage factor between a 3rd approximate circle 81 and a 4th approximate circle 82 is smaller than a prescribed value, it is difficult to decide one of both circles 81 and 82 that can be used as a precisely measured circle. Thus a 3rd measurement start point is obtained for production of a 5th approximate circle. Then the operations are repeated to select two approximate circles where the coverage factor 83 set among circles 81 and 82 and a 5th approximate circle is larger than the prescribed value. If such two approximate circles are not obtained yet, these pieces of information are deleted out of registered data as noise information. When said two approximate circles are obtained, the number of contour points forming both circles are compared with each other. Then one of both circles that has the larger number of contour points 84 is used as a precisely measured circle.

Description

【発明の詳細な説明】 〔産業上の利用分野コ 本発明はある断面積を有し、その断面積が可成り広い分
布を有する円形類似断面の物体集合体の断面形状分布を
迅速に測定するための円形類似断面を有する物体の断面
形状分布測定法に関するものである。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention is for rapidly measuring the cross-sectional shape distribution of a collection of objects having a certain cross-sectional area and a fairly wide distribution of circular similar cross-sections. The present invention relates to a method for measuring the cross-sectional shape distribution of an object having a similar circular cross-section.

〔従来の技術〕[Conventional technology]

ある形状分布を有する物体の断面形状分布を有する集合
体の集合状況を知ることは極めて重要なことであり、そ
の迅速な解析手段の開発が強く望まれている。
It is extremely important to know the state of aggregation of aggregates having a cross-sectional shape distribution of an object having a certain shape distribution, and there is a strong desire for the development of rapid analysis methods.

例えば、ABS等の耐衝撃性樹脂中に微粒子状に分布さ
れるゴム粒子体は、その粒子径の大きさ、粒子径分布の
状況によって、得られるABS樹脂の耐衝撃発現性が全
く異なってくることが知られており、その粒子径分布を
知ることは極めて重要なことといえる。また、高速度で
生産される合成繊維は、その断面形状により得られる繊
維の特性が著しく変化することが知られており、均一な
断面形状の繊維を作るため、その断面形状に関する情報
を迅速に解析する手法の開発が望まれている。
For example, rubber particles distributed in the form of fine particles in an impact-resistant resin such as ABS can have completely different impact resistance properties depending on the size of the particles and the state of the particle size distribution. It is known that it is extremely important to know the particle size distribution. In addition, it is known that the properties of synthetic fibers produced at high speeds vary significantly depending on their cross-sectional shape, and in order to create fibers with a uniform cross-sectional shape, information about the cross-sectional shape can be quickly obtained. It is desired to develop an analysis method.

従来、これらの断面形状に関する情報の入手は、これら
集合状物体を電子顕微鏡写真に変換し、画像化された円
形類似状物の形状及び大きさの分布状況を目視法によっ
て測定されてきたが、上記した如き技術分野江おいては
、その1画像中に含まれる円形状物個体の数も多く測定
必要なサンプル数も数百〜数千となり、その測定に長時
間を要するばかりでなく、目視判定する人の健康状態、
視覚疲労度等によって測定データにぶれを生ずるという
大きな問題が存在していた。
Conventionally, information regarding these cross-sectional shapes has been obtained by converting these aggregated objects into electron micrographs and visually measuring the shape and size distribution of the imaged circular-like objects. In the technical field described above, the number of individual circular objects included in one image is large, and the number of samples that need to be measured ranges from hundreds to thousands, which not only takes a long time to measure, but also requires visual inspection. the health condition of the person being judged;
There was a major problem in that measurement data was blurred due to visual fatigue and other factors.

そこで、円形類似断面を有する集合体の形状物をコンピ
ュータを用いて判定するための手法が検討されており、
例えば距離変換法、抽出°した輪郭の曲線を使用する方
法、Hough変換法を応用した曲線検出法などが知ら
れている。距離変換法は2値画信をその輪郭からの距離
した濃淡を持つ画像へ変換処理し円形状物の中心付近に
形成したピークを検出し、円形状物の中心とその半径を
求める方法である。抽出した輪郭の曲率な使用する方法
は2値画像より抽出した軸郭点列群の各輪郭の曲率を算
出し、輪郭点列の凹凸情報をも利用して円の中心とその
半径を求める方法である。また、Rough変換法は検
出したい線の種類を定め、その形状を方程式に変換し、
画像中の輪郭点をパラメータ空間に写像しこの処理を行
っ又検出した方程式の係数をパラメータ空間上のピーク
となって現わし、このピーク検出して円の中心及びその
半径を同時に求めるものである。
Therefore, methods are being considered to use computers to determine the shape of an aggregate with a similar circular cross section.
For example, a distance conversion method, a method using extracted contour curves, a curve detection method applying the Hough transform method, etc. are known. The distance conversion method is a method of converting a binary image signal into an image with shading at a distance from the contour, detecting a peak formed near the center of a circular object, and finding the center of the circular object and its radius. . The method used is to calculate the curvature of each contour of the axial point sequence extracted from the binary image, and also use the unevenness information of the contour point sequence to find the center of the circle and its radius. It is. In addition, the Rough conversion method determines the type of line you want to detect, converts its shape into an equation,
The contour points in the image are mapped to the parameter space, this process is performed, the coefficients of the detected equations appear as peaks on the parameter space, and this peak is detected to simultaneously determine the center of the circle and its radius. .

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記した従来技術のうち、距離変換法を用いる方法は第
2図中の(21)に示す如き円形状物内に孤立点がある
場合に、その円形の中心及びその半径の測定に大きな誤
差を生じ易く、一方、第2図中の(η)に示す如き孤立
点は重要な点であり、この孤立点をノイズとするような
処理方法がとられていると求める円の中心点、その半径
の測定に大きな誤差を生ずる。
Among the conventional techniques described above, the method using the distance conversion method causes a large error in measuring the center and radius of the circle when there is an isolated point in a circular object as shown in (21) in Figure 2. On the other hand, isolated points as shown in (η) in Figure 2 are important points, and if a processing method is used to treat these isolated points as noise, the center point of the desired circle and its radius This causes a large error in the measurement.

抽出した輪郭の曲率を使用する方法は第3図に示した如
き輪郭点列(31)から各点の曲率な算出し、凹凸情報
をも利用して、その中心と半径を求める方法であるが、
ヒゲなどの雑音が存在すると、曲率プロファイルにノイ
ズが多く含まれるようになり、その処理が極めて困難と
なり正確な測定が難しくなるという難点がある。
The method using the curvature of the extracted contour is to calculate the curvature of each point from the contour point sequence (31) as shown in Figure 3, and also use the unevenness information to find its center and radius. ,
If noise such as whiskers is present, the curvature profile will contain a lot of noise, making it extremely difficult to process and make accurate measurement difficult.

Hough変換法は検出したい線の種類が限定されてい
るため、被測定物となる円形状物集合体を構成する夫々
の円形状物の種類が多い場合にはその測定に多大な困難
を伴うこととなる。
Since the Hough conversion method is limited in the types of lines to be detected, it is very difficult to measure when there are many types of circular objects that make up a collection of circular objects to be measured. becomes.

〔発明の目的〕[Purpose of the invention]

本発明は上記した如き欠点に鑑みなされたもので、その
目的とするところは、未知の円形類似断面を有する物体
又はその集合体の略円形断面の円に関する情報、例えば
個々の物体の大きさ、半径の測定、或いは集合体である
場合には更に径分布状況を正確に、かつ迅速に、そして
簡易に測定するだめの測定方法を提供することにあり、
その要旨とするところは、 (A)断面形状が円形類似断面を有する物体の断面平面
像を画像情報に変換する画像変換手段(B)該画像情報
変換手段によって得た濃淡画像情報に基づき、円形類似
断面内にある第1の測定開始点を決める手段 (C)第1の測定開始点より、放射状に濃淡画像情報の
エツジ部に向ってエツジ部検出を行ない、当該エツジ検
出部を第1の輪郭点群情報を得、当該第1の輪郭点群情
報に基づいて第1の近似円中心と第1の近似円半径とを
求めこれらを用いて第1の近似円を作成する手段(D)
第1の近似円中心より、濃淡画像情報のエツジ部へ向け
て放射状に濃淡画像のエツジ部検出を行なわせ、当該エ
ツジ部を第2の輪郭点群を得、当該第2の輪郭点群に基
づいて第2の近似円中心及び第2の近似円半径を決め第
2の近似円を作成する手段 (E)第2の輪郭点群を円周方向に均等に、3つ以上の
隣接する輪郭点グループに分割し、各グループより第2
の近似円周に最も近い輪郭点を選び、これらを第3の輪
郭点群とし、当該第3の輪郭点群より第3の近似円の中
心を求め第3の近似円半径を測定し、第3の近似円を作
成し、そのデータを登録する手段(F) (A)の画像
情報変換手段によって得た濃淡画像情報に基づき、円形
類似断面内にある第2の測定開始点を決める手段 (G)第2の測定開始点と濃淡画像情報とに基づいて(
C)手段、(D)手段を経、(E)手段と同様の手段に
よって第4の近似円を作成する手段 (H)第キの登会近似円と第4の近似円とを照合1逼ト
瞳 し、その     が所定率以上でない場合には、第よ
の44近似心して登録し、(G)工程を繰返し第5の近
似円を作成し、第5の億円が現われるまで、この工程を
繰返し最終近似円を作成する手段 隷l  、佐 (I) (G)又は(H)の手段によって(寿崎率か一
定以上なる割合となりた既登録近似円と最終近似円を照
合し、これら近似円を構成する輪郭点数を比較し、輪郭
点数の多い近似円を精密測定円とするか、又は既登録近
似円と最終近似円及びこれら近似円を構成する輪郭点と
の最小自乗誤差を算出し、最小2乗誤差の小さい近似円
を精密測定円とする手段 (J)精密測定円に基づく、円に関する情報を出力する
手段 ・とを有することを特徴とする円形類似断面を有する物
体の形状測定方法にある。
The present invention has been made in view of the above-mentioned drawbacks, and its purpose is to obtain information regarding the circle of the approximately circular cross section of an unknown object having a circularly similar cross section or an aggregate thereof, such as the size of each individual object, It is an object of the present invention to provide a measuring method for accurately, quickly, and easily measuring the radius or, in the case of an aggregate, the diameter distribution situation,
The gist is as follows: (A) An image conversion means for converting a cross-sectional plane image of an object having a similar cross-sectional shape to a circular shape into image information.(B) Based on the gray-scale image information obtained by the image information conversion means, a circular Means for determining a first measurement starting point in a similar cross section (C) Edge detection is performed radially from the first measurement starting point toward an edge portion of the grayscale image information, and the edge detection portion is set as the first measurement starting point. Means (D) for obtaining contour point group information, determining a first approximate circle center and a first approximate circle radius based on the first contour point group information, and using these to create a first approximate circle;
The edge portion of the grayscale image is detected radially from the center of the first approximate circle toward the edge portion of the grayscale image information, and the edge portion is detected as a second contour point group. (E) means for determining a second approximate circle center and a second approximate circle radius based on the second approximate circle and creating a second approximate circle; Divide into point groups and select the second point from each group.
Select the contour points closest to the approximate circumference of Means (F) for creating an approximate circle of No. 3 and registering its data; Means for determining a second measurement starting point within a circular similar cross section based on the grayscale image information obtained by the image information conversion means of (A); G) Based on the second measurement starting point and the grayscale image information (
C) means, (D) means, and (E) means for creating a fourth approximate circle by the same means as the means (H) collation of the first approximation circle and the fourth approximate circle. If the pupil is not equal to or higher than the predetermined rate, register the 44th approximation center and repeat step (G) to create the 5th approximation circle, and continue this process until the 5th billion yen appears. The method of repeatedly creating the final approximate circle is to compare the final approximate circle with the registered approximate circle whose ratio is above a certain level (Kusaki rate) by the means of (I) (G) or (H), and calculate these approximate circles. Compare the number of contour points that make up the circles, and select the approximate circle with a large number of contour points as the precision measurement circle, or calculate the least square error between the registered approximate circle, the final approximate circle, and the contour points that make up these approximate circles. (J) means for outputting information about the circle based on the precision measurement circle; shape measurement of an object having a circular similar cross section; It's in the method.

〔実施例〕〔Example〕

以下本発明の実施例を図面により詳細に説明する。 Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明の円形類似物の形状測定法の一例を示す
概略処理フロー図であり、この処理フロー図に従って各
図を参照しながら説明する。
FIG. 1 is a schematic process flow diagram showing an example of the method for measuring the shape of a circular analog according to the present invention, and the process will be explained in accordance with this process flow diagram with reference to each figure.

第1図における円形類似断面を有する物体よりなる試料
(11)は、円形類似断面部(12)と地部@3)とを
有しており、試料源によっては顕微鏡拡大写真を試料と
して用いてもよい。
The sample (11) made of an object with a similar circular cross section in Fig. 1 has a similar circular cross section (12) and a bottom part @3). Good too.

第1図において試料(11)は撮像器(14)によつて
撮像し、次いで電気信号変換し、濃淡画像として入力す
る(A手段)。
In FIG. 1, a sample (11) is imaged by an imager (14), then converted into an electrical signal and input as a grayscale image (means A).

第4図に示す如く、濃淡画像面に円形類似状物の形状測
定のための測定開始点を決めるため濃淡画像(41)面
上に2個以上の格子点ができるように緯(42)、経(
43)の格子を引き、その格子点(44)I (44’
)t (44’)・・・ を夫々、第1の測定開始点、
第2の測定開始点、第3の測定開始点を決定する8手段
をとる。形状測定用画像内に格子点を2個以上設けるこ
とにより、これら格子点を測定開始点として求めた円形
状物の形状の判定をより正確になすことができる。
As shown in FIG. 4, in order to determine the measurement starting point for measuring the shape of a circular object on the gray scale image plane, the latitude (42) is set so that two or more grid points are formed on the gray scale image plane (41). Sutra (
43) and its grid point (44)I (44'
)t (44')... are respectively the first measurement starting point,
Eight means are taken to determine the second measurement start point and the third measurement start point. By providing two or more grid points in the shape measurement image, it is possible to more accurately determine the shape of the circular object obtained using these grid points as measurement starting points.

第5図に1個の円形状物の濃淡画像を取り出し、その形
状測定法を示した。まず、第1の格子点(51)より、
放射状に濃淡画像情報のエツジ部へ向けて、エツジ部の
検出を行なう弦(S2)t(52’)、 (52’)・
・・を引きエツジ検出を行ない輪郭点群情報(53)を
形成する。次いで、各弦(52)。
FIG. 5 shows a method for measuring the shape of a grayscale image of a circular object. First, from the first grid point (51),
The strings (S2) t(52'), (52'), which detect the edge parts radially toward the edge parts of the grayscale image information.
... to perform edge detection and form contour point group information (53). Then each string (52).

(52’)  の垂直二等分線(54)、 (54’)
、 (54’戸・・を引き、これら垂直二等分線の交点
を第1近似円の中心(55)とし、各弦の垂直二等分線
の平均値より、その半径を演算し、第1の近似円(56
)を作る(C)手段を行わせる。
Perpendicular bisector of (52') (54), (54')
, (54' doors...), set the intersection of these perpendicular bisectors as the center (55) of the first approximation circle, calculate its radius from the average value of the perpendicular bisectors of each chord, and Approximate circle of 1 (56
) to make (C) perform the means.

第6図に示す如く、(C)手段によって求めた第5図中
の中心(5@)を、第6図中の中心(61)とし、当該
中心(61)より濃淡画像のエツジ部へ向けて放射線状
(62)、 (62’)j (62’)・・・にエツジ
検出を行ない、検出された該エツジ部を第2輪郭点群(
63)を形成し、放射線半径の平均値を第2近似円の半
径として第2の近似円(64)を作る手段(D)を行わ
せる。
As shown in FIG. 6, the center (5@) in FIG. 5 obtained by means (C) is set as the center (61) in FIG. edge detection is performed radially (62), (62')
63), and performs the means (D) of creating a second approximate circle (64) using the average value of the radial radii as the radius of the second approximate circle.

第7図に示す如(、第2近似円を構成する第2輪郭点群
(71)を第2の近似円(72)の円周方向に均等分布
となるように3つ以上のグループ(73)、 (73’
)、 (73’)、 (73″′)・・・に分げ、各グ
ループ内にある輪郭点のうち最も第2近似円円周(72
)に近い輪郭点群を第3の輪郭点群とし、当該第3輪郭
点群より第3の近似円の中心及び半径を求めた後、第3
の近似円を第8図の(81)として登録する手段(E)
を行わせる工程。
As shown in FIG. 7, three or more groups (73 ), (73'
), (73'), (73''')..., and the second approximate circle circumference (72
) is set as the third contour point group, and after finding the center and radius of the third approximate circle from the third contour point group,
Means (E) for registering the approximate circle as (81) in Fig. 8
The process of making it happen.

次いで、円形形状測定のための第2の測定開始点より(
C)手段、(D)手段及び(E)手段を経て、第8図中
の第4の近似円(82)としく(G)手段を行わせる)
、第8図に示す如く登録した第3近似円と第4の近似円
との被覆率(83)の比較を行なう手段(G)を行わせ
る。この被覆率は、被測定物によって決めればよいが、
通常約80%以上に設定するのが好ましい。
Next, from the second measurement starting point for circular shape measurement (
(C) means, (D) means, and (E) means, the fourth approximation circle (82) in FIG. 8 is performed, and (G) means is performed.)
, the means (G) for comparing the coverage ratio (83) between the third approximate circle and the fourth approximate circle registered as shown in FIG. 8 is performed. This coverage can be determined depending on the object to be measured, but
It is usually preferable to set it to about 80% or more.

(G)手段によって行った第3近似円と第4近似円との
被覆率が所定値より低い場合には、いずれの近似円が精
密測定円として使用しうるかの判定が難しいので、第3
の測定開始点を求め(C)手段、(D)手段及び(E)
手段を繰返し、第5の近似円を作成し、第3の近似円、
第4の近似円及び第5の近似円相互の被覆率が所定以上
のものとなる2個の近似円を選び出すよう上記操作を繰
返しくH)手段を行わせる。当該操作によっても被覆率
が所定以上となる2個の近似円が探索できないときは、
これら情報はノイズ情報として登録データを削除する。
(G) If the coverage ratio of the third approximate circle and the fourth approximate circle determined by the means is lower than the predetermined value, it is difficult to determine which approximate circle can be used as the precision measurement circle.
Find the measurement starting point of (C) means, (D) means and (E)
Repeat the procedure to create a fifth approximate circle, a third approximate circle,
H) means is performed by repeating the above operation so as to select two approximate circles in which the coverage ratio of the fourth approximate circle and the fifth approximate circle is greater than a predetermined value. If it is not possible to search for two approximate circles whose coverage is greater than a predetermined value even with this operation,
These pieces of information are deleted from the registered data as noise information.

以上の如くして被覆率が所定量以上の近似円を2個見出
したときは、側近億円を構成する輪郭点数を比較し、輪
郭点数(84)の多い近似円を本発明で用いる精密測定
した円として用いる。
When two approximate circles with coverage ratios equal to or higher than a predetermined amount are found as described above, the number of contour points constituting the nearest million circles is compared, and the approximate circle with the largest number of contour points (84) is used for precision measurement in the present invention. It is used as a circle.

比較した2個の近似円の輪郭点数が同一である場合には
、いずれか一方の近似円を本発明で用いる精密測定した
円として用いる。
If the two approximate circles compared have the same number of contour points, one of the approximate circles is used as the accurately measured circle used in the present invention.

以上詳述した如き方法によると、円形類似断面を有する
物体の形状に関する情報を比較的正確に、かつ迅速に演
算することができるため、多量の円形状類似断面を有す
る物体の集合体を構成する夫々の円形形状の解析、集合
状態解析情報を正確に把握することができるため、例え
ばラテックス粒子の粒子径分布の測定や合成繊維製造工
程変動によるその断面変動に寄因する糸特性変化原因の
解析等を短時間のうちに行なうことができる。
According to the method detailed above, information regarding the shape of an object having a similar circular cross section can be calculated relatively accurately and quickly. Because it is possible to accurately grasp the analysis of each circular shape and aggregate state analysis information, it is possible to, for example, measure the particle size distribution of latex particles and analyze the causes of changes in yarn properties due to cross-sectional changes due to changes in the synthetic fiber manufacturing process. etc. can be done in a short time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の円形類似断面を有する物体の形状測定
方法の一実施例を示す概略フロー図、第2図は被測定物
の2値画像図、第3図は第2図の2値画像より抽出した
輪郭点を示す図、第4図は濃淡画面への格子点作成図、
第5図は第1の近似円作成図、第6図は第2の近似円作
成図、第7図は第3の近似円作成図、第8図は抽出した
2個の近似円の被覆率を比較するための説明図である。 為2閃      第32 展4図 為5(21 尾7図 L4図 I 尾8図
Fig. 1 is a schematic flow diagram showing an embodiment of the method for measuring the shape of an object having a similar circular cross section according to the present invention, Fig. 2 is a binary image of the object to be measured, and Fig. 3 is a binary image of the object to be measured. A diagram showing contour points extracted from the image, Figure 4 is a diagram of grid point creation on a gray scale screen,
Figure 5 is the first approximate circle diagram, Figure 6 is the second approximate circle diagram, Figure 7 is the third approximate circle diagram, and Figure 8 is the coverage rate of the two extracted approximate circles. FIG. Tame 2 flash 32 Exhibition 4 figure 5 (21 Tail 7 figure L4 figure I Tail 8 figure

Claims (1)

【特許請求の範囲】 (A)断面形状が円形類似断面を有する物体の断面平面
像を画像情報に変換する画像変換手段(B)該画像情報
変換手段によって得た濃淡画像情報に基づき、円形類似
断面内にある第1の測定開始点を決める手段 (C)第1の測定開始点より、放射状に濃淡画像情報の
エッジ部に向ってエッジ部検出を行ない、当該エッジ検
出部を第1の輪郭点群情報を得、当該第1の輪郭点群情
報に基づいて第1の近似円中心と第1の近似円半径とを
求めこれらを用いて第1の近似円を作成する手段(D)
第1の近似円中心より、濃淡画像情報のエッジ部へ向け
て放射状に濃淡画像のエッジ部検出を行なわせ、当該エ
ッジ部を第2の輪郭点群を得、当該第2の輪郭点群に基
づいて第2の近似円中心及び第2の近似円半径を決め第
2の近似円を作成する手段 (E)第2の輪郭点群を円周方向に均等に、3つ以上の
隣接する輪郭点グループに分割し、各グループより第2
の近似円周に最も近い輪郭点を選び、これらを第3の輪
郭点群とし、当該第3の輪郭点群より第3の近似円の中
心を求め第3の近似円半径を測定し、第3の近似円を作
成し、そのデータを登録する手段 (F)(A)の画像情報変換手段によって得た濃淡画像
情報に基づき、円形類似断面内にある第2の測定開始点
を決める手段 (G)第2の測定開始点と濃淡画像情報とに基づいて(
C)手段、(D)手段を経、(E)手段と同様の手段に
よって第4の近似円を作成する手段 (H)第3の近似円と第4の近似円とを照合し、その被
覆率が所定率以上でない場合には、第4の近似円データ
として登録し、(G)工程を繰返し第5の近似円を作成
し、第5の近似円と第3の近似円及び第4の近似円相互
を照合し、その被覆率が所定率となる近似円が現われる
まで、この工程を繰返し最終近似円を作成する手段 (I)(G)又は(H)の手段によって被覆率が所定以
上なる割合となった既登録近似円と最終近似円を照合し
、これら近似円を構成する輪郭点数を比較し、輪郭点数
の多い近似円を精密測定円とするか、又は既登録近似円
と最終近似円及びこれら近似円を構成する輪郭点との最
小自乗誤差を算出し、最小2乗誤差の小さい近似円を精
密測定円とする手段 (J)精密測定円に基づく、円に関する情報を出力する
手段 とを有することを特徴とする円形類似断面を有する物体
の形状測定方法。
Scope of Claims: (A) Image conversion means for converting a cross-sectional plane image of an object having a cross-sectional shape similar to a circle into image information (B) Based on the gray-scale image information obtained by the image information conversion means, Means for determining a first measurement start point within a cross section (C) Edge detection is performed radially from the first measurement start point toward an edge portion of the gray scale image information, and the edge detection portion is detected as a first contour. Means (D) for obtaining point cloud information, determining a first approximate circle center and a first approximate circle radius based on the first contour point group information, and using these to create a first approximate circle;
The edge portion of the grayscale image is detected radially from the center of the first approximate circle toward the edge portion of the grayscale image information, and the edge portion is detected as a second contour point group. (E) means for determining a second approximate circle center and a second approximate circle radius based on the second approximate circle and creating a second approximate circle; Divide into point groups and select the second point from each group.
Select the contour points closest to the approximate circumference of Means (F) for creating an approximate circle of No. 3 and registering the data; and means (F) for determining a second measurement starting point within a circular similar cross section based on the gray scale image information obtained by the image information converting means of (A). G) Based on the second measurement starting point and the grayscale image information (
C) Means, (D) Means for creating a fourth approximate circle by the same means as (E) means (H) Collating the third approximate circle and the fourth approximate circle, and covering the third approximate circle. If the rate is not higher than the predetermined rate, it is registered as fourth approximate circle data, and step (G) is repeated to create a fifth approximate circle, and the fifth approximate circle, third approximate circle, and fourth approximate circle are By comparing the approximate circles with each other and repeating this process until an approximate circle whose coverage reaches a predetermined rate appears, the coverage is greater than a predetermined value by means (I), (G), or (H) of creating a final approximate circle. Compare the registered approximate circle with the final approximate circle, compare the number of contour points that make up these approximate circles, and select the approximate circle with a large number of contour points as the precision measurement circle, or compare the registered approximate circle with the final approximate circle. Means for calculating the least square error between approximate circles and the contour points constituting these approximate circles, and determining the approximate circle with the smaller least square error as a precision measurement circle (J) Outputting information about the circle based on the precision measurement circle 1. A method for measuring the shape of an object having a similar circular cross section, comprising:
JP62051566A 1987-03-06 1987-03-06 Shape measuring method for object having similar circular sections Pending JPS63217480A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62051566A JPS63217480A (en) 1987-03-06 1987-03-06 Shape measuring method for object having similar circular sections

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62051566A JPS63217480A (en) 1987-03-06 1987-03-06 Shape measuring method for object having similar circular sections

Publications (1)

Publication Number Publication Date
JPS63217480A true JPS63217480A (en) 1988-09-09

Family

ID=12890516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62051566A Pending JPS63217480A (en) 1987-03-06 1987-03-06 Shape measuring method for object having similar circular sections

Country Status (1)

Country Link
JP (1) JPS63217480A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010067248A (en) * 2008-08-09 2010-03-25 Keyence Corp Pattern model positioning method in image processing, image processing apparatus, image processing program, and computer readable recording medium
JP2010151610A (en) * 2008-12-25 2010-07-08 Toppan Printing Co Ltd Circular shape width measuring apparatus
JP2011007621A (en) * 2009-06-25 2011-01-13 Toppan Printing Co Ltd Apparatus for measurement of two-layer circular displacement
JP2011100223A (en) * 2009-11-04 2011-05-19 Panasonic Electric Works Co Ltd Image processing apparatus and image processing method
CN102128592A (en) * 2010-12-30 2011-07-20 徐春云 Photoelectric measurement method by utilizing tolerance range
JP2014178300A (en) * 2013-02-14 2014-09-25 Kobe Steel Ltd Pellet grain size measuring method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010067248A (en) * 2008-08-09 2010-03-25 Keyence Corp Pattern model positioning method in image processing, image processing apparatus, image processing program, and computer readable recording medium
JP2010151610A (en) * 2008-12-25 2010-07-08 Toppan Printing Co Ltd Circular shape width measuring apparatus
JP2011007621A (en) * 2009-06-25 2011-01-13 Toppan Printing Co Ltd Apparatus for measurement of two-layer circular displacement
JP2011100223A (en) * 2009-11-04 2011-05-19 Panasonic Electric Works Co Ltd Image processing apparatus and image processing method
CN102128592A (en) * 2010-12-30 2011-07-20 徐春云 Photoelectric measurement method by utilizing tolerance range
JP2014178300A (en) * 2013-02-14 2014-09-25 Kobe Steel Ltd Pellet grain size measuring method

Similar Documents

Publication Publication Date Title
CN109977808A (en) A kind of wafer surface defects mode detection and analysis method
CN109115812A (en) A kind of weld seam egative film defect identification method and system
CN101718528B (en) Digital image based rapid solving method of circle parameters
CN104515786A (en) Method for detecting and analyzing internal defect evolution of metal casting in fatigue process
CN108122221A (en) The dividing method and device of diffusion-weighted imaging image midbrain ischemic area
CN111127533B (en) Multi-feature fusion grinding wheel grinding performance prediction method based on neural network
CN102855490A (en) Object-neural-network-oriented high-resolution remote-sensing image classifying method
CN110766095A (en) Defect detection method based on image gray level features
JP2002022708A (en) Eddy current flaw detection signal evaluating method and its device
CN105631876A (en) CT image resolution automatic test method based on global binarization
CN113838054A (en) Mechanical part surface damage detection method based on artificial intelligence
CN109102538B (en) Method for extracting land characteristic points and land characteristic lines by using contour line data and weather map analysis method
CN108470194B (en) Feature screening method and device
WO2024108717A1 (en) Crack quantification method and apparatus based on deep neural network, and storage medium
JPS63217480A (en) Shape measuring method for object having similar circular sections
CN115082422A (en) Image-based building steel pipe cross section size measurement method
CN101625725A (en) Artificial immunization non-supervision image classification method based on manifold distance
JPS63217481A (en) Shape measuring method for similar circular objects
CN117011274A (en) Automatic glass bottle detection system and method thereof
CN113159220B (en) Random forest based concrete penetration depth empirical algorithm evaluation method and device
CN115112598A (en) Modeling method, model and detection method of automatic jade detection model
CN115841491A (en) Quality detection method of porous metal material
CN110020686A (en) A kind of road surface method for detecting abnormality based on intelligent perception sensing data
CN112101468B (en) Method for judging abnormal sequence in sequence combination
CN110059353B (en) Automatic modal parameter identification, simplification and practical method