JPS6321742Y2 - - Google Patents

Info

Publication number
JPS6321742Y2
JPS6321742Y2 JP1985079174U JP7917485U JPS6321742Y2 JP S6321742 Y2 JPS6321742 Y2 JP S6321742Y2 JP 1985079174 U JP1985079174 U JP 1985079174U JP 7917485 U JP7917485 U JP 7917485U JP S6321742 Y2 JPS6321742 Y2 JP S6321742Y2
Authority
JP
Japan
Prior art keywords
exterior body
air chamber
wave
opening
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1985079174U
Other languages
Japanese (ja)
Other versions
JPS611673U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1985079174U priority Critical patent/JPS611673U/en
Publication of JPS611673U publication Critical patent/JPS611673U/en
Application granted granted Critical
Publication of JPS6321742Y2 publication Critical patent/JPS6321742Y2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Landscapes

  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Description

【考案の詳細な説明】 この考案は比較的浅い海域に設置され多方向の
波エネルギーより動力を得る全方向波力変換装置
に関する。
[Detailed Description of the Invention] This invention relates to an omnidirectional wave power conversion device that is installed in a relatively shallow sea area and obtains power from wave energy in multiple directions.

周知のように、海洋波はその方向が海上を吹く
風の影響などにより時々刻々変化し、また、同時
にあらゆる方向から到来する無数個の素成波が合
成された不規則波となつている。このような波の
エネルギーを有効に活用するには、波の方向、状
況などに影響を受けない効率の良い波力変換装置
を設けることが望ましい。また、大型ブイの場合
には、係留施設は途方もなく大がかりなものとな
り、技術上大きな問題である。
As is well known, the direction of ocean waves changes from time to time due to the influence of winds blowing over the ocean, and they are irregular waves that are a composite of countless elementary waves arriving from all directions at the same time. In order to effectively utilize such wave energy, it is desirable to provide an efficient wave power conversion device that is not affected by wave direction, conditions, etc. Furthermore, in the case of large buoys, the mooring facilities are enormously large-scale, which is a big technical problem.

第1図は従来考えられている沿岸に打ち寄せる
波のエネルギー取出し装置を示すものである。1
1は例えば海岸線に沿つて設けられた堤体であ
り、この堤体11の海側部には開口部12が複数
個設けられる。この開口部12は堤体11の内部
に設けられた空気室13と連通され、この開口部
12および空気室13内に出入する波により空気
流が発生する。この空気流は空気室13と連通さ
れた例えば空気タービン発電装置14に供給さ
れ、電力が発生されるようになつている。この方
式は海側の180度以内の範囲の方向の波エネルギ
ーしか捕捉できないばかりでなく、たとえ堤体1
1を最多出現波方向に直角に配置し得たとして
も、さらに波向性による減少が25〜50%程度予測
され、効率良く波エネルギーを取り出すことは困
難である。また、この装置の場合設置場所が限定
されるとともに、装置後方が内湾化されることに
よつて海水が停滞し、海況、水質、海洋生物相な
ど環境に及ぼす影響が大きいものである。
Figure 1 shows a conventional device for extracting energy from waves hitting the coast. 1
Reference numeral 1 denotes, for example, an embankment body provided along a coastline, and a plurality of openings 12 are provided on the sea side of this embankment body 11. This opening 12 communicates with an air chamber 13 provided inside the embankment body 11, and airflow is generated by waves entering and exiting the opening 12 and the air chamber 13. This air flow is supplied to, for example, an air turbine generator 14 connected to the air chamber 13 to generate electric power. This method not only can only capture wave energy in a direction within 180 degrees on the sea side, but also
1 can be arranged perpendicular to the direction of the most frequently occurring waves, a further reduction due to wave directionality of about 25 to 50% is expected, making it difficult to extract wave energy efficiently. Furthermore, in the case of this device, the installation location is limited, and the back of the device is turned into an inner bay, which causes seawater to stagnate, which has a large impact on the environment such as sea conditions, water quality, and marine biota.

一方、第2図は従来考えられている他の波力変
換装置である。21は船形をした浮体であり、こ
の浮体21は所定の海域に係留される。この浮体
21の内部には複数の空気室22が設けられる。
この空気室22は浮体21底部の開口部23によ
り海中と連通され、この開口部23を介して出入
する波により空気流が発生される。この空気流は
空気室22と連通された例えば空気タービン発電
装置24に供給され、電力が発生されるようにな
つている。この方式では浮体21の動揺を抑える
ことが困難であるため、波エネルギーの吸収効率
の低下が避けられず、また、浮体21の形状と波
向特性から船首と船尾に比較して船央の変換効率
が悪い欠点を有している。例えば、海明(ブイ型
底開空気室)の実海域実験結果によれば、波エネ
ルギーへの変換効率(船長に対してのエネルギー
捕捉)は10%以下と低く、このため1.7m以上の
波でないと発電を行なうことができないものであ
る。そして、この海明実験地点における1m以上
の波の年間出現率は約40%であり、2m以上の波
の年間の出現率は約20%であることから、ほとん
ど発電された電力を実用に供することができない
ものである。さらに、浮体21が浮遊構造物であ
るため、設置、係留、保守が煩雑である。
On the other hand, FIG. 2 shows another wave power conversion device that has been considered in the past. 21 is a boat-shaped floating body, and this floating body 21 is moored in a predetermined sea area. A plurality of air chambers 22 are provided inside this floating body 21.
This air chamber 22 is communicated with the sea through an opening 23 at the bottom of the floating body 21, and air currents are generated by waves entering and exiting through this opening 23. This airflow is supplied to, for example, an air turbine generator 24 that is in communication with the air chamber 22 to generate electric power. With this method, it is difficult to suppress the movement of the floating body 21, so a drop in wave energy absorption efficiency is unavoidable.In addition, due to the shape of the floating body 21 and wave direction characteristics, the center of the ship is not easily moved compared to the bow and stern. It has the disadvantage of low efficiency. For example, according to the results of actual sea experiments using Kaimei (a buoy-type open-bottom air chamber), the conversion efficiency to wave energy (energy capture for the captain) is low at less than 10%; Otherwise, it will not be possible to generate electricity. At this Kaimei experiment site, the annual occurrence rate of waves over 1 m is about 40%, and the annual appearance rate of waves over 2 m is about 20%, so most of the generated electricity can be put to practical use. It is something that cannot be done. Furthermore, since the floating body 21 is a floating structure, installation, mooring, and maintenance are complicated.

この考案は上記事情に基づいてなされたもの
で、その目的とするところは設置が簡単で周囲
360゜の波エネルギーを有効に取出すことができる
とともに、多数設置した場合においても周囲の海
域環境に与える影響が極めて少なく安全性の高い
全方向波力変換装置を提供しようとするものであ
る。
This idea was made based on the above circumstances, and its purpose was to be easy to install and to
The aim is to provide a highly safe omnidirectional wave power conversion device that can effectively extract 360° wave energy and has extremely little impact on the surrounding marine environment even when installed in large numbers.

以下、この考案の一実施例について図面を参照
して説明する。
An embodiment of this invention will be described below with reference to the drawings.

第3図、第4図において、31は上面部が取外
し可能とされ内部にコンクリ…ト32等の重量物
が充填される円柱形状の固定台である。この固定
台31には所定間隔離間して固定台31の外面部
を覆うように外装体34が設けられる。この外装
体34内周面と固定台31外周面間には隔壁35
が複数個等間隔に設けられ、固定台31の上面部
周囲と外装体34の上面内側間には隔壁36が設
けられる。そして、外装体34と固定台31間に
は断面扇形状の複数の空気室37および収容室3
8が設けられる。なお、上記隔壁35は、固定台
31の基部表面にまで延在されている。また、前
記外装体34の海中に位置する部分には前記各空
気室37と海中とを連通する第1の開口部39が
設けられ、この開口部39を介して各空気室37
に波動Wが導かれる。さらに、前記隔壁36には
各空気室37と収容室38とを連通する第2の開
口部40が設けられ、この開口部40とそれぞれ
対向して前記収容室38内には変換器として周知
の往復流空気タービン41(例えば特開昭53−
92060号公報に開示されているロータリトランデ
ユーサ等)が設けられる。また、外装体34の上
面部には前記収容室38と外気とを連通する第3
の開口部42が設けられる。尚、前記空気室37
の下方には開口部39と対向して傾斜方向が固定
台31側から開口部39側に低くされた傾斜部4
3が設けられている。
In FIGS. 3 and 4, reference numeral 31 denotes a cylindrical fixing base whose upper surface is removable and whose inside is filled with a heavy material such as concrete 32. An exterior body 34 is provided on the fixed base 31 so as to cover the outer surface of the fixed base 31 at a predetermined distance. A partition wall 35 is provided between the inner circumferential surface of this exterior body 34 and the outer circumferential surface of the fixed base 31.
A plurality of partition walls 36 are provided at equal intervals, and a partition wall 36 is provided between the periphery of the upper surface of the fixed base 31 and the inner side of the upper surface of the exterior body 34. Between the exterior body 34 and the fixed base 31, there are a plurality of air chambers 37 and a storage chamber 3 each having a fan-shaped cross section.
8 is provided. Note that the partition wall 35 extends to the base surface of the fixed base 31. Further, a first opening 39 is provided in a portion of the exterior body 34 that is located under the sea, and communicates between each of the air chambers 37 and the sea.
A wave W is guided. Further, the partition wall 36 is provided with a second opening 40 that communicates between each air chamber 37 and the storage chamber 38, and a well-known converter is provided in the storage chamber 38 facing each of the openings 40. Reciprocating air turbine 41 (e.g.
A rotary transducer disclosed in Japanese Patent No. 92060, etc.) is provided. Further, on the upper surface of the exterior body 34, a third
An opening 42 is provided. In addition, the air chamber 37
Below the opening 39 is a sloped portion 4 which faces the opening 39 and whose slope direction is lowered from the fixed base 31 side to the opening 39 side.
3 is provided.

上記構成の装置は例えば陸上で固定台31と外
装体34が製作され、固定台31内部を空胴とし
て設置場所に浮かして曳航される。そして、設置
場所において固定台31の上部より内部にコンク
リート32等の重量物が充填され沈設される、こ
の状態で収容室38内に空気タービン41等が配
設され第3図に示す状態とされる。
In the apparatus having the above-mentioned configuration, the fixed base 31 and the exterior body 34 are manufactured on land, for example, and the fixed base 31 is floated at an installation location with the interior of the fixed base 31 as a cavity and towed. Then, at the installation location, a heavy object such as concrete 32 is filled into the inside of the fixed base 31 from the upper part and set down. In this state, the air turbine 41 etc. are arranged in the storage chamber 38 and the state shown in FIG. 3 is established. Ru.

このようにして設置された装置では、開口部3
9を介して出入りする波動Wにより空気室37の
容積が図示点線の矢印の如く変化され、空気流が
発生される。この空気流は開口部40,42を介
して図示矢印A,B方向に流れ、この空気流によ
り往復流空気タービン41が一定方向に回転され
る。しかして、この往復流空気タービン41で得
られた動力は例えば発電機に供給され発電が行な
われる。
In the device installed in this way, the opening 3
The volume of the air chamber 37 is changed as shown by the dotted arrow in the figure by the wave W flowing in and out through the air chamber 9, and an air flow is generated. This airflow flows through the openings 40 and 42 in the directions of arrows A and B, and the reciprocating air turbine 41 is rotated in a fixed direction by this airflow. The power obtained by the reciprocating air turbine 41 is then supplied to, for example, a generator to generate electricity.

上記構成によれば、複数個の空気室37を円形
状に配置し、この空気室37の外面部にそれぞれ
設けた開口部39を介して空気室37に波動を導
びいている。したがつて、360゜全方向の波動を空
気室に導びき変換することが可能である。しか
も、空気室37は海底に固定され動揺することが
なく、さらに、空気室37は底面が傾斜し開口部
39側が広く、固定台31側が狭い断面扇形状で
あるため、わずかな水面の上下動によつても、空
気室31内の波動振幅を大きくとることができ波
エネルギーの収れん効果が良い。したがつて、全
方向について波エネルギーを効率良く動力に変換
することが可能である。
According to the above configuration, a plurality of air chambers 37 are arranged in a circular shape, and waves are guided to the air chambers 37 through openings 39 provided on the outer surfaces of the air chambers 37, respectively. Therefore, it is possible to introduce and convert waves in all 360° directions into the air chamber. Moreover, the air chamber 37 is fixed to the seabed and does not move, and furthermore, the air chamber 37 has a sloped bottom, a wide opening 39 side, and a narrow fan-shaped cross section on the fixing base 31 side, so it is not affected by slight vertical movements of the water surface. Even in this case, the wave amplitude within the air chamber 31 can be increased and the wave energy convergence effect is good. Therefore, it is possible to efficiently convert wave energy into power in all directions.

水槽実験によれば、波エネルギーから空気エネ
ルギーへの変換効率は50%〜90%と極めて高く、
高効率であることが実証された。このため、長時
間存在する小波でも十分に発電できるようにな
り、実用に供するものである。また、第1図に示
したような防波堤型波力変換装置との模型水槽実
験による比較結果では波向90゜(堤体に対して直
角)の場合と比較しても、この考案によるものの
方が効率が高く、波向が30゜の場合には効率が防
波堤型に比して2倍も高いことが実証されてい
る。
According to water tank experiments, the conversion efficiency from wave energy to air energy is extremely high at 50% to 90%.
It has been proven to be highly efficient. Therefore, even small waves that exist for a long time can generate sufficient power, making it suitable for practical use. In addition, the results of a comparison with a breakwater-type wave power converter as shown in Figure 1 in a model water tank experiment show that even when compared with a case where the wave direction is 90° (perpendicular to the levee body), the device based on this design is superior. It has been demonstrated that the efficiency is twice as high as that of the breakwater type when the wave direction is 30°.

さらに、空気室37を円形状に複数個配置して
いるため、取出される合成動力が平滑化される。
したがつて、この装置を複数台設置すれば、それ
らの合成動力がさらに平滑化されるため、波エネ
ルギー利用において極めて有利である。
Furthermore, since a plurality of air chambers 37 are arranged in a circular shape, the combined power taken out is smoothed.
Therefore, if a plurality of such devices are installed, their combined power will be further smoothed, which is extremely advantageous in the use of wave energy.

また、製作された装置を海中に沈めて設置する
のみで固定できるため、係留等の施工が殆ど不要
であり、波浪条件の厳しい海域に設置する場合に
おいても、固定台31内に比重の大きな重量物を
充填したり、第3図に点線で示す如く固定台31
の底部に突出部33を設け、これを海底に埋設す
るようにすれば容易に固定可能なため、施工が極
めて簡単である。
In addition, since the fabricated device can be fixed by simply submerging it in the sea and installing it, construction such as mooring is almost unnecessary. The fixing table 31 can be filled with things, as shown by the dotted line in Figure 3.
The projecting part 33 is provided at the bottom of the projecting part 33, and the projecting part 33 can be easily fixed by burying it in the seabed, so construction is extremely simple.

さらに、円形状であるため、この装置を所定間
隔で多数設置した場合消波効果が得られ、しか
も、海水の停滞がないため水質汚染や海洋生物に
影響を与えることがない。
Furthermore, because of the circular shape, a wave-dissipating effect can be obtained when a large number of these devices are installed at predetermined intervals, and since there is no stagnation of seawater, there is no impact on water pollution or marine life.

また、固定台31上に設けられた収容室38内
部に、往復流空気タービン41等の変換器を設置
しているので、変換器をしつかりと確実に取り付
けることができ、構成が堅牢となつて実用に適す
るものである。
In addition, since the converter such as the reciprocating air turbine 41 is installed inside the storage chamber 38 provided on the fixed base 31, the converter can be firmly and reliably attached, making the structure robust. It is suitable for practical use.

次に、この考案の他の実施例について説明す
る。尚、第5図中第3図、第4図と同一部分には
同一符号を付す。
Next, another embodiment of this invention will be described. In FIG. 5, the same parts as in FIGS. 3 and 4 are given the same reference numerals.

第5図において、第3図、第4図と異なるのは
固定台51および外装体52が略円錐台形状とさ
れた点である。このような形状としても上記実施
例と同様の効果が得られ、しかも、波エネルギー
に対して一層安定に固定することが可能である。
また、このような形状とした場合、波浪条件が厳
しい海域でも固定台51に第3図の如く突出部を
設ける必要がないものである。
The difference in FIG. 5 from FIGS. 3 and 4 is that the fixing base 51 and the exterior body 52 have a substantially truncated conical shape. Even with such a shape, the same effects as in the above embodiment can be obtained, and moreover, it is possible to fix it more stably against wave energy.
In addition, in the case of such a shape, there is no need to provide the fixed base 51 with a protrusion as shown in FIG. 3 even in sea areas where wave conditions are severe.

また、空気室53全体が傾斜しているため第3
図の如く傾斜部が不要であり、しかも波動の出入
が滑らかとなるため、さらに変換効率が良好とな
る利点を有している。
In addition, since the entire air chamber 53 is inclined, the third
As shown in the figure, there is no need for a sloped portion, and the wave moves in and out smoothly, which has the advantage of further improving the conversion efficiency.

ここで、上記各実施例においては、収容室38
内を空気室に対応してそれぞれ仕切り、これにそ
れぞれ往復流空気タービン41、開口部42を設
ける構成としてもよい。
Here, in each of the above embodiments, the storage chamber 38
The interior may be partitioned to correspond to the air chambers, and a reciprocating air turbine 41 and an opening 42 may be provided in each partition.

なお、この考案は上記各実施例に限定されるも
のではなく、この外その要旨を変更しない範囲で
種々変形して実施することができる。
Note that this invention is not limited to the above-mentioned embodiments, and can be implemented with various modifications without changing the gist thereof.

以上詳述したようにこの考案によれば、設置が
簡単で波向の影響を受けることなく効率的に波エ
ネルギーを変換し、固定台形状を有効に利用する
ことができるとともに、多数設置した場合におい
ても周囲の海域環境に与える影響が極めて少なく
なく安全性の高い全方向波力変換装置を提供でき
る。
As detailed above, this invention is easy to install, efficiently converts wave energy without being affected by wave direction, makes effective use of the fixed trapezoid shape, and can be installed in large numbers. Also, it is possible to provide an omnidirectional wave power conversion device that has a very low impact on the surrounding marine environment and is highly safe.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図はそれぞれ異なる従来の波力変
換装置の一例を示す概略構成図、第3図はこの考
案に係わる全方向波力変換装置の一実施例を示す
側断面図、第4図は第3図の上部断面図、第5図
はこの他の実施例を示す側断面図である。 31,51……固定台、34,52……外装
体、35,36……隔壁、37,53……空気
室、38……収容室、39,40,42……開口
部、41……変換器。
1 and 2 are schematic configuration diagrams showing examples of different conventional wave power conversion devices, FIG. 3 is a side sectional view showing an embodiment of the omnidirectional wave power conversion device according to this invention, and FIG. This figure is a top sectional view of FIG. 3, and FIG. 5 is a side sectional view showing another embodiment. 31, 51... Fixed stand, 34, 52... Exterior body, 35, 36... Partition wall, 37, 53... Air chamber, 38... Accommodation chamber, 39, 40, 42... Opening, 41... converter.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 水平断面円形の柱状に形成され下端部が海底に
固定された固定台と、この固定台の周側部を覆い
下端が水面下となるように設けられた外装体と、
この外装体と前記固定台との間に形成された環状
空間を断面扇形状の空気室を形成するように区画
し前記固定台基部表面まで延在している隔壁と、
前記外装体の側壁外の波力を前記扇形の空気室内
部に導く開口部と、前記固定台上に設けられ該固
定台と前記外装体との間に形成された開口部を介
して前記複数の空気室と連通されるとともに前記
外装体の上部に形成された開口部を介して外気と
連通される収容室と、この収容室内部に設けられ
前記扇形の空気室内部で発生された空気流を動力
に変換する装置とを具備してなることを特徴とす
る全方向波力変換装置。
a fixed base formed in the shape of a column with a circular horizontal cross section and whose lower end is fixed to the seabed; an exterior body provided to cover the peripheral side of the fixed base so that the lower end is below the water surface;
a partition wall that partitions an annular space formed between the exterior body and the fixing base to form an air chamber having a fan-shaped cross section and extending to the surface of the base of the fixing base;
An opening that guides the wave force outside the side wall of the exterior body into the sector-shaped air chamber, and an opening that is provided on the fixing base and formed between the fixing base and the exterior body. a storage chamber that communicates with the air chamber of the exterior body and communicates with outside air through an opening formed in the upper part of the exterior body; and an air flow that is provided inside the storage chamber and that is generated inside the fan-shaped air chamber. An omnidirectional wave power conversion device comprising: a device for converting wave power into power;
JP1985079174U 1985-05-29 1985-05-29 Omnidirectional wave power conversion device Granted JPS611673U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1985079174U JPS611673U (en) 1985-05-29 1985-05-29 Omnidirectional wave power conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1985079174U JPS611673U (en) 1985-05-29 1985-05-29 Omnidirectional wave power conversion device

Publications (2)

Publication Number Publication Date
JPS611673U JPS611673U (en) 1986-01-08
JPS6321742Y2 true JPS6321742Y2 (en) 1988-06-15

Family

ID=30623840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985079174U Granted JPS611673U (en) 1985-05-29 1985-05-29 Omnidirectional wave power conversion device

Country Status (1)

Country Link
JP (1) JPS611673U (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5134344A (en) * 1974-07-19 1976-03-24 Gonkarubesu Dabitsudo Agunero Uminonamino rikigakutekienerugiojuyona gendoryokunihenkansuruhoho
JPS5219258A (en) * 1975-08-05 1977-02-14 Meidensha Electric Mfg Co Ltd Method of preventing absorption of humidity for insulation cylinder at time of winding for electric induction apparatus
JPS5216438B2 (en) * 1971-12-29 1977-05-09

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5216438U (en) * 1975-07-24 1977-02-05

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5216438B2 (en) * 1971-12-29 1977-05-09
JPS5134344A (en) * 1974-07-19 1976-03-24 Gonkarubesu Dabitsudo Agunero Uminonamino rikigakutekienerugiojuyona gendoryokunihenkansuruhoho
JPS5219258A (en) * 1975-08-05 1977-02-14 Meidensha Electric Mfg Co Ltd Method of preventing absorption of humidity for insulation cylinder at time of winding for electric induction apparatus

Also Published As

Publication number Publication date
JPS611673U (en) 1986-01-08

Similar Documents

Publication Publication Date Title
US7352078B2 (en) Offshore power generator with current, wave or alternative generators
US20130313833A1 (en) Water-powered generator
CN110949633A (en) Barge type floating fan system and floating fan platform
JP2002285951A (en) Floating type foundation structure for marine wind power generation
JPS6239678B2 (en)
JPH0151674B2 (en)
USH611H (en) Semi-submersible vessel
KR20170113793A (en) Offshore wind power equipment of floating type
KR950011771A (en) Breakwater caisson
JPS6321742Y2 (en)
JPS64597B2 (en)
JPS5844277A (en) Omnidirectional wave force converter
JP2011196361A (en) Floating power-generating device
KR101906853B1 (en) Vessel with Energy Storage System
CN210592331U (en) Floating tidal current energy platform with multidirectional-displacement lateral supporting arms
JP2002127988A (en) Submarine boat for ocean current power generation
JP2009174510A (en) Annular floating structure turning on sea
CN203142985U (en) Water floating base platform for ocean current power generation
KR102624041B1 (en) Floating offshore structures and floating offshore power plant having the same
CN221257011U (en) Floating type offshore wind power foundation with negative damping inhibition function
KR102566866B1 (en) Floating offshore structures and floating offshore power plant having the same
JP7459024B2 (en) Offshore wind power generation equipment
JP2762135B2 (en) Offshore structure with wave power utilization function
JP4992148B1 (en) Tidal power H-type generator ship
KR20230112374A (en) A floating tidal power generation system consisting of a vertical shaft turbine