JPS63217239A - Temperature measuring instrument - Google Patents

Temperature measuring instrument

Info

Publication number
JPS63217239A
JPS63217239A JP5084187A JP5084187A JPS63217239A JP S63217239 A JPS63217239 A JP S63217239A JP 5084187 A JP5084187 A JP 5084187A JP 5084187 A JP5084187 A JP 5084187A JP S63217239 A JPS63217239 A JP S63217239A
Authority
JP
Japan
Prior art keywords
temperature
resistance
temperature measuring
measuring
resistance value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5084187A
Other languages
Japanese (ja)
Inventor
Eiichi Nabeta
鍋田 栄一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP5084187A priority Critical patent/JPS63217239A/en
Publication of JPS63217239A publication Critical patent/JPS63217239A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PURPOSE:To obtain a measuring instrument which is manufactured and installed economically by performing temperature measuring operation at plural places which are equal in the length of external wiring by two-wire type resistance bulbs and one DC power source. CONSTITUTION:A series circuit 10 is constituted by connecting one comparison part B and plural two-wire type temperature measurement parts A1-An where the external wiring is connected to both-terminal sides of two-wire type resistance bulbs S1-Sn in series. A constant current generating means 11 flows a constant current to the series circuit 10. A voltage measuring means 15 measures respective voltages based upon fed constant currents of the comparison part B and temperature measurement parts A1-An. Then an arithmetic means 16 performs specific arithmetic as to the voltage measurement result of the voltage measuring means 15 to measure temperatures detected by the resistance bulbs S1-Sn according to the result. Then the temperature measurement parts A1-An have temperature measuring resistance elements R1-Rn which are equal in reference resistance value and external wiring coils R11, R12-Rn1, and Rn2 which are equal in resistance value, and the comparison part B is constituted by connecting two series-connected external wiring coils Rc1 and Rc2 and a 1st resistor Rc which has a resistance value equal to a reference resistance value and no temperature dependency.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、はぼ等しい抵抗値の外部配線を必要とする複
数個所の温度を測定する工業用の電気式温度測定装置、
特に経済的に製作しかつ設置を行うことができる装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an industrial electric temperature measuring device that measures temperatures at multiple locations requiring external wiring with approximately equal resistance values;
In particular, it relates to a device that can be manufactured and installed economically.

〔従来の技術〕[Conventional technology]

従来、測温抵抗体を用いた電気式温度測定装置において
は、測温抵抗体と抵抗測定回路とを結ぶ外部配線の抵抗
にもとづく測温誤差の発生を経済的に防止するためvc
1三線式測温装置が工業的に広(採用されている。第3
図はこの測温装置の一例を示す構成図で、図においてl
は三線式測温抵抗体、2は抵抗体lを構成する三線式測
温抵抗素子である。図かられかるように、抵抗素子2の
一端からは第1内部導線3aと第2内部導線3bとが引
き出されてそれぞ−れ第1端子4aと第2端子4bとに
接続されている。また抵抗素子2の他端からは第3内部
導線3Cが引き出されて第3端子4Cに接続されている
。5は素子2と導線3a〜3Cと端子4a−4Cとを収
容する保護管で、測温抵抗体lは上述し・た素子2と導
線3a〜3Cと端子4a〜4Cと保獲g5とで構成され
ている。
Conventionally, in electrical temperature measuring devices using a resistance temperature detector, VC is used to economically prevent temperature measurement errors due to the resistance of external wiring connecting the resistance temperature detector and the resistance measurement circuit.
1 Three-wire temperature measuring device is widely used industrially.
The figure is a configuration diagram showing an example of this temperature measuring device.
2 is a three-wire resistance temperature measuring element, and 2 is a three-wire resistance temperature measuring element constituting the resistor l. As can be seen from the figure, a first internal conducting wire 3a and a second internal conducting wire 3b are drawn out from one end of the resistive element 2 and connected to a first terminal 4a and a second terminal 4b, respectively. Further, a third internal conducting wire 3C is drawn out from the other end of the resistance element 2 and connected to a third terminal 4C. 5 is a protection tube that accommodates the element 2, conducting wires 3a to 3C, and terminals 4a to 4C, and the temperature sensing resistor l is made up of the above-mentioned element 2, conducting wires 3a to 3C, terminals 4a to 4C, and capacitor g5. It is configured.

6は抵抗素子2の電気抵抗を測定することによって該素
子2が検出する温度を測定するようにした。
6, the temperature detected by the resistance element 2 was measured by measuring the electrical resistance of the resistance element 2.

抵抗6111定回路としてのブリクジ回路で、図示した
ように、測温抵抗体lの端子4aは第1外部配線8aを
介して回路6の直流電源7に接続され、また抵抗体1の
端子4be 4Cはそれぞれ第2外部配線8b、E3外
部配線8Cを介してブリッジ回路6におけるブリッジの
各辺に接続されている。
In the bridge circuit as a resistor 6111 constant circuit, as shown in the figure, the terminal 4a of the resistance temperature detector l is connected to the DC power supply 7 of the circuit 6 via the first external wiring 8a, and the terminals 4be 4C of the resistor 1 are connected to each side of the bridge in the bridge circuit 6 via the second external wiring 8b and the E3 external wiring 8C, respectively.

第3図におい王、測温抵抗体lは当然測温場所に設置し
なければならないが、ブリッジ回路6は抵抗体lの設置
場所よりも環境条件の良い場所に設置されるのが通例で
、工業的測温ではブリッジ回路6を測温抵抗体1よりも
相当距離離して設置しなければならない場合がしばしば
発生する。このため、このような場合、外部配線88〜
8cの抵抗値はかなり大きい値になるが、第3図におい
ては配線8a〜8Cが図示のように抵抗測定回路に組み
込まれているので、配線8a〜8Cの抵抗値が大きくな
ってもこれらの抵抗値が温度測定結果に影響を及ぼすこ
とはない。
In Figure 3, the resistance temperature detector l must naturally be installed at the temperature measuring location, but the bridge circuit 6 is usually installed in a location with better environmental conditions than the location where the resistor l is installed. In industrial temperature measurement, it is often necessary to install the bridge circuit 6 at a considerable distance from the resistance temperature detector 1. Therefore, in such a case, the external wiring 88 to
The resistance value of wire 8c is quite large, but in FIG. 3, wires 8a to 8C are incorporated into the resistance measurement circuit as shown, so even if the resistance value of wires 8a to 8C becomes large, these The resistance value does not affect the temperature measurement results.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

第3図の測温装置は上述のよ5に構成され℃いるので一
個所の温度しか測定できないが、一方。
The temperature measuring device shown in Fig. 3 is configured as described above and can only measure the temperature at one location.

工業的には、たとえば円筒形をした流体収容タンク内の
二次元的温度分布を測定する場合のような。
Industrially, for example, two-dimensional temperature distribution within a cylindrical fluid storage tank is measured.

局限された狭い範囲の場所において多数個所の測温を必
要とするような場合が往々にして生じろことがある。故
に、このような場合、測温抵抗体を用いて測温を行おう
とした時、多数の測温個所く対してたとえば上述の直流
電源7を共用できる測温装置なu4成することができれ
ば経済的に好都合であるが、測温抵抗素子には自己加熱
誤差の発生を防止するために常時測定電流を流しておく
必要があるとか、測温抵抗体と抵抗測定回路とを結ぶ配
線の抵抗による測温誤差の発生を防止する必要があろな
どの理由により″C%結局第3図の測温装置な必要個数
だけ用意しなければならないということvcなる。
Cases often arise in which it is necessary to measure temperatures at multiple locations in a narrow, localized area. Therefore, in such a case, when trying to measure temperature using a resistance temperature sensor, it would be economical if a temperature measuring device u4 could be constructed that can share the DC power supply 7 mentioned above for a large number of temperature measuring points. However, it is necessary to constantly supply a measurement current to the resistance temperature detector in order to prevent self-heating errors, and the resistance of the wiring connecting the resistance temperature detector and the resistance measurement circuit may cause problems. Due to the need to prevent the occurrence of temperature measurement errors, it is necessary to prepare as many temperature measurement devices as shown in FIG. 3 as required.

つまり、従来、多数個所の温度な測温抵抗体により℃測
定しようとする場合、測温個所が局限された狭い範囲内
にある時でも第3図に示した三線式の測温装置を測温個
所の個数だけ用意する必要があって、この結果直流電源
7を複数個用意しなげねばならず、またこの場合測温抵
抗体と抵抗測定回路とを結ぶ外部配線の本数も該測温抵
抗体の個数の3倍用意しなければならないので、温度測
定装置を経済的に製作しかつ設置fることができないと
いう問題点があることになる。
In other words, conventionally, when trying to measure degrees Celsius using temperature measuring resistors at multiple locations, even when the temperature measuring locations are within a narrow, localized range, the three-wire temperature measuring device shown in Figure 3 is used to measure temperature. As a result, it is necessary to prepare a plurality of DC power supplies 7, and in this case, the number of external wires connecting the resistance temperature detector and the resistance measurement circuit also increases. Therefore, there is a problem in that the temperature measuring device cannot be manufactured and installed economically.

上述の説明は測温抵抗体lの抵抗をブリッジ式測定回路
6で測定する場合であったが、前記抵抗を電位差計式測
定回路で測定する場合にも測定回路な測温個所の数に等
しい個数だけ用意しなければならないので、直流定電圧
電源や外部配線な測温個所の個数に応じ工用意する必要
があり、結局電位差計測定方式の場合にも上述のブリッ
ジ式測定方式におけると同様な問題点があった。
The above explanation was for the case where the resistance of the resistance temperature detector l was measured by the bridge type measuring circuit 6, but when the resistance was measured by the potentiometer type measuring circuit, the number of temperature measuring points in the measuring circuit is equal to the number of temperature measuring points. Since it is necessary to prepare as many units as possible, it is necessary to prepare according to the number of temperature measurement points such as DC constant voltage power supply and external wiring.In the end, when using the potentiometer measurement method, the same method as for the bridge measurement method described above is used. There was a problem.

本発明の目的は%前述した外部配線の長さが同一になる
ような複数個所の測温を二線式測温抵抗体と一個の直流
電源とで行えるようにして、製作及び設fを経済的に行
うことができる温度測定装置を得ろことにある。
It is an object of the present invention to make it possible to measure temperatures at multiple locations where the length of external wiring is the same as described above using a two-wire resistance temperature detector and one DC power supply, thereby reducing manufacturing and installation costs. The objective is to obtain a temperature measuring device that can be used to measure temperature.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するためic、本発明によれば、一個
の比較部と二線式測温抵抗体の両端子にそれぞれ外部配
線が接続された二線式測温部の複数個とが直列に接続さ
れた直列回路と、前記直列回路に定電流を流す定電流発
生手段と、前記比較部及び前記測温部の前記定電流の通
電(もとづく各電圧を測定する電圧測定手段と、前記電
圧測定手段による電圧測定結果につい℃所定の演算を行
う演算手段とを備え、前記演算手段の演算結果にもとづ
き前記測温抵抗体が検出する温度を測定するものであっ
て、前記測温部はそれぞれ基準抵抗値が等しい測温抵抗
素子と等しい抵抗値の前記外部配線とを有し、かつ前記
比較部は直列九接続された二本の的記外部配線と前記基
準抵抗値に等しくかつ温度依存性のない抵抗値を有する
第1抵抗器とを直列接続してなるようにし℃温度測定装
置を構成するものとする。
In order to solve the above problems, according to the present invention, one comparing section and a plurality of two-wire temperature measuring sections each having an external wiring connected to both terminals of a two-wire temperature measuring resistor are connected in series. a series circuit connected to the series circuit, a constant current generating means for flowing a constant current through the series circuit, a voltage measuring means for measuring each voltage (based on the constant current supply to the comparing section and the temperature measuring section, and a calculating means for performing a predetermined calculation in degrees Celsius on the voltage measurement result by the measuring means, and measures the temperature detected by the resistance temperature sensor based on the calculation result of the calculating means, and each of the temperature measuring parts It has a temperature measuring resistance element having an equal reference resistance value and the external wiring having an equal resistance value, and the comparison section has two external wirings connected in series and a resistance temperature sensor having a resistance value equal to the reference resistance value and temperature dependence. C. temperature measuring device is constructed by connecting the first resistor in series with the first resistor having a resistance value of zero.

〔作用〕[Effect]

このように構成fろと、ダイオードが存在しない場合は
勿論、ダイオードが存在しても二線式測温部に断線がな
い限り定電流発生手段による定電流は前記測温部を流れ
、またこの定電流は比較部を流れるので、電圧測定手段
によって得られた二線式測温部の前記定電流にもとづ(
電圧から、同じく電圧測定手段によって得られた比較部
の前記電流にもとづく電圧を演算手段によって差し引く
と、この減算結果は測温抵抗体が検出する温度に応じた
電圧となる。故にこの減算結果による電圧について所定
の演算を再び演算手段で行わせることによって、測温抵
抗体によって検出された前記温度を知ることができるこ
とになる。そうしてこの温度測定装置は、測温部が二線
式で、かつ複数個の測温部に対して定電流発生手段に一
個しか必要としないので、経済的に製作並びに設置が行
えることが明らかである。なおダイオードがある場合、
このダイオードで短絡された測温部(断線が生じても前
記定電流が当該ダイオードを通じて流れて直列回路が断
線状態にならないので、断線した測温部の影響が他の測
温部の測温動作に及ぶことのない温度測定装置が得られ
ること(なる。
With this configuration, the constant current generated by the constant current generating means flows through the temperature measuring section, even if there is a diode, as long as there is no disconnection in the two-wire temperature measuring section. Since a constant current flows through the comparison section, based on the constant current of the two-wire temperature measurement section obtained by the voltage measurement means, (
When the voltage based on the current of the comparison section, which is also obtained by the voltage measuring means, is subtracted from the voltage by the calculating means, the result of this subtraction becomes a voltage corresponding to the temperature detected by the resistance temperature sensor. Therefore, by causing the calculation means to again perform a predetermined calculation on the voltage resulting from this subtraction, the temperature detected by the temperature-measuring resistor can be determined. This temperature measuring device has a two-wire temperature measuring section and requires only one constant current generating means for multiple temperature measuring sections, so it can be manufactured and installed economically. it is obvious. In addition, if there is a diode,
Temperature measuring section short-circuited by this diode (even if a disconnection occurs, the constant current will flow through the diode and the series circuit will not become disconnected, so the effect of the disconnected temperature measuring section will affect the temperature measurement operation of other temperature measuring sections) It is possible to obtain a temperature measuring device that does not exceed

〔実施例〕〔Example〕

第1図は本発明の第1実施例の構成図である。 FIG. 1 is a block diagram of a first embodiment of the present invention.

図において、R8−Rnは二線式測温抵抗体S1〜5n
rcおける各測温抵抗素子で、TI、、 T’S! 〜
Tnl。
In the figure, R8-Rn is a two-wire resistance temperature sensor S1-5n
TI,, T'S! for each resistance temperature sensing element in rc. ~
Tnl.

Tnzはそれぞれ抵抗体81〜SnKおける端子である
。Qu、G、t−Gnx+ Gnzはそれぞれ抵抗体S
i〜Snにおける内部導線である。端子T■・Tl!〜
Tnx會Tnzは抵抗測定回路9の端子F’He Pi
! 〜Fnt、Fnzくそれぞれ外部配線R1s* R
tm 〜Rnxs Rnz icよって接続されている
。Rc 1* Rc 2は直列接続されて両端がそれぞ
れ抵抗測定回路9に設けた端子Fct。
Tnz are terminals of the resistors 81 to SnK, respectively. Qu, G, t-Gnx+ Gnz are each resistor S
This is an internal conductive wire from i to Sn. Terminal T■・Tl! ~
Tnx Tnz is the terminal F'He Pi of the resistance measurement circuit 9
! ~Fnt, Fnz external wiring R1s* R
tm ~ Rnxs Rnz ic. Rc1*Rc2 are terminals Fct connected in series and provided at both ends of the resistance measuring circuit 9, respectively.

Fc2IIC接続されたいずれも外部配線、A1は測温
抵抗体S1と外部配線R,,,R,、とからなる二線式
測温部、A、は測温抵抗体S1と外部配線R11゜R1
!とからなる二線式測温部、Anは測温抵抗体Snと外
部配線Rnt、Rn2とからなる二線式測温部である。
Fc2IIC are connected to external wiring, A1 is a two-wire temperature measuring section consisting of resistance temperature detector S1 and external wiring R,,,R,, A is resistance temperature detector S1 and external wiring R11°R1
! An is a two-wire temperature measuring section consisting of a temperature measuring resistor Sn and external wirings Rnt and Rn2.

Rcは抵抗測定回路9内〈配置されて一端が端子FC2
K接続された。温度依存性のない後述の抵抗値を有する
第1抵抗器で、B +を上述のよう忙して直列接続され
た抵抗器Rcと外部配線RC1゜RC2とからなる比較
部である。測温部人1〜Anと比較部Bとは抵抗測定回
路9において図のよ5に接続され℃直列回路10を形成
している。
Rc is located inside the resistance measuring circuit 9 and one end is connected to the terminal FC2.
K connected. This is a first resistor having a temperature-independent resistance value to be described later, and is a comparison section consisting of a resistor Rc connected in series with B+ as described above, and external wirings RC1 and RC2. The temperature measurement units 1 to An and the comparison unit B are connected to 5 in the resistance measurement circuit 9 as shown in the figure to form a °C series circuit 10.

11は直列回路lOに定電流Iを流すようにした定電流
発生手段、SW、〜SWn及び8Wcはそれぞれ端子F
ll〜Fnx及びFctの各々と増幅回路12の入力端
子12aとの間の接続を開閉するようにしたスイッチで
、増幅回路!2は端子128に入力される電EEK応じ
た出力信号12bを出力するように構成されている。1
3は入力されるタイミング信号14bK応じてスイッチ
SW、 〜SWn 、SWcの開閉を制御するようにし
たスイッチ制御回路k14t−L後述する手順でタイミ
ング信号14bを出力しては入力される出力信号12b
Kつぃて後述する演算を行ってこの演算結果を記憶する
ようにした制御記憶部である。図くおいては定電流工が
直列回路10を流れるので、端子Fil〜F nt。
11 is a constant current generating means that causes a constant current I to flow through the series circuit IO, and SW, ~SWn and 8Wc are terminals F, respectively.
The amplifier circuit is a switch that opens and closes the connection between each of ll~Fnx and Fct and the input terminal 12a of the amplifier circuit 12. 2 is configured to output an output signal 12b corresponding to the electric power EEK input to the terminal 128. 1
3 is a switch control circuit k14t-L that controls the opening and closing of the switches SW, ~SWn, and SWc according to the input timing signal 14bK, and outputs the timing signal 14b according to the procedure described later, and then outputs the input output signal 12b.
This is a control storage section that performs calculations to be described later and stores the results of the calculations. In the figure, since a constant current flows through the series circuit 10, the terminals Fil to Fnt.

Fcricはそれぞれ測温部人1〜An及び比較部Bの
各抵抗く応じた電圧V、〜Vn * Vcが現れる。
For Fcric, voltages V and Vn*Vc appear depending on the resistances of the temperature measuring sections 1 to An and the comparison section B, respectively.

そうして制御記憶部は信号12bが入力されるごとにこ
の値を記憶してはさらI’C(Vt  Vt)−(Vt
−V、)、〜(Vn−に)K相当する差演算を行ってこ
の演算結果も記憶するように構成されている。ここvc
 (V、−V、)、 (V、−V、)、 〜(Vn−V
c)及びVc +x定電流工の通電くもとづ(測温部A
I−An及び比較部Bの各電圧であることが明らかであ
る。したがって、SW1〜8Wn、SWcと増幅回路1
2とスイッチ制御回路13と制御記憶部14とで、測温
部A1〜An及び比較部Bの定電流工の通電にもとづ(
各電圧を測定する電圧測定手段15が構成されていると
いうことができる。制御記憶部14は上述した記憶結果
を信号14aとして出力しうるようくなつ℃いる。
The control storage section then stores this value every time the signal 12b is input, and further stores I'C (Vt Vt) - (Vt
-V, ), ~(Vn-), a difference calculation corresponding to K is performed and the result of this calculation is also stored. here vc
(V, -V,), (V, -V,), ~(Vn-V
c) and Vc +
It is clear that the voltages of I-An and comparison section B are the same. Therefore, SW1 to 8Wn, SWc and amplifier circuit 1
2, the switch control circuit 13, and the control storage section 14, based on the energization of the constant current generators of the temperature measurement sections A1 to An and the comparison section B (
It can be said that voltage measuring means 15 for measuring each voltage is configured. The control storage unit 14 is arranged so that it can output the above-mentioned storage result as a signal 14a.

l6は信号14aが入力されこの入力信号について後述
する所定の演算を行うようにした演算手段である。抵抗
測定回路9&丁測温部A1〜Anと外部配@Rcx、R
czとを除く図示の各部で構成され℃いる。
16 is an arithmetic means to which the signal 14a is input and which performs a predetermined arithmetic operation to be described later on this input signal. Resistance measurement circuit 9 & temperature measurement section A1 to An and external wiring @Rcx, R
It consists of each part shown except for cz and ℃.

第1図では各部が上述のように′!lI成されているの
で、抵抗素子の抵抗R,−Rnがそれぞれ基準抵抗値R
o工〜R,noと温度による変化分ΔR1〜ΔRnとか
らなるものとすると(1)式が成立する。
In Figure 1, each part is as described above! Since the resistances R and -Rn of the resistance elements each have the reference resistance value R
If it is assumed to be composed of o~R, no and changes due to temperature ΔR1~ΔRn, equation (1) holds true.

ここに、基準抵抗値Ro1〜Rnoは抵抗素+8.〜R
nのそれぞれ01lKおける抵抗値で温度によりて変化
しない抵抗値であり、またΔR1〜ΔRnはそれぞれ素
子R8〜Rnが検出する温度θ、〜θnK応じた抵抗変
化分である。(1)式においてヲユ内部導線G■l o
、、〜Gnt、Gn2o各抵抗を無視しtいる。また、
前述したように、抵抗Rcは温度依存性のない抵抗であ
るから、 Vcは(2)式のよう、に表される。
Here, the reference resistance values Ro1 to Rno are the resistance element +8. ~R
ΔR1 to ΔRn are resistance values corresponding to temperatures θ and θnK detected by the elements R8 to Rn, respectively. In equation (1), the internal conductor G■l o
, , ~Gnt, Gn2o each resistance is ignored. Also,
As mentioned above, since the resistance Rc is a resistance without temperature dependence, Vc is expressed as in equation (2).

V c= (Rc+Rcx+Rc2) −I     
  −・・・(2)したがって第1図においては、制御
記憶部14が(1)式及び(シ式で表される電圧差(V
+−vf)、〜。
V c= (Rc+Rcx+Rc2) −I
-...(2) Therefore, in FIG. 1, the control storage unit 14 has a voltage difference (V
+-vf), ~.

(Vn−Vc)及び電圧Vcに応じた信号14aを出力
することになる。
(Vn-Vc) and a signal 14a corresponding to the voltage Vc is output.

ところで、第1図の場合、(3)式及び(4)式が成立
するように要部が構成されている。つまり、たとえば、
同じ基準抵抗値の測温抵抗素子R1〜Rnを有する測温
抵抗体s、−anが抵抗測定回路9から同じ距離能れた
位置に配置され、このよ5に配置された抵抗体81〜S
nを同じ太さの外部配線R1゜〜Rnzで測定回路91
’C接続し、さらに外部配線RII〜Rnzと同じ長さ
及び同じ太さの外部配線RCI。
Incidentally, in the case of FIG. 1, the main parts are configured so that equations (3) and (4) hold true. That is, for example,
The resistance temperature detectors s and -an having the resistance temperature detectors R1 to Rn having the same reference resistance value are arranged at the same distance from the resistance measurement circuit 9, and the resistors 81 to S arranged in this way 5 are arranged at the same distance from the resistance measurement circuit 9.
Measurement circuit 91 for n using external wiring R1° to Rnz of the same thickness.
'C connection, and external wiring RCI having the same length and same thickness as external wiring RII to Rnz.

RC2を配線現、〜Rn2と同じようく敷設し工、 R
CIとRczとの直列回路に抵抗素子R1〜R1の基準
抵抗値と同じ抵抗値を有する第1抵抗器Rcを直列接続
したという場合である。
Lay the wiring for RC2 in the same way as ~Rn2, R
This is a case where the first resistor Rc having the same resistance value as the reference resistance value of the resistance elements R1 to R1 is connected in series to the series circuit of CI and Rcz.

R1,=R,@ =−・−・= Rn o= Rc  
     −−−−−・(3)R11=R1,=R,,
z−−−−−=Rn 1=Rn 2=RC1=RC2・
−・・−・(4)(1)〜(4)式から(5)式が成立
することが明らかである。
R1,=R,@=-・-・=Rno=Rc
------・(3) R11=R1,=R,,
z-----=Rn 1=Rn 2=RC1=RC2・
- (4) It is clear that equation (5) holds true from equations (1) to (4).

第1図において演算手段16は、信号14avcもとづ
いて(9式の演算を行い、さらに、得られたΔR1〜Δ
RnO値からこれらの抵抗変化をもたらした抵抗素子R
1〜RntCよる検出温度θ、〜θnに応じた信号16
aを出力するように構成されている。
In FIG. 1, the calculating means 16 calculates the equation (9) based on the signal 14avc, and further calculates the obtained ΔR1 to Δ
The resistance element R that caused these resistance changes from the RnO value
Signal 16 corresponding to temperature θ detected by 1~RntC, ~θn
It is configured to output a.

したがつ工信号1f58によって温度01〜θnを測定
することができるわけである。
Therefore, temperatures 01 to θn can be measured using the power signal 1f58.

この場合、上述した所から明らかなように、測温部A1
〜Anは二線式でよく、かつこれら複数個の測温部に対
して一個の定電流発生手段11を用意すればよい。した
がって%第1図に示した温度測定装置は、経済的に製作
並びに設置が行える装置であるということができる。
In this case, as is clear from the above, the temperature measuring section A1
~An may be of a two-wire type, and one constant current generating means 11 may be provided for these plurality of temperature measuring sections. Therefore, it can be said that the temperature measuring device shown in FIG. 1 is a device that can be manufactured and installed economically.

第2図は本発明の第2実施例の構成図で1本図の第1図
と異なる所に測温部A1〜AnにそれぞれダイオードD
、〜Dnが並列に接続され℃いる点であ、る。そうして
%wJz図においては、測温部A1〜Anに断線が発生
していない場合vcは、これら測定部の定電流工による
両端電圧がダイオードD!〜Dnの順方向電圧降下より
も小さくてダイオードD1〜Dnは不導通状態にあり、
測温部A、〜Anのいずねかに断線が発生すると、この
断線を生じた測温部に接続されたダイオードに上記順方
向電圧降下以上の電圧が加えられ′C該ダイオードが導
通状態になるように、各部が構成されている。故に、第
2図の場合、測温部A1〜Anのいずれかに断線が生じ
ると他のすべての測温部による温度測定が不可能(なる
第1図の場合に比べて、測温部A、〜AnK断線を生じ
ても断線を生じていない測温部による測温を継続するこ
とができる利点がある。第2図の温度測定装置が経済的
に製作並びに設置が行える装置であることは明らかであ
る。
FIG. 2 is a configuration diagram of a second embodiment of the present invention, and the difference from FIG.
, ~Dn are connected in parallel. Then, in the %wJz diagram, if there is no disconnection in the temperature measurement parts A1 to An, then vc is the voltage across the diode D! ~Dn is smaller than the forward voltage drop, and the diodes D1~Dn are in a non-conducting state;
When a disconnection occurs in any of the temperature measuring sections A, ~An, a voltage higher than the above forward voltage drop is applied to the diode connected to the disconnected temperature measuring section, causing the diode to become conductive. Each part is configured so that Therefore, in the case of Fig. 2, if a disconnection occurs in any of the temperature measuring parts A1 to An, temperature measurement by all other temperature measuring parts becomes impossible (compared to the case of Fig. 1, temperature measuring part A , ~ AnK There is an advantage that even if a wire breakage occurs, temperature measurement can be continued by the temperature measuring section that does not have a wire breakage.The temperature measuring device shown in Fig. 2 is a device that can be manufactured and installed economically. it is obvious.

〔発明の効果〕〔Effect of the invention〕

上述したように1本発明においCは、一個の比軟部と二
線式測温抵抗体の両端子にそれぞれ外部配線が接続され
た二線式測温部の複数個とが前記測温部に並列にダイオ
ードが接続されるかまたは接続されない状態で直列に接
続された直列回路と、前記直列回路に定電流を流す定電
流発生手段と、比較部及び測温部の定電流の通電にもと
づく各電圧を測定する電圧測定手段と、電圧測定手段に
よる電圧測定結果につい℃所定の演算を行う演算手段と
を備え、演算手段の演算結果にもとづき測温抵抗体が検
出する温度を測定するものであって。
As described above, in the present invention, C includes one specific soft part and a plurality of two-wire temperature measuring parts each having an external wiring connected to both terminals of the two-wire temperature measuring resistor. A series circuit connected in series with or without a diode connected in parallel, a constant current generating means for flowing a constant current through the series circuit, and each based on the constant current energization of the comparing section and the temperature measuring section. It is equipped with a voltage measuring means for measuring voltage and a calculating means for performing a predetermined calculation in degrees Celsius on the voltage measurement result by the voltage measuring means, and measures the temperature detected by the resistance temperature detector based on the calculation result of the calculating means. hand.

測温部はそれぞれ基準抵抗値が等しい測温抵抗素子と等
しい抵抗値の前記外部配線とを有し、かつ比較部は直列
に接続された二本の外部配線と基準抵抗値に等しくかつ
温度依存性のない抵抗値を有する第1抵抗器とを直列に
接続してなるように温度測定装置を構成した。この結果
、このように構成すると、ダイオードが存在しない場合
は勿論。
The temperature measurement section has a resistance temperature measurement element having the same reference resistance value and the external wiring having the same resistance value, and the comparison section has two external wirings connected in series and a temperature measurement resistance element having a resistance value equal to the reference resistance value and temperature dependent. The temperature measuring device was constructed by connecting the first resistor in series with the first resistor having a neutral resistance value. As a result, with this configuration, of course, if no diode is present.

ダイオードが存在し工も二線式測温部に断線がない限り
定電流発生手段による定電流は測温部を流れ、またこの
定電流は比較部を流れるので、電圧測定手段によつ℃得
られた二線式測温部の定電流にもとづく電圧から、同じ
く電圧測定手段によって得られた比較部の前記電流にも
とづ(電圧を演算手段によって差し引くと、この減算結
果は測温抵抗体が検出する温度に応じた電圧となる。故
にこの減算結果による電圧について所定の演算を再び演
算手段で行わせることによって、測温抵抗体により工検
出された温度を知ることができること九なる。したがっ
て、この温度測定装Mは、測温部が二線式で、かつ複数
個の測温部に対して定電流発生手段は一個しか必要とし
ないので1本発明゛Vcは経済的に製作並びに設置が行
える効果がある。
As long as there is a diode and there is no disconnection in the two-wire temperature measuring section, the constant current generated by the constant current generating means will flow through the temperature measuring section, and this constant current will also flow through the comparison section, so the temperature value obtained by the voltage measuring means will be When the voltage is subtracted by the arithmetic means from the voltage based on the constant current of the two-wire temperature measuring section, based on the current of the comparison section also obtained by the voltage measuring means, the result of this subtraction is is a voltage corresponding to the temperature detected by the temperature sensor.Therefore, by having the calculation means again perform a predetermined calculation on the voltage resulting from this subtraction, it is possible to know the temperature detected by the resistance temperature sensor. This temperature measuring device M has a two-wire temperature measuring section and requires only one constant current generating means for a plurality of temperature measuring sections. There is an effect that can be performed.

なおダイオードがある場合、このダイオードで短絡され
た測温部に断線が生じ工も前記定電流が当該ダイオード
を通じ電流れて直列回路がWr線状態にならないので1
本発明には断線した測温部の影響が他の測温部の測温動
作(及ぶことがないという効果もある。
In addition, if there is a diode, the temperature measuring part short-circuited by this diode will be disconnected and the constant current will flow through the diode and the series circuit will not become the Wr line state.
The present invention also has the advantage that the temperature measurement operation of other temperature measurement units is not affected by the disconnected temperature measurement unit.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図はそれぞれ本発明の第1実施例及び第
2実施例の各構成図である。第3図は従来の温度測定装
置の構成図である。 10・・・・・・直列回路、11・・・・・・定電流発
生手段、15電王測定手段、16・・・・・・演算手段
、A、〜An・・・・・・二線式測温部、B・・・・・
・比較部、D、〜Dn・・・・・・ダイオード、■・・
・・・・定電流s R1−Rn・・・・・・測温抵抗素
子、R11〜Rnz、 RCl、 RC2・・・・・・
外部配線%Rc・・・・・・第1抵抗器、J〜Sn・・
・・・・測温抵抗体、TI、〜Tnz・・・・・・端子
。 ] ;゛¥ 篇  3  図
FIG. 1 and FIG. 2 are block diagrams of a first embodiment and a second embodiment of the present invention, respectively. FIG. 3 is a configuration diagram of a conventional temperature measuring device. 10... Series circuit, 11... Constant current generating means, 15 Denou measuring means, 16... Arithmetic means, A, ~An... Two-wire system Temperature measuring part, B...
・Comparison section, D, ~Dn...Diode, ■...
...Constant current s R1-Rn...Resistance temperature sensor, R11-Rnz, RCl, RC2...
External wiring %Rc...First resistor, J~Sn...
...Resistance temperature sensor, TI, ~Tnz... terminal. ] ;゛¥ Edition 3 Figure

Claims (1)

【特許請求の範囲】 1)一個の比較部と二線式測温抵抗体の両端子にそれぞ
れ外部配線が接続された二線式測温部の複数個とが直列
に接続された直列回路と、前記直列回路に定電流を流す
定電流発生手段と、前記比較部及び前記測温部の前記定
電流の通電にもとづく各電圧を測定する電圧測定手段と
、前記電圧測定手段による電圧測定結果について所定の
演算を行う演算手段とを備え、前記演算手段の演算結果
にもとづき前記測温抵抗体が検出する温度を測定するも
のであって、前記測温部はそれぞれ基準抵抗値が等しい
測温抵抗素子と等しい抵抗値の前記外部配線とを有し、
かつ前記比較部は直列に接続された二本の前記外部配線
と前記基準抵抗値に等しくかつ温度依存性のない抵抗値
を有する第1抵抗器とを直列接続してなることを特徴と
する温度測定装置。 2)特許請求の範囲第1項記載の装置において、前記各
測温部には並列にダイオードが接続されていることを特
徴とする温度測定装置。
[Claims] 1) A series circuit in which one comparison section and a plurality of two-wire temperature measurement sections each having an external wiring connected to both terminals of a two-wire resistance temperature sensor are connected in series. , a constant current generating means for flowing a constant current through the series circuit, a voltage measuring means for measuring each voltage based on the application of the constant current of the comparing section and the temperature measuring section, and voltage measurement results by the voltage measuring means. and a calculating means for performing a predetermined calculation, and measures the temperature detected by the temperature measuring resistor based on the calculation result of the calculating means, and each of the temperature measuring parts has a temperature measuring resistor having an equal reference resistance value. and the external wiring having the same resistance value as the element,
and the comparison section is formed by connecting in series two of the external wirings and a first resistor having a resistance value equal to the reference resistance value and having no temperature dependence. measuring device. 2) The temperature measuring device according to claim 1, wherein a diode is connected in parallel to each of the temperature measuring sections.
JP5084187A 1987-03-05 1987-03-05 Temperature measuring instrument Pending JPS63217239A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5084187A JPS63217239A (en) 1987-03-05 1987-03-05 Temperature measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5084187A JPS63217239A (en) 1987-03-05 1987-03-05 Temperature measuring instrument

Publications (1)

Publication Number Publication Date
JPS63217239A true JPS63217239A (en) 1988-09-09

Family

ID=12869967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5084187A Pending JPS63217239A (en) 1987-03-05 1987-03-05 Temperature measuring instrument

Country Status (1)

Country Link
JP (1) JPS63217239A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007085798A (en) * 2005-09-20 2007-04-05 Sanyo Electric Co Ltd Temperature measuring device
JP2007327809A (en) * 2006-06-07 2007-12-20 Hayashi Denko Kk Multi-channel temperature measuring circuit
JP2010502987A (en) * 2006-09-07 2010-01-28 キョウセラ ワイヤレス コープ. Identification using temperature-dependent resistive devices

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007085798A (en) * 2005-09-20 2007-04-05 Sanyo Electric Co Ltd Temperature measuring device
JP2007327809A (en) * 2006-06-07 2007-12-20 Hayashi Denko Kk Multi-channel temperature measuring circuit
JP4705522B2 (en) * 2006-06-07 2011-06-22 林電工株式会社 Multi-channel temperature measurement circuit
JP2010502987A (en) * 2006-09-07 2010-01-28 キョウセラ ワイヤレス コープ. Identification using temperature-dependent resistive devices
JP4940305B2 (en) * 2006-09-07 2012-05-30 キョウセラ ワイヤレス コープ. Identification using temperature-dependent resistive devices

Similar Documents

Publication Publication Date Title
JP5667192B2 (en) Multiplexer for detecting and correcting leakage current
EP0572204B1 (en) Method and apparatus for automated sensor diagnosis
KR102171326B1 (en) Multiple parallel sensor array system
CA1276253C (en) Event location using a locating member containing discrete impedances
JPS63217239A (en) Temperature measuring instrument
CN111006820B (en) Liquid leakage detection device
US5874790A (en) Method and apparatus for a plurality of modules to independently read a single sensor
US2678422A (en) Electrical measuring system
US3543583A (en) Circuit arrangement for connecting devices for picking up measuring values to be recorded
TWI695558B (en) Cable breakage precursor detection device
US5115188A (en) Resistance sensor and switch
JPH10123189A (en) Measurement method and device for resistance value
US3453536A (en) Common power supply resistance bridge system providing excitation,individual bridge sensor resistance,and signal output terminals all referenced to a common potential
JPH01231638A (en) Winding temperature detector for motor
KR100275568B1 (en) Snap detecting method for temperature measurement sensor
KR102297426B1 (en) Controller internal resistance measuring apparatus and controller internal resistance measuring method
SU966623A1 (en) Device for measuring two-wire line insulation resistance
RU2699931C1 (en) Device for measuring temperature fields
SU995025A1 (en) Device for automatic checking of electric circuit insulation resistance
JPH04145333A (en) Method for monitoring temperature of conductor of laid power cable
JP3142031B2 (en) Temperature measuring device
RU2647218C2 (en) Method for automatic control of insulation of the direct current power source relative to the housing and relative to each other and device for its implementation
EP3534125A1 (en) Electric device comprising a printed circuit board and method for determining local temperatures at different measurement points of the printed circuit board
JPS592079B2 (en) Nisenshiki Ondo Keisokudensou Cairo
SU708174A1 (en) Temperature difference measuring device