JPS63216912A - Fluidized reduction method for granular ore - Google Patents

Fluidized reduction method for granular ore

Info

Publication number
JPS63216912A
JPS63216912A JP5069687A JP5069687A JPS63216912A JP S63216912 A JPS63216912 A JP S63216912A JP 5069687 A JP5069687 A JP 5069687A JP 5069687 A JP5069687 A JP 5069687A JP S63216912 A JPS63216912 A JP S63216912A
Authority
JP
Japan
Prior art keywords
gas
ore
zone
reduction
heating zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5069687A
Other languages
Japanese (ja)
Inventor
Sadao Higuchi
貞夫 樋口
Shoji Furuya
古谷 昌二
Tetsuo Horie
徹男 堀江
Makoto Shimizu
信 清水
Yujo Marukawa
雄浄 丸川
Masaharu Anezaki
姉崎 正治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Nippon Steel Corp
Original Assignee
IHI Corp
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp, Sumitomo Metal Industries Ltd filed Critical IHI Corp
Priority to JP5069687A priority Critical patent/JPS63216912A/en
Publication of JPS63216912A publication Critical patent/JPS63216912A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To improve thermal efficiency by making heating zone of whole height in fluidized bed, by dividing inner part of a fluidized reduction furnace into a reducing zone and the heating zone so as to communicate at the prescribed position, fluidizing them separately and shifting ore mutually between both zones. CONSTITUTION:The inner part of the fluidized reduction furnace 1 is partitioned into the reducing zone 11 and the heating zone 12 by a partition wall 10 and the also both zones 11, 12 are communicated at the prescribed position, to form opening zones 15, 16. Fluidized gas 2 is separately supplied into both above zones 11, 12, to develop difference of flow rate of the gas. And, the ore is shifted mutually between both zones 11, 12. Thus, by supplying the heat to the heating zone 12, the heat is compensated over whole zone in the inner part of the furnace.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、鉄鉱石、クロム鉱石等の粉粒状鉱石を還元す
る為の流動還元方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a fluid reduction method for reducing powdery ores such as iron ore and chromium ore.

[従来の技術] 鉄鉱石、クロム鉱石等の鉱石を還元する方法の1として
流動還元方法がある。
[Prior Art] One of the methods for reducing ores such as iron ore and chromium ore is a fluid reduction method.

流動還元方法は、粉粒状の鉱石と還元材である炭材を炉
内に装入すると共に炉底部より水素ガスH2、−酸化炭
素ガスCO等の流動化ガスを供給して鉱石と炭材の混合
流動層を形成し還元しようとするものである。
In the fluidized reduction method, granular ore and carbonaceous material, which is a reducing agent, are charged into a furnace, and a fluidizing gas such as hydrogen gas H2 and -carbon oxide gas CO is supplied from the bottom of the furnace to separate the ore and carbonaceous material. The purpose is to form a mixed fluidized bed for reduction.

該方法で還元対象物が鉄鉱石である場合、焼結の問題な
く900℃以上の高温還元ができ、H2、Co等の流動
化ガスで還元すれば20分〜30分で90%以上の金属
化率が得られる。
When the object to be reduced by this method is iron ore, it can be reduced at a high temperature of 900°C or higher without sintering problems, and if reduced with a fluidizing gas such as H2 or Co, 90% or more of the metal can be reduced in 20 to 30 minutes. The conversion rate can be obtained.

鉄鉱石、クロム鉱石等の粉粒状鉱石を流動化して還元す
る場合、鉱石に還元に伴う吸熱や流動還元炉からの放熱
により熱損失があり、炉内を還元に最適な温度に維持す
るには還元吸熱、炉外放熱分を熱補償し或は必要に応じ
て昇温させる必要がある。
When fluidizing and reducing granular ores such as iron ore and chromium ore, there is heat loss due to heat absorption by the ore due to reduction and heat radiation from the fluidized fluidized reduction furnace, and it is necessary to maintain the inside of the furnace at the optimal temperature for reduction. It is necessary to thermally compensate for the reduction heat absorption and heat radiation outside the furnace, or to raise the temperature as necessary.

従来この給熱の1として、流動化ガスの供給温度を上げ
て炉内の還元雰囲気を維持する方法がある。該方法によ
れば、流動化ガスを50〜200℃程度上げて供給する
ことになる。
Conventionally, one method of supplying heat is to maintain a reducing atmosphere in the furnace by increasing the supply temperature of the fluidizing gas. According to this method, the fluidizing gas is supplied at a temperature raised by about 50 to 200°C.

又、クロム鉱石をH2や炭化水素ガスで還元する場合は
その還元雰囲気は1100℃以上と更に高く、供給流動
化ガスの温度は1150〜1300℃程度が必要となっ
てくる。
Furthermore, when chromium ore is reduced with H2 or hydrocarbon gas, the reducing atmosphere is even higher, at 1100°C or higher, and the temperature of the supplied fluidizing gas needs to be about 1150 to 1300°C.

又、給熱の他の方法として炉内で還元ガスを部分的に酸
化(燃焼)させる部分酸化法がある。
Further, as another method of heat supply, there is a partial oxidation method in which reducing gas is partially oxidized (combusted) in a furnace.

該部分酸化法を、第6図を参照して説明すると、流動還
元炉l内に流動化還元ガス2を供給管3及び散気管4を
介して供給する様にし、鉱石装入口5より供給された粉
粒状鉱石6を流動化還元して排ガスは排ガス排出ライン
7より排出される。炉内流動層8の高さh内の上部に設
けた酸化ガス送入口9より酸素又は酸素含有ガスを供給
して流動層上部の還元ガスを燃焼させ、その燃焼熱で該
上部に浮遊する粉粒鉱石を加熱する。
The partial oxidation method will be explained with reference to FIG. 6. The fluidized reducing gas 2 is supplied into the fluidized reduction furnace l through the supply pipe 3 and the aeration pipe 4, and the ore charging port 5 The granular ore 6 is fluidized and reduced, and the exhaust gas is discharged from the exhaust gas discharge line 7. Oxygen or oxygen-containing gas is supplied from the oxidizing gas inlet 9 provided at the upper part of the fluidized bed 8 within the height h of the furnace to combust the reducing gas in the upper part of the fluidized bed, and the heat of combustion causes powder to float in the upper part. Heat the grain ore.

流動層内では粉粒鉱石が上下に移動するので上部で加熱
された鉱石が下部で熱媒体となってガスを加熱し、これ
が繰返されることにより流動層全域が昇温される。
As the powder ore moves up and down in the fluidized bed, the heated ore in the upper part acts as a heat medium in the lower part and heats the gas, and as this is repeated, the temperature of the entire fluidized bed increases.

以上説明した部分酸化法については特公昭5g−980
9に於いて詳細に述べられている。
Regarding the partial oxidation method explained above,
9 is described in detail.

[発明が解決しようとする問題点] 然し、前者の方法では還元ガスの還元性を維持して高温
化する方法として、熱交換機(レキュペータ)があるが
熱交換チューブの材質上の制約或は熱効率の点から現在
の技術水準では最高で約800℃位である。
[Problems to be solved by the invention] However, in the former method, a heat exchanger (recuperator) is used as a method to maintain the reducing property of the reducing gas and raise the temperature, but there are limitations due to the material of the heat exchange tube or thermal efficiency. According to the current state of the art, the maximum temperature is about 800°C.

斯かる問題は還元雰囲気温度の高いクロム鉱石の還元で
は特に重要である。
Such a problem is particularly important in the reduction of chromium ore where the reducing atmosphere temperature is high.

又、後者の部分酸化法では上記方法の問題を解消するが
、従来の部分酸化法では流動層の中間より上部で部分酸
化するので、以下問題がある。
Further, although the latter partial oxidation method solves the problems of the above method, in the conventional partial oxidation method, partial oxidation is carried out in the upper part of the fluidized bed, which causes the following problems.

流動層ではガスの流速が速いので燃焼により高温化した
ガスと粉粒鉱石との接触時間が短く、燃焼熱の大部分は
上方へ逃げ、熱損失が大きい。
In a fluidized bed, the gas flow rate is fast, so the contact time between the gas heated up by combustion and the powder ore is short, and most of the combustion heat escapes upward, resulting in large heat loss.

或は、炉内の還元温度を維持する為の熱を粉粒鉱石を介
して行う為熱効率の点から部分酸化量は前記熱補償骨よ
り充分大きくなければならず、その結果(1)酸素又は
酸素含有ガスの消費量が多くなる、α)還元ガスの酸化
割合が多くなるので排ガスの付加価値が低下する(潜熱
の低下、排ガスを循環使用する場合のガス改質、例えば
H2O、CO2の除去、量が多くなる)、(2)燃焼温
度が高くなり焼結の虞れが生じる、■炉内の1部が酸化
雰囲気となる為鉱石の還元率が低下する。又、酸素の増
量により、鉱石の再酸化が激しくなり、還元率低下の原
因となる。
Alternatively, the amount of partial oxidation must be sufficiently larger than the heat-compensating bone from the viewpoint of thermal efficiency because the heat to maintain the reduction temperature in the furnace is carried out through the granular ore, and as a result (1) oxygen or The consumption of oxygen-containing gas increases, α) The oxidation rate of reducing gas increases, so the added value of exhaust gas decreases (lower latent heat, gas reformation when exhaust gas is recycled, e.g. removal of H2O, CO2) (2) The combustion temperature becomes high and there is a risk of sintering. (2) A part of the furnace becomes an oxidizing atmosphere, so the reduction rate of the ore decreases. In addition, the increased amount of oxygen increases the reoxidation of the ore, causing a reduction in the reduction rate.

尚、参考迄に酸素又は酸素含有ガスを流動層の中間より
下部から供給して還元ガスを燃焼させ熱補償する場合は
、上部からの供給より熱補償の点からは有利になるが、
流動層全域の還元性ガスの酸化が進み目標の還元率を達
成することが困難となるので好ましくない。
For reference, if oxygen or oxygen-containing gas is supplied from the middle to the lower part of the fluidized bed to burn the reducing gas and compensate for heat, it is more advantageous from the point of view of heat compensation than supplying from the upper part.
This is not preferable because the oxidation of the reducing gas throughout the fluidized bed progresses, making it difficult to achieve the target reduction rate.

E問題点を解決するための手段] 本発明は上記した問題点を解消する為になしたものであ
り、部分酸化法を更に発展させ、熱補償を効率よく行う
と共に還元率の低下を招くことがない様にしようとする
ものであり、流動還元炉内部を還元帯と加熱帯に仕切り
、両帯域を所要位置で連通させ、流動化ガスを個別に供
給し得る様にすると共に両帯域に供給する流動化ガス流
量に差を生じさせる様にしたことを特徴とするものであ
る。
Means for Solving Problem E] The present invention has been made to solve the above-mentioned problems, and it further develops the partial oxidation method to efficiently compensate for heat while causing a reduction in the reduction rate. The interior of the fluidized reduction furnace is divided into a reduction zone and a heating zone, and both zones are communicated at the required positions so that fluidizing gas can be supplied separately and also supplied to both zones. This is characterized in that a difference is caused in the flow rate of the fluidizing gas.

[作   用] 流動化ガス流量に差を生じさせるので還元帯と加熱帯間
で流動層の相互移動があり、加熱帯に給熱すれば炉内部
会域に亘る熱補償ができる。
[Function] Since a difference is created in the flow rate of the fluidizing gas, there is mutual movement of the fluidized bed between the reduction zone and the heating zone, and if heat is supplied to the heating zone, heat compensation can be achieved over the area inside the furnace.

[実 施 例] 以下、図面を参照して本発明の1実施例を説明する。[Example] Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図、第2図に於いて、流動炉lの内部を仕切壁10
で鉱石の還元帯11と加熱帯12に仕切り、該仕切壁1
0の高さは流動層の高さhより所定のレベルだけ低い位
置とすると共に仕切壁■0の下部を欠切せしめ、還元帯
、加熱帯をその上部及び下部に於いて連通状態とする。
In FIGS. 1 and 2, a partition wall 10
The ore is divided into a reduction zone 11 and a heating zone 12, and the partition wall 1
The height of the partition wall 0 is set to be a predetermined level lower than the height h of the fluidized bed, and the lower part of the partition wall 0 is cut out, so that the reduction zone and the heating zone are in communication between the upper and lower parts.

又、還元帯11の下部には鉱石排出口13を設ける。前
記還元帯11と加熱帯12の下部にそれぞれ散気管4a
、4bを配設し、それぞれの散気管4a、4bに流動還
元ガス供給管3a、3bを接続し、両供給管3a、3b
を個別にガス供給源(図示せず)に接続する。
Further, an ore discharge port 13 is provided at the lower part of the reduction zone 11. Diffusion pipes 4a are provided at the bottom of the reduction zone 11 and the heating zone 12, respectively.
, 4b are arranged, and the fluidized reducing gas supply pipes 3a, 3b are connected to the respective diffuser pipes 4a, 4b, and both the supply pipes 3a, 3b are connected.
are individually connected to a gas supply (not shown).

前記流動炉1の加熱帯12の炉壁中位位置に酸化性ガス
供給口14を設け、該供給口14は酸化性ガス供給源(
図示せず)と連通しである。該供給口14の位置は散気
管4a、4bの上方で仕切り壁10高さの中間位置が好
ましい。
An oxidizing gas supply port 14 is provided in the middle position of the furnace wall of the heating zone 12 of the fluidized fluidized furnace 1, and the supply port 14 is connected to the oxidizing gas supply source (
(not shown). The position of the supply port 14 is preferably an intermediate position of the height of the partition wall 10 above the diffuser pipes 4a, 4b.

該鉱石装入口5より所定の粒度に粉砕した鉱石6を装入
すると共に供給管3a、3bより還元ガスを供給し、散
気管4a、4bより還元ガスを噴出する。
Ore 6 crushed to a predetermined particle size is charged through the ore charging port 5, and reducing gas is supplied through the supply pipes 3a and 3b, and the reducing gas is ejected through the aeration pipes 4a and 4b.

噴出した還元ガスは、鉱石6を流動化し、還元帯11、
加熱帯12それぞれで流動層を形成せしめる。又、加熱
帯12の酸化性ガス供給口14より酸素又は酸素含有の
酸化性ガスを供給する。この酸化性ガスの供給によって
還元ガスの1部が燃焼し、流動化ガスが高温化する。こ
の加熱帯での流動化ガスの高温化によっそ浮遊する鉱石
が加熱される。又、還元ガスの部分燃焼は加熱帯12の
内部で行われる為、燃焼は鉱石の加熱に効果的に利用さ
れ、排ガスへの熱ロスは少なくなる。
The ejected reducing gas fluidizes the ore 6 and creates a reduction zone 11,
A fluidized bed is formed in each of the heating zones 12. Further, oxygen or an oxygen-containing oxidizing gas is supplied from the oxidizing gas supply port 14 of the heating zone 12 . By supplying this oxidizing gas, a part of the reducing gas is combusted, and the temperature of the fluidizing gas increases. The floating ore is heated by increasing the temperature of the fluidizing gas in this heating zone. Further, since partial combustion of the reducing gas is performed inside the heating zone 12, combustion is effectively used to heat the ore, and heat loss to the exhaust gas is reduced.

次に、散気管4a、4bより供給される流動化ガス流量
は還元帯11側の流動化ガス流量を一定とし、加熱帯1
2側の流動化ガス流量を変化させる。
Next, the fluidizing gas flow rate supplied from the aeration pipes 4a and 4b is set to a constant fluidizing gas flow rate on the reduction zone 11 side, and the heating zone 1
Change the fluidizing gas flow rate on the second side.

前記した様に仕切壁10の高さは流動層の高さhより所
定のレベルだけ低くなっていると共に仕切壁lOの下部
が欠切しているので、上下両開放帯15.16を通して
還元帯11と加熱帯12間で、前記流動化ガス流量の相
違に基づく流動層内のガス流速の相違と相俟って相互移
動がある。
As mentioned above, the height of the partition wall 10 is lower than the height h of the fluidized bed by a predetermined level, and the lower part of the partition wall lO is cut out, so that the reduction zone can be passed through both the upper and lower open zones 15 and 16. 11 and the heating zone 12, there is mutual movement due to the difference in gas flow rate in the fluidized bed due to the difference in the fluidizing gas flow rate.

即ち、加熱帯12で加熱された鉱石が上部の開放帯15
を通って還元帯11に移行し還元帯11の下部の鉱石は
下部の開放帯16を通って加熱帯12へ移行して、流動
化した鉱石は還元帯11と加熱帯12間を循環する。尚
、鉱石の循環量は、両帯へ供給する流動化ガスの流量差
(即ち流速差)の大小によって決定される。鉱石が還元
帯12内を移動する時は、還元されると共に加熱帯11
中で得た熱の1部を放出して還元帯12の雰囲気温度を
上昇させる。一方還元帯から加熱帯に移動した鉱石は還
元帯ll内での還元の吸熱反応に伴い、温度低下してい
るが、加熱帯内で再加熱される。
That is, the ore heated in the heating zone 12 is transferred to the upper open zone 15.
The ore in the lower part of the reduction zone 11 passes through the lower open zone 16 and moves to the heating zone 12, and the fluidized ore circulates between the reduction zone 11 and the heating zone 12. Note that the amount of ore circulation is determined by the magnitude of the difference in flow rate (ie, the difference in flow velocity) of the fluidizing gas supplied to both zones. When the ore moves within the reduction zone 12, it is reduced and also moves into the heating zone 11.
A part of the heat obtained therein is released to raise the atmospheric temperature in the reduction zone 12. On the other hand, the ore that has moved from the reduction zone to the heating zone has a reduced temperature due to the endothermic reaction of reduction in the reduction zone 11, but is reheated in the heating zone.

斯かる如く、還元帯12と加熱帯Uとは上部及び下部の
開放帯15.16を通して熱授受があり、加熱帯12か
ら還元帯11への熱補償を行うことができる。
As described above, heat is exchanged between the reduction zone 12 and the heating zone U through the upper and lower open zones 15 and 16, and heat compensation from the heating zone 12 to the reduction zone 11 can be performed.

尚、部分燃焼は仕切壁IOで仕切った加熱帯12のみで
行われるので、還元帯11に酸素が混入することがなく
、鉱石の還元は極めて良好な雰囲気となり還元率も高い
。又、両帯域間の流動ガス流量の差は連続的であっても
間欠的であってもよく、流量−足側は加熱帯であっても
よい。
Incidentally, since the partial combustion is carried out only in the heating zone 12 partitioned by the partition wall IO, no oxygen is mixed into the reduction zone 11, and an extremely favorable atmosphere is created for the reduction of the ore, resulting in a high reduction rate. Further, the difference in flow rate of fluidized gas between both zones may be continuous or intermittent, and the flow rate side may be a heating zone.

上記実施例で具体的にクロム鉱石を還元した場合の実施
結果の1例を示す。
An example of the results obtained when chromium ore was specifically reduced in the above example will be shown.

還元率     60% 還元温度    1150℃ 還元時間    2時間 還元ガス    コークス炉ガス(H2:57%、CH
4:33%、COニア%他) 還元ガス流量  120ONm”/を一還元ガス鉱石還
元ガス温度  800℃ 部分燃焼用酸素 26ON+”バー還元鉱石排カス成分
H2: 54% 1H20: 27%、coats%、
CO2: 3% 排ガス温度   1200℃ 尚、流動化還元ガスとしてクロム鉱石の場合は前記ガス
に炭化水素系ガスを混合したガスが好ましいが、鉄鉱石
の場合、H2或はH2を主成分としたCO等との混合ガ
スが好ましい。
Reduction rate 60% Reduction temperature 1150℃ Reduction time 2 hours Reduction gas Coke oven gas (H2: 57%, CH
4: 33%, CO near%, etc.) Reducing gas flow rate 120ONm"/1 Reducing gas Ore reducing gas temperature 800°C Oxygen for partial combustion 26ON+"bar Reducing ore exhaust residue component H2: 54% 1H20: 27%, coats%,
CO2: 3% Exhaust gas temperature 1200°C In the case of chromium ore, the fluidizing reducing gas is preferably a mixture of the above gas and a hydrocarbon gas, but in the case of iron ore, H2 or CO containing H2 as the main component is preferable. Mixed gas with etc. is preferable.

還元に使用されたガスは、H20除去等のガス改質をし
て流動化還元ガスとして循環使用してもよい。
The gas used for reduction may be reformed by removing H20, etc., and then used for circulation as a fluidized reducing gas.

第3図は他の実施例を示しており、仕切壁10で中央部
に加熱帯12を形成せしめ、両側部に還元帯11を形成
せしめたものである。尚、同様な炉構造で、中央部を還
元帯、両側部を加熱帯としてもよいことは勿論である。
FIG. 3 shows another embodiment, in which a heating zone 12 is formed in the center of the partition wall 10, and reducing zones 11 are formed on both sides. It goes without saying that a similar furnace structure may be used, with the center section serving as the reduction zone and the both sides serving as the heating zone.

第4図で示す実施例は、散気管4a、4bの替わりに散
気板17を用いた例を示すものであり、散気板17の下
方の室を仕切板18で仕切り、画成された各分室に供給
管3a、3bを接続したものである。
The embodiment shown in FIG. 4 shows an example in which a diffuser plate 17 is used in place of the diffuser pipes 4a and 4b, and a chamber below the diffuser plate 17 is partitioned by a partition plate 18 to create a defined room. Supply pipes 3a and 3b are connected to each compartment.

第5図は仕切壁10の下部が欠切されていない実施例を
示すものであり、該実施例でも還元帯I■へ送給する流
動化ガスの流量と、加熱帯12へ送給する流動化ガスの
流量とを変えておけば上部の開放帯15を通して、熱の
授受を効果的に行うことができる。尚、第5図で示すも
のでは酸化性ガスの供給口14を散気管4bの上方で且
加熱帯11のできるだけ底部に設けるのがよい。
FIG. 5 shows an embodiment in which the lower part of the partition wall 10 is not cut out, and in this embodiment as well, the flow rate of the fluidizing gas supplied to the reduction zone I and the flow rate of the fluidized gas supplied to the heating zone 12 are By changing the flow rate of the oxidizing gas, heat can be effectively transferred through the open zone 15 at the top. In the case shown in FIG. 5, the oxidizing gas supply port 14 is preferably provided above the diffuser pipe 4b and as close to the bottom of the heating zone 11 as possible.

又、還元帯11と加熱帯12との連通位置は上部、下部
のみに限らず仕切り壁の中間位置であってもよい。
Further, the communication position between the reducing zone 11 and the heating zone 12 is not limited to the upper and lower parts, but may be an intermediate position of the partition wall.

尚、上記実施例では加熱の為に酸化性ガスを供給し還元
ガスを燃焼させたが、流動還元炉の外部に専用の燃焼器
を設け、該燃焼器で燃焼生成した燃焼ガスを加熱帯に供
給口15より送給してもよく或は流動化ガスとして供給
してもよい。
In the above example, oxidizing gas was supplied for heating and reducing gas was combusted, but a dedicated combustor was provided outside the fluidized bed reduction furnace, and the combustion gas produced by combustion in the combustor was sent to the heating zone. It may be fed through the supply port 15 or may be fed as a fluidizing gas.

更に、流動化還元ガスとしては、還元効果のよい炭化水
素系ガスやH2の如き高価なガスを使用する必要がある
が、加熱帯に供給するガスはその目的か燃焼により高温
化することと、流動化することにあるので、加熱帯には
安価なCOを主成分としたガス、炭材、重油あるいはこ
れらの組合せのものを燃焼させてコストの低減を図るこ
とができる。又、還元に使用された後の排ガスの顕熱・
潜熱を利用して流動還元炉の外部で鉱石を予熱して供給
する様にすれば、部分燃焼を低減することができ、この
排ガスの熱で流動化還元ガスの予熱を行えば還元設備全
体としての熱消費を更に軽減することができる。
Furthermore, as the fluidizing reducing gas, it is necessary to use a hydrocarbon gas with a good reducing effect or an expensive gas such as H2, but the gas supplied to the heating zone becomes high temperature due to combustion for that purpose. Since the purpose is to fluidize, it is possible to reduce costs by burning an inexpensive CO-based gas, carbonaceous material, heavy oil, or a combination thereof in the heating zone. In addition, the sensible heat of the exhaust gas after being used for reduction
If latent heat is used to preheat and supply the ore outside the fluidized reduction furnace, partial combustion can be reduced, and if the fluidized reducing gas is preheated using the heat of this exhaust gas, the overall reduction equipment heat consumption can be further reduced.

更に又、流動層中に還元材、焼結防止用として石炭、チ
ャー、コークス等の炭材を混入せしめて鉱石と炭材との
混合流動層としてもよい。
Furthermore, a mixed fluidized bed of ore and carbonaceous material may be obtained by mixing coal, char, coke, or other carbonaceous material as a reducing agent or for preventing sintering in the fluidized bed.

尚、上記各実施例に於いて、運転は鉱石を連続的に供給
し、還元鉱石を連続的に排出してもよく、或はバッチ式
でもよい。又、鉱石は加熱帯近傍から供給するのが好ま
しく、鉱石を流動層上部より供給し、下部より排出する
方式は連続運転の場合に好都合である。
In each of the above embodiments, the operation may be such that the ore is continuously supplied and the reduced ore is continuously discharged, or it may be a batch type operation. Further, it is preferable to supply the ore from the vicinity of the heating zone, and a system in which the ore is supplied from the upper part of the fluidized bed and discharged from the lower part is convenient for continuous operation.

[発明の効果] 以上述べた如く本発明によれば、下記の優れた効果を発
揮し得る。
[Effects of the Invention] As described above, according to the present invention, the following excellent effects can be exhibited.

(i)  従来方式での加熱帯が流動層高の中間より上
部域であるのに対し、本発明では流動層高全域となる。
(i) Whereas in the conventional system, the heating zone is located above the middle of the height of the fluidized bed, in the present invention, it is located throughout the entire height of the fluidized bed.

従って、燃焼した高温ガスと鉱石との接触時間が長くな
り、ガスの燃焼熱が鉱石の加熱に有効に伝えられ、熱効
率が向上する。
Therefore, the contact time between the combusted high-temperature gas and the ore becomes longer, the combustion heat of the gas is effectively transferred to heat the ore, and the thermal efficiency is improved.

■ 熱効率の向上によって燃焼ガス量を少なくできると
共に加熱帯のスペースを小さくできて設備の小型化が図
れる。
■ Improving thermal efficiency reduces the amount of combustion gas, and the space for the heating zone can be reduced, making equipment more compact.

0 加熱帯には加熱燃焼用のガスとして安価なガスを供
給し得るのでランニングコストが低減できる。
0 Since inexpensive gas can be supplied to the heating zone as a gas for heating and combustion, running costs can be reduced.

(へ)加熱に供された燃焼ガスは、還元帯を通過したガ
スと混合して排ガスとして流動炉より排出されるが、こ
の混合ガス中のH2O、CO2等の燃焼ガスの比率を低
くできるので、排ガスを還元ガスとして循環使用する場
合のガス改質(H20除去等)コストを低減できる。
(f) The combustion gas subjected to heating is mixed with the gas that has passed through the reduction zone and discharged from the fluidized bed furnace as exhaust gas, but the ratio of combustion gases such as H2O and CO2 in this mixed gas can be lowered. , gas reforming (H20 removal, etc.) costs can be reduced when exhaust gas is recycled as a reducing gas.

(V)  又、排ガス中のH2、CO濃度を高く保てる
為、他の用途に供する場合のガス価値が高く、又このガ
スを燃焼して鉱石の予熱や供給ガスの予熱に利用する場
合でもカロリが高い。
(V) In addition, since the H2 and CO concentrations in the exhaust gas can be kept high, the gas value is high when used for other purposes, and even when this gas is burned and used for preheating ores or supply gas, the calorie content is low. is high.

(D 前記した様に鉱石への加熱効率がよく、燃焼ガス
量を少なくできるので燃焼温度を低くできると共に燃焼
生成ガスも少なくなるので混合排ガスの温度を下げられ
る。この結果炉内の耐火材を安価なものとし得ると共に
鉱石の焼結防止にも効果がある。
(D As mentioned above, the heating efficiency of the ore is good and the amount of combustion gas can be reduced, so the combustion temperature can be lowered, and the amount of combustion generated gas is also reduced, so the temperature of the mixed exhaust gas can be lowered. As a result, the refractory material in the furnace can be It can be made inexpensive and is also effective in preventing sintering of ore.

特 レキュベータで予熱した場合、流動化還元ガスの供
給温度は約800℃が限度であるが、熱補償能力が大き
いので還元雰囲気温度を容易に高められる。この為クロ
ム鉱石の如き高温還元(1100〜1200℃)が必要
な場合にも対応できる。
Special features: When preheated in a recubator, the supply temperature of the fluidizing reducing gas is limited to about 800°C, but the temperature of the reducing atmosphere can be easily raised because of its large thermal compensation ability. Therefore, it can also be used in cases where high temperature reduction (1100 to 1200°C) is required, such as with chromium ore.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例の説明図、第2図は第1
図のA−A矢視図、第3図は第2の実施例の説明図、第
4図は第3の実施例の部分説明図、第5図は第4の実施
例の説明図、第6図は従来例の説明図である。 ■は流動還元炉、2は流動化還元ガス、4a、4bは散
気管、8は流動層、10は仕切壁、11は還元帯、12
は加熱帯、15.16は開放帯を示す。
FIG. 1 is an explanatory diagram of the first embodiment of the present invention, and FIG. 2 is an explanatory diagram of the first embodiment of the present invention.
3 is an explanatory diagram of the second embodiment; FIG. 4 is a partial explanatory diagram of the third embodiment; FIG. 5 is an explanatory diagram of the fourth embodiment; FIG. 6 is an explanatory diagram of a conventional example. 2 is a fluidized reduction furnace, 2 is a fluidized reducing gas, 4a and 4b are diffuser pipes, 8 is a fluidized bed, 10 is a partition wall, 11 is a reduction zone, 12
15.16 indicates the heating zone, and 15.16 indicates the open zone.

Claims (1)

【特許請求の範囲】[Claims] 1)流動還元炉内部を還元帯と加熱帯に仕切り、両帯域
を所要位置で連通させ、流動化ガスを個別に供給し得る
様にすると共に両帯域に供給する流動化ガス流量に差を
生じさせる様にしたことを特徴とする粉粒状鉱石の流動
還元方法。
1) The inside of the fluidized reduction furnace is divided into a reduction zone and a heating zone, and both zones are communicated at the required positions, so that fluidizing gas can be supplied individually, and a difference is created in the flow rate of fluidizing gas supplied to both zones. A fluid reduction method for powdery ore, characterized in that the method is characterized in that:
JP5069687A 1987-03-05 1987-03-05 Fluidized reduction method for granular ore Pending JPS63216912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5069687A JPS63216912A (en) 1987-03-05 1987-03-05 Fluidized reduction method for granular ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5069687A JPS63216912A (en) 1987-03-05 1987-03-05 Fluidized reduction method for granular ore

Publications (1)

Publication Number Publication Date
JPS63216912A true JPS63216912A (en) 1988-09-09

Family

ID=12866078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5069687A Pending JPS63216912A (en) 1987-03-05 1987-03-05 Fluidized reduction method for granular ore

Country Status (1)

Country Link
JP (1) JPS63216912A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010043314A (en) * 2008-08-11 2010-02-25 Nippon Steel Corp Methods for producing reduced iron and pig iron
JP2012067326A (en) * 2010-09-21 2012-04-05 Jfe Steel Corp Reduced iron manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010043314A (en) * 2008-08-11 2010-02-25 Nippon Steel Corp Methods for producing reduced iron and pig iron
JP2012067326A (en) * 2010-09-21 2012-04-05 Jfe Steel Corp Reduced iron manufacturing method

Similar Documents

Publication Publication Date Title
US5118479A (en) Process for using fluidized bed reactor
US4601752A (en) Method of manufacturing metals and/or generating slag
IE46157B1 (en) Improvements in and relating to the production of steel from iron carbide
US5613997A (en) Metallurgical process
CS212734B2 (en) Method of simultaneous combined production of electric energy and raw iron
US3264096A (en) Method of smelting iron ore
CZ182995A3 (en) Coke-heated cupola and process of melting materials based on iron metals
US5542963A (en) Direct iron and steelmaking
US3734717A (en) Production of phosphorus and steel from iron-containing phosphate rock
EP0209861B1 (en) Melt-reductive iron making method from iron ore
JP2001526318A (en) Method for producing direct reduced iron in multistage furnaces
JPS63216912A (en) Fluidized reduction method for granular ore
US4268412A (en) Method for continuously manufacturing high-temperature reducing gas
US3932173A (en) Inductially heated gas lift pump action method for melt reduction
KR20010072376A (en) Process for thermal treatment of residual materials containing heavy metal and iron oxide
KR20050111736A (en) An improved smelting process for the production of iron
CA1108864A (en) Direct-reduction process carried out in a rotary kiln
JPS63216911A (en) Fluidized reduction apparatus for granular ore
US3551138A (en) Iron ore reduction process
CA2343212A1 (en) Method for producing directly reduced metal in a multi-tiered furnace
US3157489A (en) Method for reducing metal oxides
GB2281311A (en) Metallurgical processes and apparatus
WO1998030497A1 (en) Iron carbide manufacturing process and apparatus
EP0840807B1 (en) Direct iron and steelmaking
AU2022294428A1 (en) Method for operating shaft furnace and method for producing reduced iron