JPS632166B2 - - Google Patents

Info

Publication number
JPS632166B2
JPS632166B2 JP11389180A JP11389180A JPS632166B2 JP S632166 B2 JPS632166 B2 JP S632166B2 JP 11389180 A JP11389180 A JP 11389180A JP 11389180 A JP11389180 A JP 11389180A JP S632166 B2 JPS632166 B2 JP S632166B2
Authority
JP
Japan
Prior art keywords
vibrator
frequency
grinding
unbalance
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11389180A
Other languages
Japanese (ja)
Other versions
JPS5738015A (en
Inventor
Keiji Osada
Shinji Kaino
Masashi Makino
Toshitoki Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11389180A priority Critical patent/JPS5738015A/en
Publication of JPS5738015A publication Critical patent/JPS5738015A/en
Publication of JPS632166B2 publication Critical patent/JPS632166B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H3/04Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks for obtaining desired frequency or temperature coefficient

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

【発明の詳細な説明】 本発明は腕時計等に用いられる音叉型単結晶振
動子の発振周波数及び振動の不釣り合い成分を能
率よく、かつ高精度に調整する方法に関するもの
である。現在、腕時計等に用いられる音叉型単結
晶振動子は、単結晶ブランクから切断加工機械で
切り出されたものが多く用いられているが、各種
加工誤差要因により、音叉左右振動片に寸法のバ
ラツキを生じ、その結果、発振周波数の大きなバ
ラツキと振動の不釣り合い成分が発生する。音叉
型単結晶振動子にとつて、前記2つの問題は振動
子の特性を決定づける大きな要因である。発振周
波数精度は腕時計の時刻表示精度に直接関係する
ものであり、振動の不釣り合い成分は振動部位の
振動が音叉型単結晶振動子の基底部にまでリーク
するものであり、それが振動子の支持部を伝播し
て振動子容器が一体となつた複合共振系を形成
し、音叉型単結晶振動子自身の固有振動数と複合
共振系の固有振動数が微妙にズレたり、発振周波
数そのものがゆらぎ不安定になつたりする。又振
動エネルギーが漏れることにもなるので振動子の
共振抵抗値(CI値)が大きくなり、消費電力が
増加し電池の寿命を短縮する原因にもなる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for efficiently and highly accurately adjusting the oscillation frequency and unbalanced vibration components of a tuning fork type single crystal resonator used in a wristwatch or the like. Currently, tuning fork type single crystal vibrators used in wristwatches, etc., are often cut out from single crystal blanks using cutting machines, but due to various processing errors, the left and right vibrating pieces of the tuning fork may have dimensional variations. As a result, large variations in oscillation frequency and unbalanced vibration components occur. For tuning fork type single crystal resonators, the above two problems are major factors that determine the characteristics of the resonator. The oscillation frequency accuracy is directly related to the time display accuracy of a wristwatch, and the unbalanced component of vibration is the vibration of the vibrating part leaking to the base of the tuning fork type single crystal oscillator, which causes the vibration of the oscillator. The vibration propagates through the support part, forming a composite resonance system in which the vibrator container is integrated, and the natural frequency of the tuning fork type single crystal vibrator itself and the natural frequency of the composite resonance system may slightly deviate, or the oscillation frequency itself may change. It may become unstable due to fluctuations. Furthermore, since vibration energy leaks, the resonant resistance value (CI value) of the vibrator increases, which increases power consumption and shortens battery life.

発振周波数の調整に関しては従来からいくつか
の方法が考案されており実用化されているものも
あるが、振動の不釣り合い成分の除去調整に関す
るもので有効なものはなかつた。その為、従来は
音叉型単結晶振動子の基底部の振動が容器までリ
ークしないようにバネ部材で前記基底部を軟支持
しなければならず、振動子の大型化、構造の複雑
化、耐衝撃性の不足を招いていた。
Several methods have been devised and put into practical use for adjusting the oscillation frequency, but none have been effective for adjusting and removing unbalanced components of vibration. Therefore, in the past, the base of a tuning fork type single crystal vibrator had to be softly supported with a spring member to prevent the vibrations at the base from leaking to the container, resulting in an increase in the size of the vibrator, a complicated structure, and This resulted in a lack of impact.

本発明は加工誤差による振動の不釣り合い成分
を無くすとともに、周波数を目標値に精度よく調
整し、特性の優れた音叉型単結晶振動子を量産的
に生産する方法を提供するものである。
The present invention provides a method for mass producing tuning fork type single crystal resonators with excellent characteristics by eliminating unbalanced components of vibration due to processing errors, adjusting the frequency to a target value with high accuracy.

従来より周波数調整方法には大きく分けて2つ
の方式が採用されてきた。そのひとつは振動子に
質量を付加又は除去しながら周波数を調整する方
法で、もうひとつは振動子の寸法を微小に変化さ
せながら周波数調整する方法である。前者に属す
るものとして、真空蒸着やスパツタリングあるい
はレーザー等を利用した方法があり、後者に属す
るものとしては、砥石研削、サンドブラスト等を
利用した方法がある。真空蒸着法やレーザー等を
利用する方法においては極めて高い分解能で周波
数の調整が可能であり、腕時計用振動子等、非常
に高い周波数精度が要求されるものには適してい
る。しかしその反面、周波数の調整範囲が狭く、
あらかじめ他の方法により粗い周波数の調整が必
要であるという欠点がある。さらにこれらの方法
においては必ず熱を伴なうので、被加工物の温度
上昇をきたし、振動子の温度特性にもとづく目標
周波数と調整周波数のズレを生ずることになる。
特にレーザの場合においては、振動子への供給エ
ネルギーが過大になると、結晶内部に熱双晶等を
発生し、振動子の特性を劣下させることにもな
る。またこれらの方法を実現するためには、かな
り高価な装置を必要とする欠点もあつた。一方砥
石研削による方法も、比較的安価な装置で実現で
きるということもあつて従来からよく検討されて
きたが、まだ実用化の段階には到つておらず、人
手による研削調整作業が主流をなしている。次に
研削による周波数調整方法の従来の一実施例を第
1図に示す。第1図において、1は音叉型単結晶
振動子、2は振動子保持具、3は振動子を駆動す
る発振回路、4は周波数カウンタ、5,6は図示
しないモータによつて駆動される研削用砥石であ
る。
Conventionally, two main methods have been adopted for frequency adjustment methods. One method is to adjust the frequency while adding or removing mass to the vibrator, and the other is to adjust the frequency while slightly changing the dimensions of the vibrator. Methods that belong to the former include methods that utilize vacuum deposition, sputtering, laser, etc., and methods that belong to the latter include methods that utilize grindstone grinding, sandblasting, etc. Methods using vacuum evaporation, lasers, etc. allow frequency adjustment with extremely high resolution, and are suitable for things that require extremely high frequency accuracy, such as vibrators for wristwatches. However, on the other hand, the frequency adjustment range is narrow,
A disadvantage is that coarse frequency adjustment is required in advance by other methods. Furthermore, since these methods always involve heat, the temperature of the workpiece increases, resulting in a deviation between the target frequency and the adjusted frequency based on the temperature characteristics of the vibrator.
Particularly in the case of a laser, if too much energy is supplied to the vibrator, thermal twins or the like will occur inside the crystal, which will deteriorate the characteristics of the vibrator. Another disadvantage is that these methods require fairly expensive equipment. On the other hand, the method of grinding with a whetstone has been well studied, partly because it can be realized with relatively inexpensive equipment, but it has not yet reached the stage of practical use, and manual grinding and adjustment work remains the mainstream. ing. Next, FIG. 1 shows an example of a conventional frequency adjustment method using grinding. In FIG. 1, 1 is a tuning fork type single crystal vibrator, 2 is a vibrator holder, 3 is an oscillation circuit that drives the vibrator, 4 is a frequency counter, and 5 and 6 are grinders driven by a motor (not shown). It is a grindstone for use.

以上の構成を有する装置を使用して、次に示す
要領で周波数調整が行なわれる。音叉型単結晶振
動子1を保持具2で固定クランプし、発振回路に
て発振駆動させ、その出力を周波数カウンタ4に
入力し、振動子の周波数測定を行ない、この時の
値をとする。次に人間が保持具2を持ち、音叉
型単結晶振動子を研削用砥石5,6の中心にセツ
トし、保持具2を左(又は右)へ移動させ、左振
動片の先端部7(又は右振動片の先端部8)を斜
めに研削除去し、目標周波数0に対して ′=0−/2 だけ調整する。次に保持具2を右(又は左)へ移
動させ、右振動片の先端部8(又は左振動片の先
端部7)を斜めに研削除去し、周波数の残り半分
の′だけ調整し、目標周波数0に合わす。
Using the apparatus having the above configuration, frequency adjustment is performed in the following manner. A tuning fork type single crystal vibrator 1 is fixedly clamped with a holder 2, driven to oscillate by an oscillation circuit, the output thereof is input to a frequency counter 4, the frequency of the vibrator is measured, and the value at this time is taken as . Next, a person holds the holder 2, sets the tuning fork type single crystal vibrator at the center of the grinding wheels 5 and 6, moves the holder 2 to the left (or right), and moves the tip 7 of the left vibrating piece ( Or, remove the tip part 8) of the right vibrating piece obliquely and adjust it by '= 0 -/2 with respect to the target frequency 0 . Next, move the holder 2 to the right (or left), remove the tip 8 of the right vibrating piece (or the tip 7 of the left vibrating piece) obliquely, adjust the remaining half of the frequency, and set the Set frequency to 0 .

第2図に音叉型単結晶振動子の各部寸法と固有
振動数の関係を示すが、両者の間には一定の関係
があり次式で表わされる。
FIG. 2 shows the relationship between the dimensions of each part of the tuning fork type single crystal resonator and the natural frequency, and there is a certain relationship between the two, which is expressed by the following equation.

=KW/L2 こゝで :固有振動数 L:振動部位の長さ W:振動部位の巾 K:振動子固有の定数 を示す。音叉型単結晶振動子の左右振動部位の先
端部7,8を斜めに研削除去することは前式にお
いて、L及びWを微小に変化させることに相当す
る。しかしながら前記従来例にあるような方法で
は振動の不釣り合い成分の除去調整に対しては有
効な手段とはなり得ず、また特に研削方式におい
ては人間の手の微妙な感触による作業に依存して
いる状況にあり、研削加工の自動化が未解決であ
り、音叉型単結晶振動子を量産する手段がなかつ
た。又、品質の安定性の面においても大きな課題
を残していた。
=KW/L 2 Here: Natural frequency L: Length of the vibration part W: Width of the vibration part K: Indicates a constant specific to the vibrator. Obliquely removing the tips 7 and 8 of the left and right vibrating portions of the tuning fork type single crystal vibrator corresponds to slightly changing L and W in the above equation. However, the conventional method described above cannot be an effective means for removing and adjusting the unbalanced component of vibration, and especially in the grinding method, it depends on the delicate touch of the human hand. The situation was such that automation of the grinding process had not yet been resolved, and there was no way to mass-produce tuning fork-shaped single crystal resonators. In addition, there remained a major problem in terms of quality stability.

本発明は上記従来の欠点を解消した周波調整方
法を提供するもので、以下第3図にもとづいて詳
細に説明する。第3図において、31は音叉型単
結晶振動子、32は左振動片、33は右振動片、
34,35は蝶羽根形砥石で左右同期及び左右単
独駆動が任意に可能である。(第3図上では砥石
の原点停止中を示す。)36,37は左右蝶羽根
形砥石の原点位置検出器、38は振動子保持治具
を有する位置補正用装置、39は振動子を駆動す
る発振回路、40は周波数カウンタ、41は振動
子の不釣合量を検出する装置、42は振動子の周
波数データ及び不釣合データ入力処理回路及び周
波数、不釣合調整に必要な判断処理機能を有した
制御装置、43は42の制御装置からの指令によ
り蝶羽根形砥石を駆動させる為の駆動装置、44
は43の砥石駆動装置によつて駆動される駆動体
である。
The present invention provides a frequency adjustment method that eliminates the above-mentioned conventional drawbacks, and will be described in detail below with reference to FIG. 3. In FIG. 3, 31 is a tuning fork type single crystal resonator, 32 is a left vibrating piece, 33 is a right vibrating piece,
Numerals 34 and 35 are butterfly blade shaped grindstones, which can be driven left and right synchronized or left and right independently. (Figure 3 shows that the grindstone is stopped at its home position.) Reference numerals 36 and 37 are home position detectors for the left and right butterfly-shaped grindstones, 38 is a position correction device having a vibrator holding jig, and 39 is a drive for the vibrator. 40 is a frequency counter; 41 is a device for detecting the unbalance amount of the vibrator; 42 is a control device having a frequency data and unbalance data input processing circuit for the vibrator and a judgment processing function necessary for frequency and unbalance adjustment. , 43 is a drive device for driving the butterfly blade-shaped grindstone according to the command from the control device 42; 44
is a drive body driven by the 43 grindstone drive device.

尚振動子31は蝶羽根形砥石34,35の砥面
に対し振動片32,33がそれぞれたわみ限界量
近く研削時にたわむ様に位置補正用装置38で位
置設定を行なつている。
The position of the vibrator 31 is set by a position correcting device 38 so that the vibrating pieces 32 and 33 are deflected by a deflection limit amount during grinding with respect to the grinding surfaces of the butterfly-shaped grindstones 34 and 35, respectively.

又、片方研削時は、左右蝶羽根砥石34,35
の片方のみを回転させる事により、振動片32,
33は自らのたわみ反力が研削面に働き、それが
研削荷重となり、自らの質量を削り取ることにな
る。このとき、砥石の砥面円周の半分以上が砥面
と接触していないので、この期間に必要な測定を
行なう。
Also, when grinding one side, use the left and right butterfly blade grindstones 34 and 35.
By rotating only one of the vibrating pieces 32,
33, its own deflection reaction force acts on the grinding surface, which becomes a grinding load, and its own mass is removed. At this time, more than half of the circumference of the grinding surface of the grindstone is not in contact with the grinding surface, so the necessary measurements are performed during this period.

さらに両方の振動片を同期して研削する場合
は、先ず左右砥石のいづれか片方を第3図上の砥
石の角度より、180度回転させて待機し、後に左
右砥石を同期して回転させて、振動片32,33
を交互に研削してゆく。このとき蝶羽根砥石が振
動片32,33共接触していない期間に、必要な
測定を行なう。この方式により砥石一回転毎に振
動子の周波数及び不釣合量測定が出来る。
Furthermore, if you want to grind both vibrating pieces synchronously, first rotate one of the left and right grindstones 180 degrees from the angle of the grindstone shown in Figure 3, wait, and then rotate the left and right grindstones synchronously. Vibration pieces 32, 33
Grind them alternately. At this time, necessary measurements are performed during a period when the butterfly blade grindstone is not in contact with both the vibrating pieces 32 and 33. This method allows the frequency and unbalance of the vibrator to be measured for each rotation of the grindstone.

以上の構成及び機能を有する装置を使用して次
に示す要領で振動子の不釣合調整及び周波数調整
を行なう。
Using the apparatus having the above configuration and functions, the unbalance adjustment and frequency adjustment of the vibrator are performed in the following manner.

音叉型単結晶振動子31を保持治具38で固定
クランプし発振回路39にて発振駆動させ、その
出力を周波数カウンタ40に入力し、振動子の周
波数測定を行なうと共に、不釣合量検出装置41
で不釣合の測定を行なう。制御装置42は、その
初期処理として前述方法にて得られた振動子の周
波数及び不釣合量(釣合が取れたときは値が最小
となる様設定する)から、調整の初期判断を行な
う。すなわち被調整振動子の周波数が調整周波数
量範囲にあることを確認し、不釣合量が許容範囲
以内にすでに入つておれば直ちに後述する周波数
調整動作を指令し、許容範囲以外であれば次の要
領にて不釣合調整動作を行なわせる。
A tuning fork type single crystal vibrator 31 is fixedly clamped by a holding jig 38 and driven to oscillate by an oscillation circuit 39, and its output is input to a frequency counter 40 to measure the frequency of the vibrator.
Measure the unbalance at . As an initial process, the control device 42 makes an initial judgment for adjustment based on the frequency of the vibrator and the amount of unbalance (the value is set to be the minimum when balance is achieved) obtained by the method described above. In other words, confirm that the frequency of the vibrator to be adjusted is within the adjustment frequency amount range, and if the unbalance amount is already within the tolerance range, immediately command the frequency adjustment operation described below, and if it is outside the tolerance range, proceed as follows. unbalance adjustment operation is performed.

先ず左右振動片のどちら側が調整研削を必要と
するのかを判定する為に、ためし研削を左又は右
の蝶羽根形砥石34又は35でどちらか一方の振
動片32又は33に施こす。その結果不釣合量が
初期値よりも小さな値になれば、釣合が取れる振
動片としてそのまま研削を続けつつ不釣合測定を
続行する。又初期値よりも大きな値となれば研削
中の砥石を原点に停止させ、直ちに反対側の振動
片を研削すべく反対側の蝶羽根形砥石を駆動する
と共に不釣合測定を続行する。以上の様にして釣
合が取れる振動片の研削を進めてゆけば、不釣合
が最小となる点があり、それ以上研削すれば不釣
合が再び増してゆくことになる。そこで振動子不
釣合量最小変曲点(釣合が完全に取れた点)を許
容値以内にオーバしたときを、不釣合調整完了
(釣合ピーク)と判断し研削中の砥石を原点36
又は37で停止させる。これにて不釣合調整動作
を完了する。
First, in order to determine which side of the left and right vibrating pieces requires adjustment grinding, trial grinding is performed on one of the vibrating pieces 32 or 33 using the left or right butterfly blade-shaped grindstone 34 or 35. As a result, if the amount of unbalance becomes smaller than the initial value, the unbalance measurement is continued while the vibrating piece continues grinding as a balanced vibrating piece. If the value becomes larger than the initial value, the grinding wheel being ground is stopped at the origin, and the butterfly-shaped grinding wheel on the opposite side is immediately driven to grind the vibrating element on the opposite side, and the unbalance measurement is continued. If the grinding of the vibrating element, which is balanced in the manner described above, is continued, there will be a point where the unbalance becomes minimum, and if the vibrator is ground beyond that point, the unbalance will increase again. Therefore, when the vibrator unbalance amount exceeds the minimum inflection point (the point where the balance is completely achieved) within the allowable value, it is determined that the unbalance adjustment is complete (balance peak), and the grinding wheel is moved to the origin 36.
Or stop at 37. This completes the unbalance adjustment operation.

次に周波数調整動作を第4図によつて説明す
る。先ず準備段階として左側砥石34を第3図上
の角度より180度回転させる。後に左右振動片を
交互に連続的に研削すべく第4図中の研削タイミ
ング3に基づき左右砥石を同期回転1して研削す
ると同時に、測定タイミング4で周波数及び不釣
合量を、左右の砥石一回転毎に測定し、研削調整
の監視を行なつている。以上の方法で研削調整を
進め、もし、不釣合量が許容範囲以上となれば、
直ちに周波数調整動作を停止し、再び不釣合調整
動作を行ない、左右砥石の研摩力不均等及びその
他によつて生じた不釣合をきめ細かく補正する。
補正終了後は又周波数調整動作にもどり、所定の
周波数になれば左右砥石34,35を原点36,
37で停止させ全調整を終了する。
Next, the frequency adjustment operation will be explained with reference to FIG. First, as a preparatory step, the left grindstone 34 is rotated 180 degrees from the angle shown in FIG. Later, in order to alternately and continuously grind the left and right vibrating pieces, the left and right grindstones are ground by synchronous rotation 1 based on grinding timing 3 in Figure 4, and at the same time, the frequency and unbalance amount are measured at measurement timing 4 by one revolution of the left and right grindstones. The grinding adjustment is monitored by measuring each time. Proceed with the grinding adjustment using the above method, and if the amount of unbalance exceeds the allowable range,
The frequency adjustment operation is immediately stopped, and the unbalance adjustment operation is performed again to finely correct the unbalance caused by the unevenness of the polishing force between the left and right grindstones and other causes.
After the correction is completed, the operation returns to the frequency adjustment operation, and when the predetermined frequency is reached, the left and right grinding wheels 34, 35 are moved to the origin 36,
Stop at 37 to complete all adjustments.

以上の様な方法で音叉型単結晶振動子を研削調
整を行なえば、被調整振動子における左右振動片
32,33の釣合が限界近くまで調整が出来る。
又、研削力を振動片自体がたわみ反力に求めてい
る為、研削調整中に生じる振動子の亀裂及び振動
片の折れ等が極めて少なく製造上の渉溜りを向上
させることができる。さらに研削が進むに従がい
たわみ量が減少する為、一回転当たりの研削によ
る質量除去量が極めて微小なものとなり、連続高
分解能が安定的に実現していることによつて設定
周波数に高精度にて調整することが出来る。
By grinding and adjusting a tuning fork type single crystal vibrator in the manner described above, the balance between the left and right vibrating pieces 32 and 33 in the vibrator to be adjusted can be adjusted to near its limit.
In addition, since the grinding force is derived from the reaction force of the deflection of the vibrating element itself, cracks in the vibrator and breakage of the vibrating element that occur during grinding adjustment are extremely rare, and it is possible to improve the production process. Furthermore, as the grinding progresses, the amount of deflection decreases, so the amount of mass removed by grinding per revolution becomes extremely small, and by stably achieving continuous high resolution, it is possible to achieve high precision at the set frequency. It can be adjusted.

この方法にて調整された振動子は、振動の漏洩
である不釣合が除去されている為、音叉型単結晶
振動子の支持方法として剛支持が可能となつて音
叉型単結晶振動子を小型化することができ、構造
も簡単となり、耐衝撃性の向上にもつながる。さ
らに、本発明になる方式においては砥石を蝶羽根
形にした事により、装置の稼動部が少なくなつて
おり、長期間稼動によつて生ずる装置各部の摩耗
や故障等も非常に少なく、その為安定した周波数
調整が行なえるので、高品質で安価な音叉型単結
晶振動子を大量に供給することが可能となるもの
である。
Since the unbalance caused by vibration leakage is removed from the vibrator adjusted using this method, rigid support is possible as a supporting method for the tuning fork type single crystal vibrator, making the tuning fork type single crystal vibrator smaller. This makes the structure simpler and improves impact resistance. Furthermore, in the method of the present invention, the butterfly-shaped grinding wheel reduces the number of moving parts in the device, and there is very little wear and tear on the various parts of the device due to long-term operation. Since stable frequency adjustment can be performed, it is possible to supply a large quantity of high quality and inexpensive tuning fork type single crystal vibrators.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の周波数調整の一実施例を示す説
明図、第2図は音叉型単結晶振動子の各部寸法と
固有振動数の関係を示す概念図、第3図は本発明
における調整装置の概略図、第4図は本発明にお
ける研削パターンの説明図である。 31……音叉型単結晶振動子、36,37……
蝶羽根形砥石。
Fig. 1 is an explanatory diagram showing an example of conventional frequency adjustment, Fig. 2 is a conceptual diagram showing the relationship between dimensions of each part of a tuning fork type single crystal resonator and natural frequency, and Fig. 3 is an adjustment device in the present invention. FIG. 4 is an explanatory diagram of the grinding pattern in the present invention. 31... Tuning fork type single crystal resonator, 36, 37...
Butterfly wing shaped whetstone.

Claims (1)

【特許請求の範囲】[Claims] 1 音叉型単結晶振動子の両腕の先端を研削除去
し、上記振動子の寸法を変化させることによつて
周波数と振動子の両腕の振動の不釣り合いを調整
する方法において、振動子を狭む2枚の蝶羽根形
砥石の回転位相差によつて、前記振動子の両腕を
交互に周波数調整する工程と、振動子自身が有す
る弾性反力を利用して研削加工する工程と、振動
子の周波数及び不釣り合い量を前記蝶羽根砥石の
一回転毎に測定する工程と、前記2枚の蝶羽根形
砥石の、それぞれを単独で動作させて不釣り合い
を調整する工程とからなる音叉型単結晶振動子の
調整方法。
1 In a method of adjusting the unbalance between the frequency and the vibration of both arms of the vibrator by polishing and removing the ends of both arms of a tuning fork type single crystal vibrator and changing the dimensions of the vibrator, the vibrator is A step of alternately adjusting the frequency of both arms of the vibrator by a rotational phase difference between two narrow butterfly-shaped grindstones, and a step of grinding using the elastic reaction force of the vibrator itself; A tuning fork comprising the steps of: measuring the frequency and unbalance of the vibrator for each revolution of the butterfly blade grinding wheel; and adjusting the unbalance by operating each of the two butterfly blade grindstones independently. How to adjust a type single crystal resonator.
JP11389180A 1980-08-18 1980-08-18 Adjusting method for tuning fork type single crystal oscillator Granted JPS5738015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11389180A JPS5738015A (en) 1980-08-18 1980-08-18 Adjusting method for tuning fork type single crystal oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11389180A JPS5738015A (en) 1980-08-18 1980-08-18 Adjusting method for tuning fork type single crystal oscillator

Publications (2)

Publication Number Publication Date
JPS5738015A JPS5738015A (en) 1982-03-02
JPS632166B2 true JPS632166B2 (en) 1988-01-18

Family

ID=14623720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11389180A Granted JPS5738015A (en) 1980-08-18 1980-08-18 Adjusting method for tuning fork type single crystal oscillator

Country Status (1)

Country Link
JP (1) JPS5738015A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114074292B (en) * 2021-11-15 2022-06-28 杭州鸿星电子有限公司 Improved SMD crystal oscillator reverse analysis and quality detection special jig

Also Published As

Publication number Publication date
JPS5738015A (en) 1982-03-02

Similar Documents

Publication Publication Date Title
US4320320A (en) Coupled mode tuning fork type quartz crystal vibrator
JPS5973272A (en) Numerical controlled polishing device
US2799789A (en) Piezoelectric crystal apparatus and method of making the same
JP2004298985A (en) Lens spherical surface polishing device
JPS632166B2 (en)
US3833999A (en) Method of adjusting frequency of vibrator structure
CN109655050A (en) Hemispherical harmonic oscillator shape modification system and method based on chemical vapor
US5022130A (en) Method of manufacturing crystal resonators having low acceleration sensitivity
JP2008078869A (en) Method for manufacturing oscillator
JP2000278066A (en) Method for adjusting characteristic of bend vibrator
US5168191A (en) Crystal resonator with low acceleration sensitivity and method of manufacture thereof
WO1980002896A1 (en) Method for adjusting vibration frequency of tuning fork type vibrator,and apparatus therefor
JPS6316924B2 (en)
Cook et al. A high-mass, eight-fold symmetric silicon carbide MEMS gyroscope
JPH07288440A (en) Manufacture of piezoelectric ceramic oscillator
US2094057A (en) Apparatus for timing watches, clocks, and the like
JPH1133910A (en) Method for correcting axial run-out of grinding wheel, and grinding device
JPH0740237A (en) Grinder and holding method for grinding wheel used for grinder
SU975338A1 (en) Method of controlling ultrasonic cutting process
JPH10145165A (en) Working method for thickness sliding quartz oscillator piece
JP2000158338A (en) Detection method of wear state and center shift of grinding tool
CN113720531A (en) Harmonic oscillator laser de-weight balancing process
CN118032015A (en) Method for improving quality factor of hemispherical resonator gyroscope
JPH09107258A (en) Method and device for adjusting frequency of quartz oscillator
JP2013078045A (en) Piezoelectric vibrator and method of manufacturing the same