JPS63216625A - Electrolytic processing method for small deep hole - Google Patents

Electrolytic processing method for small deep hole

Info

Publication number
JPS63216625A
JPS63216625A JP4681087A JP4681087A JPS63216625A JP S63216625 A JPS63216625 A JP S63216625A JP 4681087 A JP4681087 A JP 4681087A JP 4681087 A JP4681087 A JP 4681087A JP S63216625 A JPS63216625 A JP S63216625A
Authority
JP
Japan
Prior art keywords
tool
electrolyte
sludge
workpiece
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4681087A
Other languages
Japanese (ja)
Inventor
Junji Nomura
野村 純治
Haruo Otsuka
大塚 春生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP4681087A priority Critical patent/JPS63216625A/en
Publication of JPS63216625A publication Critical patent/JPS63216625A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To prevent accumulation of sludge produced during electrolytic treatment of a small deep hole, by a method wherein a small amount of nitric acid is added in an electrolyte to produce pH of 1-3 acid. CONSTITUTION:A tool 1 and a workpiece 2 respectively forms an electrode, and by charging a electrolyte in the fine tube of the tool 1, a small deep hole responding to the outer diameter of the tool 1 is bored in the workpiece 2. A small amount of nitric acid is added in the electrolyte to produce acid of pH of 1-3. The vortex of the electrolyte is generated on an end surface A of the tool 1 and an end surface B of the workpiece 2, sludge S produced due to reverse flow phenomenon of the electrolyte, occasioned by the generation of the vortex, and the minus source of the tool 1, is about to adhere to the inner surface of the tool 1. However, since the electrolyte produces acid, the sludge produces metallic ion again, and is molten in a solution and flows out to the outside. Thus, adhesion of the sludge to the inner surface of the tool 1 is prevented from occurring.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ガスタービン動翼の冷却穴に代表される小口
径深穴の電解加工方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for electrolytic machining of small-diameter deep holes, typified by cooling holes of gas turbine rotor blades.

〔従来の技術〕[Conventional technology]

ガスタービン動翼の冷却空気穴のような難切削性材料に
小口径の深穴を穿つときには、電解加工による場合が多
い。
When drilling small-diameter deep holes in materials that are difficult to cut, such as cooling air holes in gas turbine rotor blades, electrolytic machining is often used.

その方法は第1図に示すように工具1と加工物2とを夫
々電極とし、工具1を細管形状としてその内部に塩化ナ
トリウム、硝酸ソーダ等の水溶液(以下電解液と云う)
を矢印イの方向に流す。このとき加工物20表面は電気
化学的に溶融し、スラッジとなって電解液と共に矢印口
の方向に溶出して、工具1の外径に対応した小口径の深
穴が穿たれる。
As shown in Fig. 1, the method is as follows: tool 1 and workpiece 2 are used as electrodes, tool 1 is shaped like a thin tube, and an aqueous solution (hereinafter referred to as electrolyte) of sodium chloride, sodium nitrate, etc. is placed inside the tool 1.
flows in the direction of arrow A. At this time, the surface of the workpiece 20 is electrochemically melted and becomes sludge, which is eluted together with the electrolyte in the direction of the arrow, and a deep hole with a small diameter corresponding to the outer diameter of the tool 1 is bored.

電源には低電圧、大電流の直流電源Sが使われ、電極間
隙を一定に維持するため、図に示されていない工具1の
送シ制御回路が付加される。
A low-voltage, high-current DC power source S is used as the power source, and a feed control circuit for the tool 1 (not shown in the figure) is added to maintain a constant electrode gap.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このような技術には下記の問題点があった。 Such technology has the following problems.

(1)加工物2には端子4を介して直流電源のプラス側
が工具1には支持具5に取付ゆられた端子6を介して直
流電源のマイナス側が夫々結合される。
(1) The positive side of the DC power source is connected to the workpiece 2 via the terminal 4, and the negative side of the DC power source is connected to the tool 1 via the terminal 6 attached to the support 5 and swung.

第2図にかいて、工具1の端面Aと加工物の端面Bとの
相対形状は図のようになシ、核部に電解液の渦が発生す
る。
In FIG. 2, the relative shapes of the end surface A of the tool 1 and the end surface B of the workpiece are as shown in the figure, and a vortex of electrolyte is generated at the core.

この渦に伴う電解液の逆流現象と上述のように工具1が
マイナス電源側にあるために、スラッジSが吸引されて
工具内面に付着堆積する。
Due to the backflow phenomenon of the electrolytic solution accompanying this vortex and the fact that the tool 1 is on the negative power supply side as described above, the sludge S is attracted and deposits on the inner surface of the tool.

(2)  このスラッジの堆積は、電解液の流量を減ら
して加工速度を低下させると共に堆積が甚だしいときに
はスラッジ部で短絡し、端面A。
(2) This accumulation of sludge reduces the flow rate of the electrolytic solution and slows down the machining speed, and when the accumulation is severe, a short circuit occurs at the sludge part and the end surface A is damaged.

8間の電位差が低下して正常な電解加工が行表われなく
なる。
The potential difference between 8 and 8 decreases, and normal electrolytic processing cannot be performed.

(3)  このため作業を中断して、工具を取替えたシ
、清掃しているのが現状である。
(3) For this reason, the current situation is to stop work and replace tools and clean them.

なお、このような現象を大詰シと呼び、加工途中で一旦
中止して再加工すると核部にふくらみをもった停止痕が
残るが、この現象をスウェリング(8vrelling
 )  という。
Note that this phenomenon is called large-scale cutting, and if the processing is stopped mid-way and reprocessed, a stop mark with a bulge will remain at the core, but this phenomenon is called swelling (8vrelling).
).

〔発明の目的〕[Purpose of the invention]

本発明は従来技術におけるような大詰シやスウェリング
を起こすことのない小口径深穴の電解加工方法を提供し
ようとするものである。
The present invention aims to provide a method for electrolytic machining of small-diameter deep holes without causing large clogging or swelling as in the prior art.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は電解液に少量の硝酸を添加して、電解液をpH
1〜3の酸性にすることを特徴とする小口径深穴の電解
加工方法である。
In the present invention, a small amount of nitric acid is added to the electrolyte to adjust the pH of the electrolyte.
This is an electrolytic machining method for small-diameter deep holes characterized by making the acidity 1 to 3.

[作用] 電解加工によって発生したスラッジは、酸溶液中では再
び金属イオンとなシ、溶液中に溶融してそのまま外部へ
溶出し、電極へのスラッジの付着、堆積現象が発生する
ことがない。
[Function] The sludge generated by electrolytic processing does not turn into metal ions again in the acid solution, melts in the solution, and elutes to the outside as it is, so that the sludge does not adhere to the electrode or accumulate.

〔実施例〕〔Example〕

加工条件は加工物の材質、穴径、穴深さによって変化す
るが、ニッケル、クロム、コバルト系合金製ガスタービ
ン動翼に小口径、深穴を穿つ場合の最適電解加工条件は
、下記の通シである。
Machining conditions vary depending on the material of the workpiece, hole diameter, and hole depth, but the optimal electrolytic machining conditions when drilling small-diameter, deep holes in gas turbine rotor blades made of nickel, chromium, and cobalt alloys are as follows. It is shi.

加工電圧は  aV。The processing voltage is aV.

加工速度は  [L9■/―、 電解液圧力は 14 kg / cd、電解液温像は 
30℃、 電解液pHは  t8゜ 々お電解液は硝酸ソーダ(NaNOs)の場合を示す。
The processing speed is [L9■/-, the electrolyte pressure is 14 kg/cd, and the electrolyte temperature image is
The temperature is 30℃, the electrolyte pH is t8℃, and the electrolyte is sodium nitrate (NaNOs).

〔発明の効果〕〔Effect of the invention〕

本発明によシ下記の効果をえることができた。 According to the present invention, the following effects could be obtained.

(1)加工中の電極の短絡がない。(1) There is no short circuit of the electrode during processing.

(2)  このため大詰シが起らない。(2) For this reason, large scale failure does not occur.

(3)スウェリングもなくなる。(3) Swelling also disappears.

(4)従って生産性、品質も向上する。(4) Productivity and quality are therefore improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は電解加工による小口径、深穴の加工状況を示す
説明図、第2図は大詰シの発生状況を示す説明図である
FIG. 1 is an explanatory diagram showing the machining situation of a small-diameter, deep hole by electrolytic machining, and FIG. 2 is an explanatory diagram showing the occurrence of a large hole.

Claims (1)

【特許請求の範囲】[Claims] 電解液に少量の硝酸を添加して、電解液をpH1〜3の
酸性にすることを特徴とする小口径深穴の電解加工方法
A method for electrolytic machining of small-diameter deep holes, characterized by adding a small amount of nitric acid to the electrolytic solution to make the electrolytic solution acidic with a pH of 1 to 3.
JP4681087A 1987-03-03 1987-03-03 Electrolytic processing method for small deep hole Pending JPS63216625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4681087A JPS63216625A (en) 1987-03-03 1987-03-03 Electrolytic processing method for small deep hole

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4681087A JPS63216625A (en) 1987-03-03 1987-03-03 Electrolytic processing method for small deep hole

Publications (1)

Publication Number Publication Date
JPS63216625A true JPS63216625A (en) 1988-09-08

Family

ID=12757681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4681087A Pending JPS63216625A (en) 1987-03-03 1987-03-03 Electrolytic processing method for small deep hole

Country Status (1)

Country Link
JP (1) JPS63216625A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1079309C (en) * 1999-11-24 2002-02-20 上海交通大学 Machining process of high-accuracy and great-depth small hole

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1079309C (en) * 1999-11-24 2002-02-20 上海交通大学 Machining process of high-accuracy and great-depth small hole

Similar Documents

Publication Publication Date Title
US3873512A (en) Machining method
Gupta et al. Hybrid machining processes: perspectives on machining and finishing
Khan et al. Electrical discharge machining: vital to manufacturing industries
CN108971676A (en) It is electrolysed punch-cuts integration processing pipe electrode and device and method
Moon et al. A study on electrochemical micromachining for fabrication of microgrooves in an air-lubricated hydrodynamic bearing
US20160362810A1 (en) Electrochemical machining employing electrical voltage pulses to drive reduction and oxidation reactions
GB939402A (en) Electrolytic cutting
Coteaţă et al. Electrochemical discharge machining of small diameter holes
US5045161A (en) Method and apparatus for electrolytically assisting the mechanical shaping of a workpiece
JPS63216625A (en) Electrolytic processing method for small deep hole
Dutta et al. Hybrid electric discharge machining processes for hard materials: a review
US10556280B2 (en) Methods and systems for electrochemical machining
Xiaowei et al. A combined electrical machining process for the production of a flexure hinge
RU2055709C1 (en) Combined electrochemical treatment method
CN211072130U (en) Electrode for processing small hole in deep part of workpiece
US3875038A (en) Electrolytic machining apparatus
US3745296A (en) Copper tool material for electrical discharge machining
US3846262A (en) Electrochemical machining cutoff
CN110893493A (en) Electrolytic electric spark composite leveling tool and method for manufacturing rough metal surface by additive manufacturing
Singh et al. Influence of input parameters on MRR of AISI-316L using tungsten electrode machined by EDM
CN109482989A (en) A kind of electrolyte and preparation method thereof and the application in double strand chain wheel shaft Electrolyzed Processing precision correction of the flank shape
KR100432098B1 (en) Super drill setting method for 0.1pi punching structure
US3383302A (en) Electrical stock removal electrode
McGeough Electrochemical machining (ECM)
CA1335437C (en) Method and apparatus for electrolytically assisting the mechanical shaping of a workpiece