JPS63216481A - Carboxypeptidase and production thereof - Google Patents

Carboxypeptidase and production thereof

Info

Publication number
JPS63216481A
JPS63216481A JP5127487A JP5127487A JPS63216481A JP S63216481 A JPS63216481 A JP S63216481A JP 5127487 A JP5127487 A JP 5127487A JP 5127487 A JP5127487 A JP 5127487A JP S63216481 A JPS63216481 A JP S63216481A
Authority
JP
Japan
Prior art keywords
enzyme
activity
carboxypeptidase
thermus
buffer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5127487A
Other languages
Japanese (ja)
Other versions
JP2525592B2 (en
Inventor
Etsuo Minagawa
皆川 悦雄
Shiyuuichi Kaminogawa
修一 上野川
Kunio Yamauchi
山内 邦男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YOTSUBA NYUGYO KK
Original Assignee
YOTSUBA NYUGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YOTSUBA NYUGYO KK filed Critical YOTSUBA NYUGYO KK
Priority to JP5127487A priority Critical patent/JP2525592B2/en
Publication of JPS63216481A publication Critical patent/JPS63216481A/en
Application granted granted Critical
Publication of JP2525592B2 publication Critical patent/JP2525592B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Enzymes And Modification Thereof (AREA)

Abstract

PURPOSE:To obtain the titled enzyme having an activity to successively separate amino acids from C-terminal of a peptide, exhibiting high otpimum action temperature and having high thermal stability, by culturing a specific highly thermophilic bacterium belonging to Thermus genus in a nutrient medium. CONSTITUTION:A highly thermophilic bacterium belonging to Thermus genus and capable of producing carboxypeptidase, e.g. Thermus aquaticus YT-1 (ATCC 25104) is cultured in a nutrient medium (usually at about neutral pH and 40-80 deg.C for 12hr-10 days under aeration and agitation) and the objective enzyme exhibiting optimum action temperature of 75-80 deg.C is separated from the cultured product. The enzyme has a molecular weight of 62,000 measured by gel-filtration method using Sephadex G-200, an amino acid composition shown in the Table and an optimum action pH of 8.0-9.0. The crude enzyme liquid extracted from the bacteria cell retains about 85% of the activity by heating at 80 deg.C for 20hr at pH 7.2 and about 65% of the activity by heating at 90 deg.C for 20hr.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はカルボキシペプチダーゼおよびその製造法に関
し、詳しくは75〜80℃に最適作用温度を示し、耐熱
性にすぐれたカルボキシペプチダーゼおよびその製造法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to carboxypeptidase and a method for producing the same, and more particularly, to a carboxypeptidase that exhibits an optimum operating temperature at 75 to 80°C and has excellent heat resistance, and a method for producing the same. .

〔従来の技術、発明が解決しようとする問題点〕カルボ
キシペプチダーゼは微生物界、動物界。
[Prior art and problems to be solved by the invention] Carboxypeptidases are found in the microbial and animal kingdoms.

植物界から多数分離され、それぞれの構造、性質等が詳
細に調べられている。カルボキシペプチダーゼは、その
触媒活性の発現の違いによって、セリンカルボキシペプ
チダーゼ、メタロカルボキシペプチダーゼ、システィン
カルボキシペプチダーゼに分類されている。
Many species have been isolated from the plant kingdom, and their structures and properties have been investigated in detail. Carboxypeptidases are classified into serine carboxypeptidases, metallocarboxypeptidases, and cysteine carboxypeptidases depending on their catalytic activity.

しかし、これまでに報告されているカルボキシペプチダ
ーゼは常温生物から得られたものであり、好熱性細菌を
はじめとした好熱性生物からはまだ精製されていない、
また、細菌から分離されたメタロカルボキシペプチダー
ゼの報告は少ない。
However, the carboxypeptidases reported so far have been obtained from thermophilic organisms and have not yet been purified from thermophilic organisms such as thermophilic bacteria.
Furthermore, there are few reports on metallocarboxypeptidases isolated from bacteria.

〔問題点を解決するための手段〕[Means for solving problems]

そこで本発明者らは、耐熱性にすぐれたカルボキシペプ
チダーゼを生産する好熱性細菌を探索すべく研究を重ね
た結果、サーマス(Thermus)属に属する高度好
熱性細菌が目的とする酵素を生産することを見出し、本
発明を完成した。
Therefore, the present inventors conducted repeated research to search for thermophilic bacteria that produce carboxypeptidase with excellent heat resistance, and found that highly thermophilic bacteria belonging to the genus Thermus produce the desired enzyme. They discovered this and completed the present invention.

すなわち本発明は、ペプチドのC末端からアミノ酸を順
次遊離する作用を有し、75〜80℃に最適作用温度を
示し、かつ高い熱安定性を有するカルボキシペプチダー
ゼ並びにサーマス属に属し、該カルボキシペプチダーゼ
を生産する能力のある高度好熱性細菌を培養して該カル
ボキシペプチダーゼを製造する方法を提供するものであ
る。
That is, the present invention relates to a carboxypeptidase that has the action of sequentially releasing amino acids from the C-terminus of a peptide, exhibits an optimum operating temperature at 75 to 80°C, and has high thermal stability, and a carboxypeptidase belonging to the genus Thermus. The present invention provides a method for producing carboxypeptidase by culturing highly thermophilic bacteria capable of producing it.

本発明のカルボキシペプチダーゼは、サーマス属に属し
、該酵素生産能を有する高度好熱性細菌を栄養培地に培
養し、培養物中に該酵素を生成せしめ、これを採取する
ことよって製造することができる。
The carboxypeptidase of the present invention can be produced by culturing a highly thermophilic bacterium belonging to the genus Thermus and having the ability to produce the enzyme in a nutrient medium, producing the enzyme in the culture, and collecting the enzyme. .

目的とするカルボキシペプチダーゼを生産する能力のあ
る微生物としては、たとえばサーマス・アクアティカス
(Thermus d) Y T −1(ATCC25
104)があり、本面のばかその自然的もしくは人工的
変異株なども該酵素生産能を有する限り本発明に使用す
ることができる。
Examples of microorganisms capable of producing the target carboxypeptidase include Thermus aquaticus (Thermus d) YT-1 (ATCC25
104), and natural or artificial mutant strains thereof can also be used in the present invention as long as they have the ability to produce the enzyme.

栄養培地は、上記微生物が十分に生育し、目的とする酵
素を生産しうるものであればよく、たとえばポリペプト
ン、酵母エキス、ホエイ蛋白質等に硫酸カルシウムなど
の無機塩類等を加えたものが好適に用いられる。
The nutrient medium may be any medium as long as the above-mentioned microorganisms can grow sufficiently and produce the desired enzyme. For example, a medium containing polypeptone, yeast extract, whey protein, etc. with inorganic salts such as calcium sulfate is preferably used. used.

培養は通常、通気攪拌培養法により行うことが好ましく
、必要に応じて消泡剤を添加する。一般に、培養は中性
付近のpHに調整し、40〜80℃の温度で12時間〜
10日間程度行い、カルボキシペプチダーゼを十分に生
成せしめる。この酵素は主として菌体中に蓄積される。
Cultivation is usually preferably carried out by an aerated agitation culture method, and an antifoaming agent is added if necessary. Generally, the culture is adjusted to a pH near neutrality and kept at a temperature of 40 to 80°C for 12 hours or more.
This is carried out for about 10 days to ensure sufficient production of carboxypeptidase. This enzyme is mainly accumulated in the bacterial cells.

培養物からのカルボキシペプチダーゼの採取は適宜既知
の手法を組合せて行えばよく、その1例を示すと、培養
終了後、培養物から遠心分離などによって菌体を集め、
必要により凍結保存する。
Carboxypeptidase can be collected from the culture using a combination of known methods as appropriate; one example is, after the completion of the culture, bacterial cells are collected from the culture by centrifugation, etc.
Store frozen if necessary.

菌体を破砕処理したのち遠心分離して得た上清液を適当
な緩衝液で透析して菌体抽出粗酵素液を得る。
After crushing the bacterial cells, the supernatant obtained by centrifugation is dialyzed against an appropriate buffer to obtain a crude enzyme solution extracted from the bacterial cells.

次いで、粗酵素液を硫安塩析、カラムクロマトグラフィ
ー、ゲル濾過、電気泳動などの酵素精製に用いられる通
常の操作を適宜組合せることによって精製されたカルボ
キシペプチダーゼを得ることができる。
Next, purified carboxypeptidase can be obtained by appropriately combining the crude enzyme solution with ordinary operations used for enzyme purification, such as ammonium sulfate salting out, column chromatography, gel filtration, and electrophoresis.

次に、本発明の酵素の性質を以下に示す。なお、酵素活
性の測定は以下の方法で行った。
Next, the properties of the enzyme of the present invention are shown below. Note that the enzyme activity was measured by the following method.

1)一般の合成ペプチドに対する活性の測定一般の合成
ペプチドに対する酵素活性の測定は、Matheson
””マCan、  J、  Bioche+++、、 
 42+  95+  1964)  の方法に準じて
行い、酵素作用によって生じたアミノ酸などをニンヒド
リンと反応させて比色定置した。実際に、緩衝液に溶解
した1mMの各種ペプチド溶液0.1+j!を酵素反応
温度とした後に、酵素溶液0.1 ■iをそれぞれ加え
て一定時間反応させた後、0.1M酢酸溶液0.1m+
#を加えて反応を停止させた0反応停止溶液に蒸留水0
.7■lを加えて1 talとした後に、0.2Mクエ
ン酸緩衝液(p)I 5.0) 0.5 tslとニン
ヒドリン試薬1.2mJを加え攪拌混合後、沸騰水浴中
で7.5分間加熱を行った。その後、速かに氷水中で十
分に冷却した後に、60%エタノール2.5mxで希釈
し、室温で570nmにおける吸光値を分光光度計で測
定した。また、分析内容によっては。
1) Measurement of activity against general synthetic peptides Measurement of enzymatic activity against general synthetic peptides is carried out using the Matheson
””MaCan, J, Bioche+++,,
42+ 95+ 1964), amino acids produced by enzymatic action were reacted with ninhydrin and fixed colorimetrically. Actually, 1mM various peptide solutions dissolved in buffer solution 0.1+j! After adjusting the enzyme reaction temperature to
Distilled water 0 to the 0 reaction stop solution in which the reaction was stopped by adding #
.. After adding 7 liters to make 1 tal, add 0.5 tsl of 0.2M citrate buffer (p)I 5.0) and 1.2 mJ of ninhydrin reagent, stir and mix, and add 7.5 tsl in a boiling water bath. Heating was performed for a minute. Thereafter, the mixture was quickly sufficiently cooled in ice water, diluted with 2.5 mx of 60% ethanol, and the absorbance value at 570 nm was measured using a spectrophotometer at room temperature. Also, depending on the content of the analysis.

酵素反応時の基質溶液、酵素溶液、蒸留水または緩衝液
の割合を変えて行った。酵素活性の単位は、ニンヒドリ
ン陽性物質をロイシン量に換算し、18Mのロイシンに
相当するニンヒドリン陽性物質を生成する酵素量を1単
位(U)とした。
The enzyme reaction was performed by changing the proportions of the substrate solution, enzyme solution, distilled water, or buffer solution. As for the unit of enzyme activity, the ninhydrin-positive substance was converted into the amount of leucine, and the amount of enzyme that produced the ninhydrin-positive substance corresponding to 18M leucine was defined as 1 unit (U).

2)プロリン残基を含むペプチドに対する活性の測定 プロリン残基を含むペプチドに対する酵素活性の測定は
、’1aronとMlyner (Biochem、 
Biophys。
2) Measurement of activity against peptides containing proline residues Measurement of enzyme activity against peptides containing proline residues was carried out by '1aron and Mlyner (Biochem,
Biophys.

Res、 Cosmun、、 32.658.1968
)の方法に準じて行液に溶解した1mMの各種ペプチド
溶液0.1mlを酵素反応温度とした後に、酵素溶液0
.1mlをそれぞれ加えて反応を行った。反応条件は通
常pH8,5で70℃、30分間で行った。反応停止は
O,l M酢酸溶液0.1e+βを加えて行い、さらに
蒸留水を0.1tm1加え全体で1 mllとした。
Res, Cosmun, 32.658.1968
) After bringing 0.1 ml of 1mM various peptide solutions dissolved in the solution to the enzyme reaction temperature, the enzyme solution 0.
.. A reaction was carried out by adding 1 ml of each. The reaction conditions were usually pH 8.5, 70°C, and 30 minutes. The reaction was stopped by adding 0.1e+β of an O, lM acetic acid solution, and further 0.1 tml of distilled water was added to make the total volume 1 ml.

その後、氷酢酸2.5mlとニンヒドリン試薬2.5m
lを加えて攪拌混合してから沸騰水浴中で30分間加熱
を行った。加熱終了後は氷水中で十分に冷却してから室
温に戻して480nmにおける吸光値を分光光度計で測
定した。酵素活性の単位は、通常pH8,5,7,5℃
において酵素溶液IIIIj!が1分間に生成するプロ
リン量を算出し、lpMのプロリンを生成する酵素量を
1単位(U)とした。
Then, 2.5 ml of glacial acetic acid and 2.5 ml of ninhydrin reagent.
After stirring and mixing, the mixture was heated in a boiling water bath for 30 minutes. After heating, the sample was sufficiently cooled in ice water, returned to room temperature, and the absorbance value at 480 nm was measured using a spectrophotometer. The unit of enzyme activity is usually pH 8, 5, 7, 5℃
Enzyme solution IIIj! The amount of proline produced per minute was calculated, and the amount of enzyme that produced lpM of proline was defined as 1 unit (U).

以上の2種類の方法を用いて測定し、酵素の比活性は酵
素溶液中の蛋白質IIIIg当りの活性単位で表わした
Measurements were made using the above two methods, and the specific activity of the enzyme was expressed in units of activity per IIIg of protein in the enzyme solution.

るゲル濾過法で求めた。精製酵素および標準蛋白質の溶
出位置と分子量の関係を第1図に示した。
Determined by gel filtration method. The relationship between the elution position and molecular weight of the purified enzyme and standard protein is shown in Figure 1.

この結果、本酵素の分子量は62,000と推定された
As a result, the molecular weight of this enzyme was estimated to be 62,000.

2)アミノ酸組成 本酵素のトリプトファンを除いたアミノ酸分析の結果と
分子量62.000とした場合の計算上の残基数を第1
表に示した。構成するアミノ酸組成はGlu(n)、 
Gly、 Set、 Alaの含量が比較的多くCys
は含まなかった。
2) Amino acid composition The results of amino acid analysis of this enzyme excluding tryptophan and the calculated number of residues when the molecular weight is 62,000 are the first
Shown in the table. The constituent amino acid composition is Glu(n),
The content of Gly, Set, and Ala is relatively high, and Cys
was not included.

第1表 Asx           6.2 Thr           4.6 Ser          12.9 Glx          13.6 Pro           5.4 Gly          12.6 Ala          11.7 Half  Cys       O,0Val   
        5.8 第1表(続き) アミノ酸       含有量(モル%)Met   
           O,71ie        
      3.2L e u           
   8.7Tyr              1,
2Phe              2.91、 y
 s              3.4His   
    2.6 Arg              4.5T r p
              n、d。
Table 1 Asx 6.2 Thr 4.6 Ser 12.9 Glx 13.6 Pro 5.4 Gly 12.6 Ala 11.7 Half Cys O,0Val
5.8 Table 1 (continued) Amino acid content (mol%) Met
O,71ie
3.2L e u
8.7Tyr 1,
2Phe 2.91, y
s 3.4His
2.6 Arg 4.5T r p
n, d.

合計      100.0 3)最適作用pH 本酵素の最適作用pHはptl 5. Oから10.0
の範囲で、Cbz−Phe−Tyrを基質として70℃
、30分間の反応条件で測定した。緩衝液は室温で各p
Hに調製した0、05Mクエン酸塩緩衝液(PH5〜6
)。
Total 100.0 3) Optimum action pH The optimum action pH of this enzyme is ptl 5. O to 10.0
at 70°C using Cbz-Phe-Tyr as a substrate.
, measured under reaction conditions of 30 minutes. Buffers were added to each p at room temperature.
0.05M citrate buffer prepared at pH 5-6
).

0.05Mリン酸塩緩衝液(pH6〜B)、0.05M
Tris −HCj!緩衝液(pH8〜9)および0.
05M  Hz B O4’ K CI  N a O
H緩衝液(pH9〜10)を使用した。結果は第2図に
示した。最適作用pHよ8.0から9.0の範囲であっ
た。 PH9,5よりアルカリ性側、pH7より酸性側
では相対的活性は低下した。
0.05M phosphate buffer (pH 6-B), 0.05M
Tris-HCj! Buffer (pH 8-9) and 0.
05MHz B O4'K CI N a O
H buffer (pH 9-10) was used. The results are shown in Figure 2. The optimum working pH was in the range of 8.0 to 9.0. Relative activity decreased on the alkaline side from pH 9.5 and on the acidic side from pH 7.

4)最適作用温度 精製酵素の最適作用温度は30℃から95℃の温度で、
Cbz−Phe−Tyrを基質としてpH8,50,0
5M  Tris−HCIIIl街液を用いて30分間
の反応で測定した。結果は第3図に示した。本酵素は7
5℃から80℃に最適作用温度を示し、85℃では相対
的活性で約95%、95℃でも約85%と非常に高温度
でも活性を有した。低い反応温度での活性は、60℃で
は約75%、50℃では約55%、30℃では約20%
であった。
4) Optimal temperature of action The optimal temperature of action of the purified enzyme is between 30°C and 95°C.
pH 8,50,0 using Cbz-Phe-Tyr as a substrate
The measurement was performed using a 5M Tris-HCIII solution for 30 minutes. The results are shown in Figure 3. This enzyme is 7
It showed an optimal action temperature between 5°C and 80°C, and had relative activity of about 95% at 85°C and about 85% at 95°C, even at extremely high temperatures. The activity at low reaction temperatures is about 75% at 60°C, about 55% at 50°C, and about 20% at 30°C.
Met.

5)熱安定性 酵素活性の熱安定性は菌体抽出粗酵素液と精製酵素で測
定した。酵素の加熱処理は、pH7,20,05M  
Tris−HCI緩衝液を用いて80℃から95℃の範
囲で20時間行い、加熱後に残存する活性はpH8,5
でCbz−Phe−Tyrを基質として70℃、30分
間の反応で測定し、それぞれの未加熱の酵素活性を基準
として相対的活性値を示した。
5) Thermostability The thermostability of enzyme activity was measured using a crude enzyme solution extracted from bacterial cells and a purified enzyme. Enzyme heat treatment at pH 7, 20, 05M
Tris-HCI buffer was used at 80°C to 95°C for 20 hours, and the remaining activity after heating was at pH 8.5.
The enzyme activity was measured by reaction at 70° C. for 30 minutes using Cbz-Phe-Tyr as a substrate, and relative activity values are shown based on each unheated enzyme activity.

加熱時の蛋白質濃度は精製酵素は10μg/I11で行
い、菌体抽出粗酵素液は未加熱時に精製酵素と同じ活性
を有する濃度で行った。得られた結果を第4図に示した
。精製酵素は80℃、20時間の加熱で約75%、90
℃、20時間の加熱でも約40%の活性が残存した。ま
た、菌体抽出粗酵素液は精製酵素より更に高い熱安定性
を示し、80℃、20時間の加熱で約85%、90℃、
20時間の加熱で約65%の活性が残存した。
The protein concentration during heating was 10 μg/I11 for the purified enzyme, and the protein concentration for the bacterial cell extraction crude enzyme solution was set to have the same activity as the purified enzyme when unheated. The results obtained are shown in FIG. Purified enzyme is heated at 80℃ for 20 hours to reduce the concentration to about 75% and 90%.
Approximately 40% of the activity remained even after heating at ℃ for 20 hours. In addition, the crude enzyme solution extracted from bacterial cells exhibits higher thermal stability than the purified enzyme; approximately 85% after heating at 80°C for 20 hours;
Approximately 65% activity remained after heating for 20 hours.

6)金属イオンの影響 本酵素の活性におよぼす各種金属イオンの影響を測定し
た結果を第2表に示した。各種金属イオンをそれぞれ酵
素溶液に1mMとなるように加え、25℃で30分間放
置した後に金属イオン混在下でCbz−Phe−Tyr
を基質としてpHa、 5で70℃。
6) Effect of metal ions Table 2 shows the results of measuring the effects of various metal ions on the activity of this enzyme. Various metal ions were added to the enzyme solution at a concentration of 1mM, and after being left at 25°C for 30 minutes, Cbz-Phe-Tyr was added in the presence of metal ions.
as a substrate at pH 5 and 70°C.

30分間の反応を行った0本酵素はCa ”、 Co 
”。
The enzymes reacted for 30 minutes were Ca'', Co
”.

Mg1に対しては安定であったが、Z n 2 +によ
って殆ど活性を失った。また、Cu”、Fe”°。
It was stable against Mg1, but almost lost its activity against Z n 2 +. Also, Cu", Fe"°.

Su”°、Mn”によっである程度影響を受けた。It was influenced to some extent by Su"°, Mn".

第2表 金属イオン(1mM)     相対活性(%)Con
trol       100.0CaC1z    
       97.9GoCI、         
 106.3CuSoa           76.
3MgC1g          103.0FeSo
、           74.5SiO2g    
       65.lZnC1g         
  17.2MnC1,83,5 7)試薬の影響 本酵素の活性におよぼす各種試薬の影響を測定した結果
を第3表に示した。酵素溶液とそれぞれの濃度の各種試
薬を混合し、25℃で30分間放置した後に、試薬混在
下でCbz−Phe−Tyrを基質としてpHa、 5
で70℃、30分間の反応を行った。
Table 2 Metal ions (1mM) Relative activity (%) Con
trol 100.0CaC1z
97.9GoCI,
106.3CuSoa 76.
3MgC1g 103.0FeSo
, 74.5SiO2g
65. lZnC1g
17.2MnC1,83,5 7) Effect of reagents Table 3 shows the results of measuring the effects of various reagents on the activity of this enzyme. The enzyme solution and various reagents at respective concentrations were mixed, and after being left at 25°C for 30 minutes, the pH was adjusted to 5.
The reaction was carried out at 70°C for 30 minutes.

本酵素の活性は1mM EDTA、1mM  1−10
フエナントロリンのような金属キレート剤によって強く
阻害された。また、SH試薬であるP CMHにもかな
り阻害を受けたe  1 m M N−エチルマレイミ
ド、1mM モノヨード酢酸、1mM2−メルカプトエ
タノール、0.1mMシスティン、10μMアマスタチ
ン、10μMベスタチンに対して殆ど影響を受けなかっ
た。SDSに対しては0.05%、グアニジン塩酸には
0.5Mでかなり強く阻害を受けた。
The activity of this enzyme is 1mM EDTA, 1mM 1-10
It was strongly inhibited by metal chelators such as phenanthroline. In addition, it was significantly inhibited by the SH reagent PCMH, but was hardly affected by 1 m M N-ethylmaleimide, 1 mM monoiodoacetic acid, 1 mM 2-mercaptoethanol, 0.1 mM cysteine, 10 μM amastatin, and 10 μM bestatin. There wasn't. It was significantly inhibited by SDS at 0.05% and guanidine hydrochloride at 0.5M.

第3表 Control        −100,0EDTA
”                     1.0
  mM        27.81.1O−Phen
anthroline   1.OmM    14.
3PCMB”                   
  1.0 −M        63.0N−f!t
hy1maleiside    1.Od    9
4.6Monoiodoacetic acid   
1.OmM    96.7第3表(続き) 試  薬        濃度   相対活性(%) 2−Mercaptoethanol     1.O
mM    95.8Cysteine       
  O,1mM    91.9Amastatin 
        0.01mM   100.0Bes
tatin         O,01d    99
.7SDS ”           0.05χ  
 47.3PCMB;p−クロルメルクリ安息香酸。
Table 3 Control -100,0EDTA
” 1.0
mM 27.81.1O-Phen
anthroline 1. OmM 14.
3PCMB”
1.0-M 63.0N-f! t
hy1maleside 1. Od 9
4.6 Monoiodoacetic acid
1. OmM 96.7 Table 3 (Continued) Reagent Concentration Relative Activity (%) 2-Mercaptoethanol 1. O
mM 95.8Cysteine
O, 1mM 91.9Amastatin
0.01mM 100.0Bes
tatin O,01d 99
.. 7SDS” 0.05χ
47.3PCMB; p-chloromercribenzoic acid.

SDS ;ドデシル硫酸ナトリウム 8)−値およびVmax。SDS: Sodium dodecyl sulfate 8)-value and Vmax.

本酵素のi値およびVmax、はCbz−Phe−Ty
rを基質として酵素反応温度を変えて求めた。各種濃度
酵素反応を行った後に、遊離したチロシンを日立アミノ
酸自動分析計835型で同定、定量した。
The i value and Vmax of this enzyme are Cbz-Phe-Ty
It was determined by changing the enzyme reaction temperature using r as a substrate. After performing the enzyme reaction at various concentrations, the liberated tyrosine was identified and quantified using a Hitachi amino acid automatic analyzer model 835.

90℃でそれぞれ0.056.0.057.0.058
゜0.068mMであった。一方、Vmax、はそれぞ
れ0.4 B、 1.64.5.41.9.52μM/
ll1inであった。反応温度によって一値は殆ど変化
しなかったが、Vmax、ばかなり異っており90℃で
最も高い値を示した。
0.056.0.057.0.058 respectively at 90℃
゜0.068mM. On the other hand, Vmax is 0.4 B, 1.64.5.41.9.52 μM/
It was ll1in. Although the value hardly changed depending on the reaction temperature, Vmax differed considerably and showed the highest value at 90°C.

9)基質特異性 本酵素の各種基質に対する特異性を測定しCbz−Ph
e−Tyrを基準とした相対的活性値を第4表に示した
。酵素反応はpH8,5で70℃30分間行った。本酵
素はC末端にProを含むCbz−Gly−Proを除
いたペプチドに対して広い(低い)特異性を示し、C末
端から2残基目にProを持つペプチドに対しても弱い
ながら活性を示した。疎水性アミノもC末端から2残蟇
目のアミノ酸の種類によって活性は太き(異った。C末
端がPheで2残基目にGluを持つペプチドとGIy
を持つペプチドの活性を比較するとGuyの方が高い活
性を示した。また、C末端にTyrを持ち2残基目がG
luとPheのペプチドを比較するとPheO方が高い
活性を示した。
9) Substrate specificity The specificity of this enzyme for various substrates was measured and Cbz-Ph
Relative activity values based on e-Tyr are shown in Table 4. The enzyme reaction was carried out at pH 8.5 for 30 minutes at 70°C. This enzyme shows broad (low) specificity for peptides that contain Pro at the C-terminus, excluding Cbz-Gly-Pro, and has weak activity against peptides that have Pro at the second residue from the C-terminus. Indicated. The activity of hydrophobic amino acids varies depending on the type of amino acid located 2nd residue from the C-terminus.
Comparing the activities of peptides with , Guy showed higher activity. Also, it has Tyr at the C-terminus and the second residue is G.
When lu and Phe peptides were compared, PheO showed higher activity.

このような結果はCbz−Gly−LeuとCbz−(
yly−Pro−Leu、Cbz−Qly−(rlyと
Cbz−Qly−Pro−Leu−Qlyの比較でも得
られた。
Such results indicate that Cbz-Gly-Leu and Cbz-(
yly-Pro-Leu, Cbz-Qly-(rly and Cbz-Qly-Pro-Leu-Qly were also obtained.

第4表 ペプチド         相対活性 Cbz−Glu−Phe          7.5C
bz−Glu−Tyr          3.7Cb
z−Gly−Ala          83.2Cb
z−Gly−Gly          18.9Cb
z−Gly−Leu          84.0Cb
z−Gly−Phe          91.0Cb
z−Gly−Pro          O,0Cbz
−Gly−Val          57.4Cbz
−Phe−Tyr         100.0Cbz
−Tyr−Glu          30.0Cbz
−Gly−Pro−Leu        22.3C
bz−Gl −Pro−Lau−Gl     123
.910)ペプチドに対する加水分解作用 本酵素のCbz−Gly−Pro−Leu−Gly、 
Thr−Thr−Met−Pro−Leu−Trp、 
Tyr−Leu−Gly−Tyr−Leu−Glu−G
ln−Leu−Leu−Argに対する加水分解作用を
測定した。酸素反応はpH8,50,1M  ギ酸−ア
ンモニア緩衝液を用いて70℃で行い、酵素/基質(W
/W)は各々1:30,1:40,1ニア0で行った。
Table 4 Peptide Relative activity Cbz-Glu-Phe 7.5C
bz-Glu-Tyr 3.7Cb
z-Gly-Ala 83.2Cb
z-Gly-Gly 18.9Cb
z-Gly-Leu 84.0Cb
z-Gly-Phe 91.0Cb
z-Gly-Pro O,0Cbz
-Gly-Val 57.4Cbz
-Phe-Tyr 100.0Cbz
-Tyr-Glu 30.0Cbz
-Gly-Pro-Leu 22.3C
bz-Gl-Pro-Lau-Gl 123
.. 910) Hydrolytic action of this enzyme on peptides: Cbz-Gly-Pro-Leu-Gly,
Thr-Thr-Met-Pro-Leu-Trp,
Tyr-Leu-Gly-Tyr-Leu-Glu-G
The hydrolysis effect on ln-Leu-Leu-Arg was measured. The oxygen reaction was carried out at 70°C using pH 8, 50, 1M formic acid-ammonia buffer, and the enzyme/substrate (W
/W) were conducted at 1:30, 1:40, and 1 near 0, respectively.

Cbz−Gly−Pro−Leu−Glyに対する作用
は最初にGlyが遊離した後、Leuは比較的ゆっくり
遊離した。そして、C末端がProになったCbz−Q
ly−Proに対しては作用せず、先の基質特異性の分
析結果と同じであった。Thr−Thr−Met−Pr
o−Leu−Trpに対してはC4゜ 末端からTrp+ Leuと速かに遊離し、Leuの遊
離速度はProが同じ条件で位置する(C末端から2残
基目)先のペプチドとは異った結果を示した。
Regarding the effect on Cbz-Gly-Pro-Leu-Gly, after Gly was first released, Leu was released relatively slowly. And Cbz-Q with Pro at the C-terminus
It had no effect on ly-Pro, and the result was the same as the previous analysis of substrate specificity. Thr-Thr-Met-Pr
For o-Leu-Trp, Trp + Leu is rapidly released from the C4° terminus, and the release rate of Leu is different from that of the previous peptide where Pro is located under the same conditions (2nd residue from the C-terminus). The results were shown.

次に、C末端がProになったThr−Thr−Met
−Proに対しても弱いながら活性を示し、このPro
が遊離するとMet、 Thrと殆ど同時に遊離した。
Next, Thr-Thr-Met with Pro at the C-terminus
-Also shows weak activity against Pro.
When released, Met and Thr were released almost simultaneously.

Tyr−Leu−Gly−Tyr−Leu−Glu−G
ln−Leu−Leu−^rgに対してはC末端のAr
gから順次加水分解しく<lu、 Ginに対しても作
用した。
Tyr-Leu-Gly-Tyr-Leu-Glu-G
For ln-Leu-Leu-^rg, the C-terminal Ar
It was hydrolyzed sequentially from g to <lu, and also acted on Gin.

〔実施例〕〔Example〕

次に、本発明を実施例により詳しく説明する。 Next, the present invention will be explained in detail with reference to examples.

実施例 ポリペプトン0.4%、酵母エキス0.2%。Example Polypeptone 0.4%, yeast extract 0.2%.

Ca5Oa・2HzOO,15g/’j!を地下水で溶
解し、NaOHでpH7,2に調整後、120℃で60
分間滅菌を行ったものを栽培とした。この培地にサーマ
ス・アクアティカス YT−1(ATCC25104)
を接種し、75℃で24時間振盪培養を行った。
Ca5Oa・2HzOO, 15g/'j! was dissolved in groundwater, adjusted to pH 7.2 with NaOH, and then heated at 120°C for 60°C.
Those that were sterilized for minutes were considered to be cultivated. This medium contains Thermus aquaticus YT-1 (ATCC25104).
was inoculated and cultured with shaking at 75°C for 24 hours.

次いで、31容ジャーファーメンタ−に上記と同じ組成
の培地11を入れて滅菌したのち前培養液を2%の割合
で接種し、250rpm、 1. OVVM。
Next, medium 11 having the same composition as above was placed in a 31-volume jar fermenter, sterilized, and then inoculated with the preculture solution at a rate of 2%, and heated at 250 rpm. OVVM.

0.5kg/−にて75℃で24時間第2次前培養を行
った。
A second preculture was carried out at 75° C. for 24 hours at 0.5 kg/−.

本培養は、ポリペプトン0.8%、酵母エキス0.4%
、CaSO4”2HzOO,15g/x。
Main culture contains 0.8% polypeptone and 0.4% yeast extract.
, CaSO4”2HzOO, 15g/x.

ホエイ蛋白質0.4%を地下水で溶解し、前培地と同様
にpH調整、滅菌した培地を用い、第2次培養液を4%
接種し、65℃で定常期になるまで培養を行った。なお
、第2次前培養2本培養では必要に応じて消泡剤(Ad
ecanol LG126)を添加した。
Dissolve 0.4% whey protein in ground water, use a medium that has been pH adjusted and sterilized in the same way as the pre-medium, and use a 4% secondary culture solution.
The cells were inoculated and cultured at 65°C until reaching the stationary phase. In addition, an antifoaming agent (Ad
ecanol LG126) was added.

培養後菌体は遠心分離で常法にもとづいて集菌した。After culturing, the bacterial cells were collected by centrifugation according to a conventional method.

次いで、菌体を0.05M Tris−HC1緩衝液(
p)17.2)に懸1(10%■ハ)した後に、強力超
音波振盪器(ブラソフ・ン社、モデル200100V 
 20KHz)を用いて最大出力で10分間超音波処理
を行い、菌体を破砕した。この時の試料の温度は10℃
以下で行った。その後、菌体の破片を遠心分離(35,
OOOxg20分間)で除去し、得られた上清液を同上
緩衝液で十分に透析して菌体抽出粗酵素液とした。
Next, the bacterial cells were added to 0.05M Tris-HC1 buffer (
p) After adding 1 (10% ■) to 17.2), use a powerful ultrasonic shaker (Brasov Ng, model 200100V).
20 KHz) at maximum output for 10 minutes to disrupt the bacterial cells. The temperature of the sample at this time was 10℃
I did the following. After that, the bacterial fragments were centrifuged (35,
OOOxg for 20 minutes), and the resulting supernatant was thoroughly dialyzed against the same buffer as above to obtain a bacterial cell extraction crude enzyme solution.

次いで、以下の方法により酵素を精製した。Next, the enzyme was purified by the following method.

l)硫酸アルモニウムによる塩析 菌体抽出粗酵素液50+*lに硫酸アンモニウム28.
05gを加えて80%飽和となるようにし、30分間放
置した後、遠心分離(10,OOOXg30分間)を行
う、得られた沈澱物は0.05M5Tris −HCl
 11衝液(pH7,2)で溶解し、同緩衝液で十分に
透析した後に、硫酸アンモニウム沈澱酵素画分とする。
l) Salting out with aluminum sulfate Bacterial cell extraction Crude enzyme solution 50+*l and ammonium sulfate 28.
Add 0.05g to reach 80% saturation, leave for 30 minutes, and centrifuge (10,OOOXg for 30 minutes).The resulting precipitate is mixed with 0.05M5Tris-HCl.
After dissolving in No. 11 buffer (pH 7.2) and thoroughly dialyzing against the same buffer, the enzyme fraction is obtained as an ammonium sulfate precipitated enzyme fraction.

2)DEAEセファセルクロマトグラフィー80%硫酸
アンモニウム沈澱酵素画分7011を予め0.05M 
Tris−HC1緩衝液(pH7,2)で平衡化したD
EAEセファセルカラム(2,4X24G)に吸着させ
る。カラムを同緩衝液で洗浄してから、OM 〜0.5
 M塩化ナトリウム(NaCjりの直線的濃度匂配とな
る条件で同緩衝液10100Oを用いて溶出する。溶出
速度は40tsll/時間で行い、溶出液はl百分10
mff1づつ分取する。
2) DEAE Sephacel chromatography 80% ammonium sulfate precipitated enzyme fraction 7011 at 0.05M in advance
D equilibrated with Tris-HC1 buffer (pH 7,2)
Adsorb onto an EAE Sephacel column (2,4×24G). The column was washed with the same buffer, then OM ~0.5
M Sodium chloride (NaCj) is eluted using the same buffer 10,100 O under conditions that provide a linear concentration gradient.The elution rate is 40 tsll/hour, and the eluate is
Collect 1 mff at a time.

分画した各両分蛋白ft量(280mの吸光値)および
カルボベンゾキシ(Cbz)−Phe−Tyrに対する
加水分解活性を測定し、カルボキシベブチグーゼ活性を
含む溶出画分患24〜54を集め、0.05MTris
 −HCl緩衝液(pH7,2)で透析を行った後に、
DEAEセファセルクロマトグラフィー酵素画分とする
The amount of protein ft (absorbance value at 280 m) and hydrolysis activity for carbobenzoxy (Cbz)-Phe-Tyr were measured for each fraction, and eluted fractions 24 to 54 containing carboxybebutigase activity were determined. Collect, 0.05M Tris
- After dialysis with HCl buffer (pH 7,2),
DEAE Sephacel chromatography enzyme fraction.

3)フェニルセファロースCL−4Bクロマトグラフィ フェニルセファロースCL−4Bカラム(1,2X20
(J)を予めIMNaCJを含んだ0.05M Tri
s−HCj!lil衝液(pH7,2)で平衡化を行っ
た。先の酵素溶液300m/は同緩衝液でIM NaC
1とした後にカラムに吸着させた。その後、IM〜0.
05M NaC1の直線的濃度匂配となる条件で0.0
5M Tris−HC1@衝液(pH7,2)  70
0  m#、  0.05M〜OM  Na C1の条
件で同緩衝液200 ml、NaC1を含まない同緩衝
液100 ml、  0.05M Tris−HCI緩
衝液(pH9,0)  100 tal、蒸留水100
m1゜更にエタノール100m1で順次溶出を行う、溶
出速度は20s+4!/時間で行い、溶出液は1百分5
■lづつ分取する0分画した各両分の蛋白質量(280
Mの吸光値)およびCbz−Phe−Tyrに対する加
水分解活性を測定し、カルボキシベブチグーゼ活性を含
む溶出画分11kL38〜160を集め、0.05M 
Tris−HCIIIl衝液(pH7,2)で透析を繰
り返した後にフェニルセファロースCL−4Bクロマト
グラフィ酵素画分とする。
3) Phenyl Sepharose CL-4B chromatography Phenyl Sepharose CL-4B column (1,2X20
(J) was 0.05M Tri containing IMNaCJ in advance.
s-HCj! Equilibration was performed with lil buffer (pH 7,2). 300ml of the previous enzyme solution was IM NaC with the same buffer solution.
1 and then adsorbed onto a column. After that, IM~0.
0.0 under the condition of linear concentration gradient of 05M NaCl
5M Tris-HC1 @ buffer solution (pH 7,2) 70
0 m#, 0.05M to OM NaCl 200 ml of the same buffer, 100 ml of the same buffer without NaCl, 100 tal of 0.05M Tris-HCI buffer (pH 9,0), 100 tal of distilled water
m1゜Further elution is performed sequentially with 100ml of ethanol, elution speed is 20s+4! / hour, and the eluate was 1% 5
■ Amount of protein in both fractions (280
The absorbance value of M) and the hydrolysis activity against Cbz-Phe-Tyr were measured, and the elution fractions 11kL38 to 160 containing carboxybebutigase activity were collected and 0.05M
After repeated dialysis with Tris-HCIII solution (pH 7,2), the enzyme fraction was subjected to phenyl Sepharose CL-4B chromatography.

4)セファデックスG−200ゲルクロマトグラフイ先
の酵素溶液610懺lはコロジオンバックで濃縮した後
に、0.05M Tris−HCIg衝液(pH7,2
)で平衡化し、最終的に3 allまで濃縮を行う、濃
縮試料は、予め同緩衝液で平衡化したセファデックスG
−200カラム(2X70cm)にのせ、同緩衝液で溶
出を行う、溶出速度は5a+j!/時間で行い、溶出液
は1両分2.5+miづつ分取する0分画した各両分の
蛋白質量(280m+の吸光値)およびCbz−Phe
−Tyrに対する加水分解活性を測定し、カルボキシベ
ブチグーゼ活性を含む溶出画分−48〜74を集め、セ
ファデックスG−200クロマトグラフィ酵素画分とす
る。
4) After concentrating 610 liters of the enzyme solution on Sephadex G-200 gel chromatography using a collodion bag, 0.05M Tris-HCIg solution (pH 7.2
) and finally concentrated to 3 all. The concentrated sample was prepared using Sephadex G, which had been equilibrated with the same buffer solution in advance.
-200 column (2x70cm) and elute with the same buffer, elution rate is 5a+j! / hour, and the eluate is fractionated in 2.5+mi portions for each fraction.The amount of protein (absorbance value at 280m+) and Cbz-Phe
The hydrolysis activity against -Tyr is measured, and elution fractions -48 to -74 containing carboxybebutigase activity are collected and used as Sephadex G-200 chromatography enzyme fractions.

5)DEAEセファセルによる再りロマトグラフィ先の
ゲル濾過による精製で得た酵素溶液65nj!を、予め
0.05M Tris−HCI!緩衝液(pn 7.2
 )で平衡化したDEAEセファセルカラム(1,7X
 20cm)に吸着させる。同緩衝液で洗浄してから、
OMtag/時間で行い、溶出液は1画分5 tall
づつ分取ヅする。溶出した各百分の蛋白質!(28Q+
mの吸光値)およびCbz−Phe−Tyrに対する加
水分解活性を測定する。酵素の活性は1回目のDE/l
セファセルによる精製工程でも認められたように今回も
活性の主ピークの前部分で活性が肩のように広がって分
画されたため、カルボキシペプチダーゼ活性を含む溶出
画分を2画分に分けて集め、最初に活性が肩の溶出した
両分魚33〜48をDEAEセファセル再クロマりグラ
フィ酵素画分■とする。それぞれの酵素画分は0.05
M Tris−HCI!緩衝液(pH7,2)で透析を
行う。ここで得られた比活性は酵素画分Iは325.5
U/■、酵素画分■は712.2U/■であった・ 6)ディスク電気泳動ゲル抽出 先のDEAEセファセル再クロマトグラフィで精泳動は
7.5%ポリアクリルアミドゲルを用いてpH8,0で
行ν4、濃縮した酵素画分I、■はカラム1本当り蛋白
質量で220μgづつのせ、1本当り3mAの定電流で
約2時間電気泳動を行う。泳動後、酵素画分1.nの1
本は染色し、他のゲルは2鶴毎にスライスして各々の両
分を1 vgltの0.05MTris −HC121
%衝液(pi(7,2)に浸し、破砕して酵素を抽出す
る。酵素画分I、■の染色したゲルの吸光値550鰭の
デンシトメーターによるパターンと、分画した各画分の
Cbz−Phe−Tyrに対する加水分解活性を測定し
た結果、DEAEセファセル再クロマトグラフィで得た
酵素画分1.IIをディスク電気泳動ゲル抽出で精製し
たカルボキシペプチダーゼ活性のパターンは同じであっ
た。ディスク電気泳動上のカルボキシペプチダーゼ活性
は、相対的移動度約0.35の位置に主な活性ピークを
示し、それより移動度の低い部分全体にも弱い活性が認
められた。以後は、先のDEAEセファセル再クロマト
グラフィによる精製工程で高い比活性の有した酵素画分
■でディスク電気泳動による相対的移動度0.35の主
活性ピークの部分を精製することとし、このカルボキシ
ペプチダーゼ活性画分を集めてディスク電気泳動酵素画
分とした。
5) Enzyme solution 65nj obtained by purification by gel filtration after re-chromatography using DEAE Sephacel! 0.05M Tris-HCI! Buffer (pn 7.2
) equilibrated with a DEAE Sephacel column (1,7X
20cm). After washing with the same buffer,
OMtag/hour, eluate is 1 fraction 5 tall
Take out portions one by one. Each hundred percent protein eluted! (28Q+
The absorbance value of m) and the hydrolysis activity for Cbz-Phe-Tyr are measured. Enzyme activity is the first DE/l
As was observed in the purification process using Sephacel, the activity was fractionated in a shoulder-like manner in front of the main peak of activity, so the eluted fraction containing carboxypeptidase activity was divided into two fractions and collected. Both fractions 33 to 48 from which the activity was eluted first were subjected to DEAE Sephacel rechromatography and designated as enzyme fraction (2). Each enzyme fraction is 0.05
M Tris-HCI! Dialysis is performed with a buffer solution (pH 7,2). The specific activity obtained here is 325.5 for enzyme fraction I.
U/■, the enzyme fraction ■ was 712.2 U/■. 6) DEAE Sephacel re-chromatography for disc electrophoresis gel extraction, semiphoresis was performed at pH 8.0 using a 7.5% polyacrylamide gel. ν4, concentrated enzyme fraction I, and ■ are loaded with a protein amount of 220 μg per column and electrophoresed for about 2 hours at a constant current of 3 mA per column. After electrophoresis, enzyme fraction 1. 1 of n
The book was stained, and the other gels were sliced every second and each half was injected with 1 vglt of 0.05M Tris-HC121.
% buffer solution (pi(7,2)) and crush it to extract the enzyme.The absorbance value of the stained gel of enzyme fraction I, ■ is 550.The densitometer pattern of the fin and As a result of measuring the hydrolysis activity for Cbz-Phe-Tyr, the pattern of carboxypeptidase activity was the same when enzyme fraction 1.II obtained by DEAE Sephacel rechromatography was purified by disk electrophoresis gel extraction.Disc electrophoresis The above carboxypeptidase activity showed a main activity peak at a relative mobility of approximately 0.35, and weak activity was also observed throughout the region with lower mobility. The main activity peak with a relative mobility of 0.35 was purified by disk electrophoresis using the enzyme fraction (2) that had a high specific activity in the chromatography purification process, and the carboxypeptidase active fractions were collected and subjected to disk electrophoresis. This was used as the migrating enzyme fraction.

7)ディスク電気泳動による再ゲル抽出酵素溶液■のデ
ィスク電気泳動による主な活性画分溶液をコロジオンバ
ックで濃縮し、先と同じ方法で再度ディスク電気泳動で
ゲル抽出を行い、Cbz−Phe−Tyrに対する加水
分解活性を含む両分を集めて0.0:M Tris −
HCl緩衝液(pH7,2)で透析を行った後に、精製
酵素溶液とする。
7) Re-gel extraction by disk electrophoresis Concentrate the main active fraction solution by disk electrophoresis of the enzyme solution ■ with a collodion bag, perform gel extraction again by disk electrophoresis in the same manner as above, and extract Cbz-Phe-Tyr. Both fractions containing hydrolytic activity against 0.0:M Tris −
After dialysis with HCl buffer (pH 7,2), a purified enzyme solution is obtained.

以上の精製工程における結果を第5表に要約する。The results of the above purification steps are summarized in Table 5.

精製酵素はCbz−Phe−Tyrを基質として菌体抽
出粗酵素液と比較すると、比活性で412.5倍に精製
され、活性の収率は21.6%であった。
When the purified enzyme was compared with the crude enzyme solution extracted from bacterial cells using Cbz-Phe-Tyr as a substrate, the specific activity was purified 412.5 times, and the yield of activity was 21.6%.

〔発明の効果〕〔Effect of the invention〕

本発明のカルボキシペプチダーゼは最適作用温度が75
〜80℃であり、高温下での熱安定性も優れている。こ
のように高い耐熱性とペプチドのC末端からアミノ酸を
順次遊離する真のカルボキシダーゼ作用を有するので、
本酵素は酵素の構造や機能の研究9分析用試薬1食品工
業への応用など幅広い利用が期待される。
The carboxypeptidase of the present invention has an optimal action temperature of 75
~80°C, and has excellent thermal stability at high temperatures. Because it has high heat resistance and true carboxidase action that sequentially releases amino acids from the C-terminus of peptides,
This enzyme is expected to have a wide range of applications, including research on the structure and function of enzymes, 9 analytical reagents, and 1 food industry applications.

また、本酵素は好熱性細菌を用いて効率よく製造するこ
とができる。
Furthermore, this enzyme can be efficiently produced using thermophilic bacteria.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の酵素および標準蛋白質の溶出位置と分
子量の関係を示すグラフであり、図中のAはキモトリプ
シン(分子量25.000)、Bはオボアルブミン(分
子量43.000) 、 Cは牛血清アルブミン(分子
量67.000) 、  Dはアルドラーゼ(分子11
60.000) 、  Eは本発明の酵素を示す、第2
図はpiと酵素の残存活性の関係を示すグラフであり、
pH5〜6はクエン酸ナトリウム、pH6〜8はリン酸
ナトリウム、pH8〜9はトリス−HCl、pH9〜l
Oはホウ酸ナトリウムの各緩衝液(0,05M)を用い
た。第3図は温度と酵素の相対活性の関係を示すグラフ
、第4図は温度と酵素の残存活性を示すグラフ、第5図
は本発明の酵素のlv値とVmaχ、を示すグラフであ
り、30℃(黒丸)、50℃(四角)。 70℃(白丸)または90℃(三角)でpH8,5にて
30分間インキエベートしたときの結果を示している。 残存活性(%) 第4図 温度(°C) l/S  mM X 10−”
FIG. 1 is a graph showing the relationship between elution position and molecular weight of the enzyme of the present invention and standard protein, in which A is chymotrypsin (molecular weight 25,000), B is ovalbumin (molecular weight 43,000), and C is Bovine serum albumin (molecular weight 67.000), D is aldolase (molecular weight 11
60.000), E represents the enzyme of the present invention, the second
The figure is a graph showing the relationship between pi and residual activity of the enzyme.
Sodium citrate for pH 5-6, sodium phosphate for pH 6-8, Tris-HCl for pH 8-9, pH 9-1
For O, each sodium borate buffer (0.05M) was used. FIG. 3 is a graph showing the relationship between temperature and the relative activity of the enzyme, FIG. 4 is a graph showing the relationship between temperature and the residual activity of the enzyme, and FIG. 5 is a graph showing the lv value and Vmaχ of the enzyme of the present invention. 30°C (black circle), 50°C (square). The results are shown when the ink was incubated at 70°C (white circles) or 90°C (triangles) at pH 8.5 for 30 minutes. Residual activity (%) Figure 4 Temperature (°C) l/S mM X 10-”

Claims (3)

【特許請求の範囲】[Claims] (1)ペプチドのC末端からアミノ酸を順次遊離する作
用を有し、75〜80℃に最適作用温度を示し、かつ高
い熱安定性を有するカルボキシペプチダーゼ。
(1) A carboxypeptidase that has the action of sequentially releasing amino acids from the C-terminus of a peptide, exhibits an optimum operating temperature at 75 to 80°C, and has high thermal stability.
(2)サーマス属に属し、ペプチドのC末端からアミノ
酸を順次遊離する作用を有し、75〜80℃に最適作用
温度を示し、かつ高い熱安定性を有するカルボキシペプ
チダーゼを生産する能力のある高度好熱性細菌を栄養培
地に培養し、培養物中に該カルボキシペプチダーゼを生
成せしめ、これを採取することを特徴とするカルボキシ
ペプチダーゼの製造法。
(2) It belongs to the genus Thermus and has the ability to sequentially release amino acids from the C-terminus of peptides, exhibits an optimal temperature of action between 75 and 80°C, and has the ability to produce carboxypeptidase with high thermostability. 1. A method for producing carboxypeptidase, which comprises culturing thermophilic bacteria in a nutrient medium, producing the carboxypeptidase in the culture, and collecting the carboxypeptidase.
(3)サーマス属に属するカルボキシペプチダーゼ生産
能を有する高度好熱性細菌が、サーマス・アクアティカ
ス YT−1(ATCC 25104)である特許請求
の範囲第1項記載の方法。
(3) The method according to claim 1, wherein the highly thermophilic bacterium having the ability to produce carboxypeptidase belonging to the genus Thermus is Thermus aquaticus YT-1 (ATCC 25104).
JP5127487A 1987-03-06 1987-03-06 Carboxypeptidase and method for producing the same Expired - Lifetime JP2525592B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5127487A JP2525592B2 (en) 1987-03-06 1987-03-06 Carboxypeptidase and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5127487A JP2525592B2 (en) 1987-03-06 1987-03-06 Carboxypeptidase and method for producing the same

Publications (2)

Publication Number Publication Date
JPS63216481A true JPS63216481A (en) 1988-09-08
JP2525592B2 JP2525592B2 (en) 1996-08-21

Family

ID=12882366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5127487A Expired - Lifetime JP2525592B2 (en) 1987-03-06 1987-03-06 Carboxypeptidase and method for producing the same

Country Status (1)

Country Link
JP (1) JP2525592B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994010290A1 (en) * 1992-10-30 1994-05-11 Gomei Kaisha Nakamura Sangyo Thermophilic cellulose-decomposing bacterium and utilization thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994010290A1 (en) * 1992-10-30 1994-05-11 Gomei Kaisha Nakamura Sangyo Thermophilic cellulose-decomposing bacterium and utilization thereof
US5648264A (en) * 1992-10-30 1997-07-15 Gomei Kaisha Nakamura Sangyo Thermocellulolytic bacteria and their uses

Also Published As

Publication number Publication date
JP2525592B2 (en) 1996-08-21

Similar Documents

Publication Publication Date Title
Yang et al. Production and purification of protease from a Bacillus subtilis that can deproteinize crustacean wastes☆
JP2849773B2 (en) Method for producing transglutaminase from Streptomyces
Sternberg Crystalline milk-clotting protease from Mucor miehei and some of its properties
Barnase et al. Production and purification of the extracellular ribonuclease of Bacillus amyloliquefaciens (barnase) and its intracellular inhibitor (barstar)
Fan et al. Purification and Characterization of Endo-α-N-acetyl-galactosaminidase from Alcaligenes sp.
CN111676211B (en) Trypsin mutant with autogenous cutting resistance and high specific activity
JPH04126079A (en) Carboxypeptidase b-like enzyme originated from microorganism
CN114908074B (en) Aqueous solution stable alkaline protease 2709 mutant and preparation method and application thereof
Rattray et al. Purification and characterization of an intracellular esterase from Brevibacterium linens ATCC 9174
JPS63216481A (en) Carboxypeptidase and production thereof
Hofmann [35] Penicillopepsin
JP3819969B2 (en) Recombinant fructosyl amino acid oxidase
Nunokawa et al. Extracellular proteolytic enzymes of psychrophilic bacteria. I. Purification and some properties of enzymes of an obligately psychrophilic red-pigmented bacterium
KOLACZKOWSKA et al. An Aspartic Proteinase from Fusarium moniliforme: Purification and General Properties
JPS6031477B2 (en) D↓-aminoacylase and its production method
JPS5959189A (en) Novel alkali protease
Fayek et al. Some properties of two purified fibrinolytic enzymes from Bacillus subtilis and B. polymyxa
JP3516317B2 (en) New dipeptidase
JP2794371B2 (en) Alkaline protease K-16H
JP2908933B2 (en) Alkaline protease K-16M
JPH0824575B2 (en) Novel aminopeptidase
JP4085486B2 (en) A novel lysine residue-specific enzyme-producing bacterium
Rhodes et al. Purification and characterization of an extracellular acid protease from Neurospora crassa
JPS6156997B2 (en)
JPH09201195A (en) Low-temperature active protease cp70

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term