JPS63216271A - Electrolyte circulation type secondary battery - Google Patents

Electrolyte circulation type secondary battery

Info

Publication number
JPS63216271A
JPS63216271A JP62049474A JP4947487A JPS63216271A JP S63216271 A JPS63216271 A JP S63216271A JP 62049474 A JP62049474 A JP 62049474A JP 4947487 A JP4947487 A JP 4947487A JP S63216271 A JPS63216271 A JP S63216271A
Authority
JP
Japan
Prior art keywords
frame
conductive plate
plate
positive electrode
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62049474A
Other languages
Japanese (ja)
Other versions
JPH0821400B2 (en
Inventor
Masayuki Shimizu
雅之 清水
Norihiro Mori
森 範宏
Kazuto Mizunami
水浪 和人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Sumitomo Electric Industries Ltd
Original Assignee
Kansai Electric Power Co Inc
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Sumitomo Electric Industries Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP62049474A priority Critical patent/JPH0821400B2/en
Publication of JPS63216271A publication Critical patent/JPS63216271A/en
Publication of JPH0821400B2 publication Critical patent/JPH0821400B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To prevent an increase of weight by pinching and supporting a conductive plate with frame bodies. CONSTITUTION:A conductive plate 32 is pinched and supported by the pinching section 34 of a frame body 31 and the pinching section 36 of a frame body 33. The pinching sections 34, 36 and the plate 32 are stuck with an adhesive and reinforce the support by the frame bodies 31, 33 and prevent an electrolyte from leaking from one side to the other side across the plate 32. Through holes 37, 39 are formed at the same positions on the frame bodies 31, 33, and an inflow port 38 communicated to the hole 37 is formed on the frame body 31. A notch 35 is formed at the portion of the plate 32 where the inflow port 38 is located when both frame bodies are overlapped. The electrolyte flowing through the holes 37, 39 passes the inflow port 38 and is guided to the cell interior through the notch 35. Accordingly, even if the thickness of the conductive plate is made thin, it is firmly supported by the frame bodies, and an increase of weight can be prevented.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、電解液を循環して充放電する電解液S環型
2次電池に関するものであり、特に単位セルを直列に接
続した多段接続型の電解液循環型2次電池の双極板の構
造に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to an electrolyte S-ring type secondary battery that circulates an electrolyte to charge and discharge, and particularly relates to a multi-stage connection in which unit cells are connected in series. The present invention relates to the structure of a bipolar plate of a type of electrolyte circulation type secondary battery.

[従来の技術] 電解循環型2次電池としては、たとえばレドックスフロ
ー電池が知られている。この種のレドツクスフ[1−電
池では、流通型電解ヒルを用いており、電極活物質を含
む電解液が、電解液タンクと流通型電解セルとの間を循
環して充放電が行なわれる。電解液としては、たとえば
塩酸が用いられ、電極活物質としては、たとえばFeC
1zおよびCrCQaなどが用いられている。
[Prior Art] As an electrolytic circulation type secondary battery, for example, a redox flow battery is known. This type of redox battery uses a flow-through type electrolytic hill, and charging and discharging is performed by circulating an electrolytic solution containing an electrode active material between an electrolyte tank and a flow-through electrolytic cell. As the electrolyte, for example, hydrochloric acid is used, and as the electrode active material, for example, FeC
1z and CrCQa are used.

レドックスフロー電池は、特に電力貯蔵用2次電池とし
て開発が進められており、その発生電圧を高める必要が
あるため、セルを直列に接続した多段接続型のものが提
唱されている。
Redox flow batteries are being developed particularly as secondary batteries for power storage, and since it is necessary to increase the generated voltage, a multi-stage connection type in which cells are connected in series has been proposed.

第7図に、多段接続型のレドックスフロー電池の概略構
成図を示す。第7図において、単位セルは、隔膜1なら
びに該隔膜1の両側に設けられる電池反応をする正極2
および負極3から構成されている。単位セルは、双極板
4を介して直列に多段接続されている。単位セルは、隔
膜1により正極側と負極側に°分けられている。単位セ
ル内の正極側には、正極液流入路6および正極液流出路
7がそれぞれ接続されており、該正極液流入路6および
該正極液流出路7は正極液タンク5に接続されている。
FIG. 7 shows a schematic configuration diagram of a multi-stage connection type redox flow battery. In FIG. 7, a unit cell includes a diaphragm 1 and positive electrodes 2 provided on both sides of the diaphragm 1 for battery reaction.
and a negative electrode 3. The unit cells are connected in series in multiple stages via bipolar plates 4. The unit cell is divided into a positive electrode side and a negative electrode side by a diaphragm 1. A cathode liquid inflow path 6 and a cathode liquid outflow path 7 are connected to the positive electrode side of the unit cell, respectively, and the cathode liquid inflow path 6 and the cathode liquid outflow path 7 are connected to the cathode liquid tank 5. .

単位セル内の負極側も同様に、負極液流入路9および負
極液流出路10が接続されており、該負極液流入路9お
よび該負極液流出路10は負極液タンク8にそれぞれ接
続されている。
Similarly, on the negative electrode side in the unit cell, a negative electrode liquid inflow path 9 and a negative electrode liquid outflow path 10 are connected, and the negative electrode liquid inflow path 9 and the negative electrode liquid outflow path 10 are respectively connected to the negative electrode liquid tank 8. There is.

充放電動作に際し、正極液は正極液タンク5から正極液
流入路6を通りヒル内の正極側に供給される。供給され
た正極液は、電池反応後止極液流出路7を通り再び正極
液タンク5に戻される。負極液も同様にして、負極液タ
ンク8から負極液流入路9を通り、セル内の負極側に供
給される。供給された負極液は、電池反応後負極液流出
路10を通り再び負極液タンク8内に戻される。多段接
続型レドックス70−電池のセル構造についてさらに説
明するため、第6図を示す。
During charging and discharging operations, the positive electrode liquid is supplied from the positive electrode tank 5 to the positive electrode side within the hill through the positive electrode liquid inflow path 6. After the battery reaction, the supplied positive electrode liquid passes through the stopper liquid outflow path 7 and is returned to the positive electrode liquid tank 5 again. Similarly, the negative electrode liquid is supplied from the negative electrode liquid tank 8 through the negative electrode liquid inlet path 9 to the negative electrode side in the cell. After the battery reaction, the supplied negative electrode liquid passes through the negative electrode liquid outflow path 10 and is returned into the negative electrode liquid tank 8. To further explain the cell structure of the multi-stage connection type redox 70-battery, FIG. 6 is shown.

第6図は、多段接続型のレドックス70−電池のセル構
造を示す分解斜視図である。隔膜1の両側には、電池反
応する正極2および負極3が位置している。該正極2の
まわりには、枠体12が位置し、該正極2を支持してい
る。負極3のまわりにも同様に、枠体13が位置し、該
負極3を支持している。単位セルは、隔膜1、正極2お
よび負極3ならびにその枠体12および13から構成さ
れている。この単位セルを直列に接続させるため、双]
セ板4a、4bを介して積層されている。該双極板4a
、4bは、導電板および導電板を囲む枠体14.11か
ら構成されている。
FIG. 6 is an exploded perspective view showing the cell structure of a multi-stage connection type redox 70-battery. A positive electrode 2 and a negative electrode 3 for battery reaction are located on both sides of the diaphragm 1. A frame 12 is positioned around the positive electrode 2 and supports the positive electrode 2. Similarly, a frame 13 is positioned around the negative electrode 3 and supports the negative electrode 3. The unit cell is composed of a diaphragm 1, a positive electrode 2, a negative electrode 3, and frames 12 and 13 thereof. In order to connect these unit cells in series,
They are laminated with separate plates 4a and 4b interposed therebetween. The bipolar plate 4a
, 4b consists of a conductive plate and a frame 14.11 surrounding the conductive plate.

枠体12には、a通孔6b、7b、9b、10bが形成
されており、枠体13にも同様に、貫通孔6d、7d、
9d、10dが形成されている。
The frame body 12 is formed with through holes 6b, 7b, 9b, and 10b, and the frame body 13 is similarly formed with through holes 6d, 7d, and
9d and 10d are formed.

また、双極板4aの枠体14にも、貫通孔6a。The frame 14 of the bipolar plate 4a also has a through hole 6a.

7a 、9a 、10aが形成されている。それぞれの
貫通孔は、積層された際正極液流入路6.正極液流出路
7.負極液流入路9および負極液流出路10の一部をそ
れぞれ形成する。
7a, 9a, and 10a are formed. When stacked, each through hole serves as a positive electrode liquid inlet channel 6. Positive electrode liquid outflow path7. A part of the negative electrode liquid inflow path 9 and a part of the negative electrode liquid outflow path 10 are respectively formed.

枠体14には、正極液を正tfi 2に供給するため貫
通孔6aに通じた流入口20と、正極液と正極液流出路
7に排出するため貫通孔7aに通じた流出口21が形成
されている。隣接する単位セルの双極板4bの枠体11
にも同様に、負極液の流入口22および流出口23が形
成されている。枠体12と正極2との間には、正8i2
の端縁に沿ってスリット部15.16が形成されている
。枠体13においても同様に、負極3との間に、負極3
の端縁に沿ってスリット部17.18がそれぞれ形成さ
れている。
The frame body 14 is formed with an inlet 20 communicating with the through hole 6a for supplying the positive electrode liquid to the positive TFI 2, and an outlet 21 communicating with the through hole 7a for discharging the positive electrode liquid and the positive electrode liquid outlet passage 7. has been done. Frame 11 of bipolar plate 4b of adjacent unit cell
Similarly, an inlet 22 and an outlet 23 for the negative electrode liquid are formed. Between the frame 12 and the positive electrode 2, there is a positive 8i2
A slit portion 15,16 is formed along the edge of. Similarly, in the frame 13, the negative electrode 3 is connected between the negative electrode 3 and the negative electrode 3.
A slit portion 17,18 is formed along the edge of each of the holes.

以上の単位セルの構造においては、正極側と負極側が同
様に構成されているので、以下正極側におGノる正極液
の流れについてのみ説明する。正極液は、正極液流入路
6の中を通って流れ、該正極液流入路の途中に形成され
る流入口2oがら正極2の設けられたセル内に流入する
。流入した正極液は、スリット部15に沿って横方向に
流れるとともに、流出口21の設けられた側に向がって
正極2上を電池反応しながら流れる。流出口21側の正
極2の端縁に到達した正極液は、スリット部16に沿っ
て集められ、流出口21がら正極液流出路7に排出され
る。
In the above unit cell structure, since the positive electrode side and the negative electrode side are configured in the same way, only the flow of the positive electrode liquid to the positive electrode side will be described below. The positive electrode liquid flows through the positive electrode liquid inflow path 6, and flows into the cell in which the positive electrode 2 is provided through an inlet 2o formed in the middle of the positive electrode liquid inflow path. The inflowing positive electrode liquid flows laterally along the slit portion 15 and also flows toward the side where the outlet 21 is provided while reacting on the positive electrode 2 . The positive electrode liquid that has reached the edge of the positive electrode 2 on the side of the outlet 21 is collected along the slit portion 16 and is discharged from the outlet 21 into the positive electrode outlet path 7 .

[発明が解決しようとする問題点1 以上説明したように、単位セルを多段接続して発生電圧
を高めることは従来から行なわれているが、電力貯蔵用
としては、これどともに単位セル内での充放電量を大き
くする必要もある。したがって、単位セルを大形化すな
わち電極面積を大きくする必要が生じてくる。
[Problem to be Solved by the Invention 1] As explained above, increasing the generated voltage by connecting unit cells in multiple stages has been conventionally done, but for power storage, both of these methods It is also necessary to increase the amount of charge and discharge. Therefore, it becomes necessary to increase the size of the unit cell, that is, to increase the electrode area.

しかしながら、このように大形化しようとすると、双極
板の導電板を大きくしなければならず、グラファイト板
などの導電板は一般に高価であるため、電池全体が高価
格化するという問題を生じる。また、電池全体において
導電板が占める重1Bの割合は比較的大きく、したがっ
て導電板を大形化すると、電池全体の重量が大きくなる
という問題も生じる。
However, increasing the size of the battery requires increasing the size of the bipolar conductive plate, and since conductive plates such as graphite plates are generally expensive, the battery as a whole becomes expensive. In addition, the proportion of the weight 1B occupied by the conductive plate in the entire battery is relatively large, and therefore, when the conductive plate is made larger, a problem arises in that the weight of the entire battery increases.

そこで、導電板の厚みは大ぎくせず、面積のみを大きく
することが必要になる。しかしながら、面積のみを大き
くし厚みを薄いままにすると、新たな問題を生じる。こ
の問題を説明するため、第8図を示す。第8図は、従来
のレドックスフロー電池の双極板の枠体の一部を示す斜
視図である。
Therefore, it is necessary to increase only the area without increasing the thickness of the conductive plate. However, if only the area is increased and the thickness is kept small, a new problem arises. To explain this problem, FIG. 8 is shown. FIG. 8 is a perspective view showing a part of a frame of a bipolar plate of a conventional redox flow battery.

導電板は、この枠体14の内周面14aに接触して支持
されるのであるが、導電板の厚みが大きくならないど寸
れば、導電板と枠体の内周面14aとの間の接着部分の
面積が小さくなり、この接着部分の強度が不足するとい
う問題を生じる。また、導電板の厚みをたとえば約1ミ
リとし、これとともに枠体の厚みも約1ミリにするとす
れば、第8図に図示されているような流入口20の形成
も困難となる。
The conductive plate is supported in contact with the inner peripheral surface 14a of the frame 14, but if the thickness of the conductive plate is not increased, the gap between the conductive plate and the inner peripheral surface 14a of the frame must be reduced. A problem arises in that the area of the bonded portion becomes smaller and the strength of this bonded portion is insufficient. Further, if the conductive plate is made to have a thickness of about 1 mm, and the frame is also made to have a thickness of about 1 mm, it becomes difficult to form the inlet 20 as shown in FIG. 8.

それゆえに、この発明の目的は、このような導電板の大
形化に伴なう従来の問題を解消するためなされたもので
あり、電力貯蔵用として最適な電解液循環型2次電池を
提供することにある。
Therefore, an object of the present invention was to solve the conventional problems associated with the increase in the size of conductive plates, and to provide an electrolyte circulation type secondary battery that is optimal for power storage. It's about doing.

[問題点を解決するための手段および作用]この発明の
電解液循環型2次電池では、l電板が枠体ににり挾まれ
て支持されていることを特徴としている。従来のように
、導電板の外周面と枠体の内周面との間で接着して支持
する場合には、導電板の厚みと枠体の厚みをほぼ同じに
する必要があり、導電板の厚みを薄くするにつれ枠体と
の接触面積が小さくなり、かつ枠体の厚みも小さくなっ
て流出口または流入口の形成が難しくなった。
[Means and effects for solving the problems] The electrolyte circulation type secondary battery of the present invention is characterized in that the electric plate is supported by being sandwiched between the frames. When supporting the conductive plate by adhering it between the outer circumferential surface of the conductive plate and the inner circumferential surface of the frame as in the past, it is necessary to make the thickness of the conductive plate and the frame almost the same. As the thickness of the inlet becomes thinner, the contact area with the frame becomes smaller, and the thickness of the frame also becomes smaller, making it difficult to form an outlet or an inlet.

これに対して、この発明によれば、導電板が枠体により
挾まれて支持されるため、導電板の厚みが薄くなっても
枠体との間の接触面積が小さくなることはない。また、
枠体の厚みも導電板の厚みに合わせて小さくする必要が
ないため、流出口および流入口の形成も困難になること
はない。
On the other hand, according to the present invention, since the conductive plate is supported by the frame, the contact area between the conductive plate and the frame does not become smaller even if the conductive plate becomes thinner. Also,
Since it is not necessary to reduce the thickness of the frame according to the thickness of the conductive plate, it is not difficult to form the outflow port and the inflow port.

[実施例] 第1図は、この発明の一実施例を示す分解斜視図である
。第1図に示す双極板30の枠体31には、導電板32
を嵌めることのできる大きさの枠が形成されており、こ
の枠の周囲には、導電板32を挾持するための挾持部3
4が枠体31の中央に向って延びるように形成されてい
る。また、もう一方の枠体33にも、同様に′S電板3
2を嵌め入れることのできる大きさの枠が形成されてお
り、この枠の周囲からは、枠の中央に向かって延びる挟
持部36が形成されている。
[Embodiment] FIG. 1 is an exploded perspective view showing an embodiment of the present invention. The frame 31 of the bipolar plate 30 shown in FIG.
A frame is formed with a size that allows the conductive plate 32 to be fitted thereinto, and a clamping portion 3 for clamping the conductive plate 32 is formed around the frame.
4 is formed to extend toward the center of the frame body 31. Similarly, the 'S electric plate 3 is also attached to the other frame 33.
2 is formed, and a holding portion 36 is formed from the periphery of this frame to extend toward the center of the frame.

導電板32は、枠体31の挾持部34および枠体33の
挟持部36に挾まれることにより支持される。挟持部3
4.36と導電板32は、接着剤により接着され、枠体
31.33による支持を補強するとともに、導電板32
を境にして一方から他方に電解液が漏れることのないよ
うにされている。
The conductive plate 32 is supported by being held between the holding parts 34 of the frame 31 and the holding parts 36 of the frame 33. Holding part 3
4.36 and the conductive plate 32 are bonded with adhesive, reinforcing the support by the frame 31.33, and the conductive plate 32
The electrolyte is prevented from leaking from one side to the other.

枠体31および枠体33には、同じ位置に貫通孔37,
39が形成されており、枠体31には該貫通孔37に通
じる流入口38が形成されている。
The frame body 31 and the frame body 33 have through holes 37 at the same position.
39 is formed in the frame 31, and an inlet 38 communicating with the through hole 37 is formed in the frame body 31.

また重ね合わされた際、流入口38が位置する導電板3
2の部分には、切欠35が形成されている。
Also, when stacked, the conductive plate 3 where the inlet 38 is located
A notch 35 is formed in the portion 2.

貫通孔37.39を流れる電解液は、流入口38を通り
、切欠35からセル内部(第1図においては導電板32
の図面上側に構成されるセル内部)に導かれる。
The electrolytic solution flowing through the through holes 37 and 39 passes through the inlet 38 and from the notch 35 to the inside of the cell (in FIG. 1, the conductive plate 32
(inside the cell configured at the top of the drawing).

この実施例において、2つの枠体の挟持部はいずれもそ
の厚みを枠体よりも薄クシて、導電板を挟持できるよう
に形成されているが、一方の枠体の挟持部のみを導電板
の厚み分だけ薄くし、他方の枠体の挾持部は枠体ど同じ
厚みに構成して、導電板を挟持させてもよい。
In this embodiment, the clamping parts of the two frames are both thinner in thickness than the frames and are formed so that they can clamp the conductive plate, but only the clamping part of one frame is made thinner than the frame. The holding portion of the other frame may have the same thickness as that of the frame, and the conductive plate may be held therebetween.

この発明に用いられる導電板としては、従来から使用さ
れているグラファイト板や、あるいは樹脂中にカーボン
を練り込んで成形されたいわゆるセミグラシカ−ボン板
なども使用することができる。特に、セミグラシカ−ボ
ン板はグラファイト板に比べ機械的強度が高いので、厚
みを薄クシてその機械的強度が問題となる場合には、有
効に利用され1りる。また、これらのもの以外でも、耐
酸性を有し、かつ電解液を透過させないものであれば、
金属板や導電性プラスチック板などを用いることもでき
る。
As the conductive plate used in the present invention, a conventionally used graphite plate, or a so-called semi-glass carbon plate formed by kneading carbon into resin can be used. In particular, semi-glossic carbon plates have higher mechanical strength than graphite plates, so they can be effectively used when the thickness is reduced and the mechanical strength becomes a problem. In addition to these materials, as long as they have acid resistance and do not allow the electrolyte to pass through,
A metal plate, a conductive plastic plate, etc. can also be used.

この発明に用いられる枠体としては、塩化ビニル樹脂等
を使用することができるが、使用する電解液に応じた耐
酸性や絶縁性を有すればその他の材質も使用可能である
ことは言うまでもない。
As the frame used in this invention, vinyl chloride resin etc. can be used, but it goes without saying that other materials can also be used as long as they have acid resistance and insulation properties suitable for the electrolyte used. .

第2図〜第4図は、この発明の他の実施例を示す正面図
であり、第2図は枠体の一方、第3図は導電板、第4図
は枠体の他方をそれぞれ示している。第2図において、
41は枠体、47a〜47fは貫通孔、48bは流出口
、48d、48fは流入口、44は挟持部を示している
。第3図において、42は導電板、45a〜45fは切
欠を示している。第4図において、43は枠体、46は
挾持部、49a 〜49fは貫通孔、48a 、48C
は流出口、48eは流入口を示している。
Figures 2 to 4 are front views showing other embodiments of the invention, with Figure 2 showing one side of the frame, Figure 3 showing the conductive plate, and Figure 4 showing the other side of the frame. ing. In Figure 2,
41 is a frame body, 47a to 47f are through holes, 48b is an outlet, 48d and 48f are inlets, and 44 is a clamping portion. In FIG. 3, 42 indicates a conductive plate, and 45a to 45f indicate notches. In FIG. 4, 43 is a frame body, 46 is a holding part, 49a to 49f are through holes, 48a, 48C
48e indicates an outflow port, and 48e indicates an inflow port.

この実施例の双極板は、第2図に示す枠体41を、第3
図に示す導電板42の下に、第4図に示す枠体43を第
3図に示す導電板42の上に配置し、導電板42を枠体
41.43で挾持することにより構成される。第2図に
おいて、一点鎖線で示す部分は重ね合わせた際の導電板
の外周の位置を示している。同様に、第4図においても
、一点鎖線は重ね合わせた際の導電板の外周の位置を示
している。
In the bipolar plate of this embodiment, the frame 41 shown in FIG.
The frame body 43 shown in FIG. 4 is placed on the conductive plate 42 shown in FIG. 3 below the conductive plate 42 shown in the figure, and the conductive plate 42 is held between the frames 41 and 43. . In FIG. 2, the portion indicated by a chain line indicates the position of the outer periphery of the conductive plates when they are overlapped. Similarly, in FIG. 4, the dashed-dotted line indicates the position of the outer periphery of the conductive plates when they are overlapped.

貫通孔47e、49eを流れる電解液は、流入口48C
を通り、第3図に丞す導電板42の図面手前側に構成さ
れるセル内に流入し、流出口48a、48cから、貫通
孔49a 、49Cを通り流出される。また貫通孔47
d 、49dおよび貫通孔471,49fを通る電解液
は、流入口48d。
The electrolytic solution flowing through the through holes 47e and 49e flows through the inlet 48C.
It flows into the cell formed on the front side of the conductive plate 42 shown in FIG. 3, and flows out from the outlet ports 48a and 48c and through the through holes 49a and 49C. Also, the through hole 47
The electrolytic solution passes through the inlet 48d and the through holes 471 and 49f.

48fを通り、第3図に示す導電板42の図面奥側に構
成されるセル内に流入し、流出口48bから、貫通孔4
7bを通り流出される。
48f, flows into the cell configured on the back side of the conductive plate 42 shown in FIG.
It flows out through 7b.

第2図〜第4図に示した実施例では、流出口および流入
口がそれぞれ3箇所形成されているが、この発明はこの
ような数に限定されるものでないことは言うまでもない
In the embodiment shown in FIGS. 2 to 4, three outflow ports and three inflow ports are formed, but it goes without saying that the present invention is not limited to such a number.

以上の実施例では、導電板を別個に成形された枠体で挾
むことによる挾持しているが、この発明では、たとえば
枠体形状を有した型に1fff板を置き、ここに液状樹
脂等を注入して、注型法により枠体を成形させると同時
に導電板をこの成形された枠体で挾持させてもよい。
In the above embodiments, the conductive plate is held between separately molded frames, but in the present invention, for example, a 1fff plate is placed in a mold having a frame shape, and liquid resin etc. may be injected and molded into a frame by a casting method, and at the same time the conductive plate may be held between the molded frame.

第5図は、この発明のさらに他の実施例を示寸斜視図で
あり、双極板の枠体内に電極を収納した状態を示し、で
いる。第5図において、隔膜1の両側に配置された双極
板50,60には、それぞれ図示されない導電板が枠体
51.53および枠体61.63により挾持されており
、導電板の上には正極2およびその裏側で図示されない
負極が配置している。これらの正極および負極は、枠体
の挟持部の厚みによって形成される枠内の凹部に収納さ
れている。したがって、このような構造にすることによ
り、電極を支持する枠体が不要となるため、簡易な構造
とすることができ、また低価格化も図ることができる。
FIG. 5 is a dimensional perspective view of still another embodiment of the present invention, showing a state in which the electrodes are housed within the frame of the bipolar plate. In FIG. 5, conductive plates (not shown) are held between bipolar plates 50 and 60 placed on both sides of the diaphragm 1 by frames 51.53 and 61.63, respectively. A positive electrode 2 and a negative electrode (not shown) are arranged on the back side thereof. These positive and negative electrodes are housed in a recess within the frame formed by the thickness of the clamping portion of the frame. Therefore, by adopting such a structure, a frame for supporting the electrode is not required, so that the structure can be simplified and the cost can be reduced.

[発明の効果〕 以上説明したように、この発明によれば、従来電極の大
形化に伴なう問題とされている電池の重量増加や高価格
化を解消することができる。したがって、この発明は、
電力貯蔵用2次電池として有効に利用され得るものであ
る。
[Effects of the Invention] As described above, according to the present invention, it is possible to solve the problems of the increase in weight and the increase in price of batteries, which have conventionally been caused by the increase in the size of electrodes. Therefore, this invention
It can be effectively used as a secondary battery for power storage.

なお、実施例では、電解液循環型2次電池としてレドッ
クス70−電池を例示して説明したが、この発明はこの
ようなレドックス70−電池に限定されるものではなく
、電解液が循環して充放電するタイプの2次電池であれ
ばどのようなものにも応用され得るものである。
In the examples, a Redox 70-battery was explained as an example of an electrolyte circulation type secondary battery, but the present invention is not limited to such a Redox 70-battery. It can be applied to any type of secondary battery that can be charged and discharged.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の一実施例を示す分解斜視図である
。第2図は、この発明の他の実施例の枠体の一方を示す
正面図である。第3図は、同じくこの発明の他の実施例
の導電板を示す正面図である。第4図は、同じくこの発
明の他の実施例の枠体の他方を示す正面図である。第5
図は、この発明のさらに他の実施例の双極板の枠体内に
電極を収納した状態を示す斜視図である。第6図は、従
来のレドックスフロー電池の単位セル構造を示す分解斜
視図である。第7図は、従来のレドックス70−電池を
示す概略構成図である。第8図は、従来のレドックス7
0−電池の双極板の枠体を示す斜視図である。 図において、30.50.60は双極板、31゜33.
41.43.51.53.61.63は枠体、32.4
2は導電板、34.36.44.46は枠体の挟持部を
示す。
FIG. 1 is an exploded perspective view showing an embodiment of the present invention. FIG. 2 is a front view showing one side of the frame of another embodiment of the invention. FIG. 3 is a front view showing a conductive plate according to another embodiment of the present invention. FIG. 4 is a front view showing the other side of the frame of another embodiment of the invention. Fifth
The figure is a perspective view showing a state in which electrodes are housed within the frame of a bipolar plate according to still another embodiment of the present invention. FIG. 6 is an exploded perspective view showing the unit cell structure of a conventional redox flow battery. FIG. 7 is a schematic diagram showing a conventional redox 70-battery. Figure 8 shows the conventional redox 7
FIG. 2 is a perspective view showing the frame of the bipolar plate of the 0-battery. In the figure, 30.50.60 are bipolar plates, 31°33.
41.43.51.53.61.63 is the frame, 32.4
Reference numeral 2 indicates a conductive plate, and reference numerals 34, 36, 44, and 46 indicate a clamping portion of the frame.

Claims (1)

【特許請求の範囲】[Claims] (1)電池反応する電極を隔膜の両側に配置して単位セ
ルを構成し、導電板を枠体で支持してなる双極板を介し
て前記単位セルを積層した電解液循環型2次電池におい
て、 前記導電板が枠体により挾まれて支持されていることを
特徴とする、電解液循環型2次電池。
(1) In an electrolyte circulation type secondary battery in which a unit cell is constructed by arranging reacting electrodes on both sides of a diaphragm, and the unit cells are stacked via a bipolar plate formed by supporting a conductive plate with a frame. . An electrolyte circulation type secondary battery, characterized in that the conductive plate is sandwiched and supported by a frame.
JP62049474A 1987-03-04 1987-03-04 Electrolyte circulation type secondary battery Expired - Lifetime JPH0821400B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62049474A JPH0821400B2 (en) 1987-03-04 1987-03-04 Electrolyte circulation type secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62049474A JPH0821400B2 (en) 1987-03-04 1987-03-04 Electrolyte circulation type secondary battery

Publications (2)

Publication Number Publication Date
JPS63216271A true JPS63216271A (en) 1988-09-08
JPH0821400B2 JPH0821400B2 (en) 1996-03-04

Family

ID=12832148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62049474A Expired - Lifetime JPH0821400B2 (en) 1987-03-04 1987-03-04 Electrolyte circulation type secondary battery

Country Status (1)

Country Link
JP (1) JPH0821400B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002101864A1 (en) * 2001-06-12 2002-12-19 Sumitomo Electric Industries, Ltd. Cell frame for redox flow cell and redox flow cell
WO2002101862A1 (en) * 2001-06-12 2002-12-19 Sumitomo Electric Industries, Ltd. Cell frame for redox-flow cell and redox-flow cell
JP2015520484A (en) * 2012-05-10 2015-07-16 イマジー パワー システムズ,インコーポレーテッド Vanadium flow battery
JP2015215948A (en) * 2014-05-07 2015-12-03 旭化成イーマテリアルズ株式会社 Cell laminate and storage battery
JPWO2016072191A1 (en) * 2014-11-06 2017-08-17 住友電気工業株式会社 Battery cell and redox flow battery
WO2019167143A1 (en) * 2018-02-27 2019-09-06 住友電気工業株式会社 Frame body, cell frame, cell stack, and redox flow battery

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0903682D0 (en) 2009-03-04 2009-04-15 Dyson Technology Ltd A fan
GB2476171B (en) 2009-03-04 2011-09-07 Dyson Technology Ltd Tilting fan stand
GB2468312A (en) 2009-03-04 2010-09-08 Dyson Technology Ltd Fan assembly
GB0919473D0 (en) 2009-11-06 2009-12-23 Dyson Technology Ltd A fan
GB2478927B (en) 2010-03-23 2016-09-14 Dyson Technology Ltd Portable fan with filter unit
HUE034461T2 (en) 2010-05-27 2018-02-28 Dyson Technology Ltd Device for blowing air by means of narrow slit nozzle assembly
GB2482547A (en) 2010-08-06 2012-02-08 Dyson Technology Ltd A fan assembly with a heater
GB2483448B (en) 2010-09-07 2015-12-02 Dyson Technology Ltd A fan
GB2484670B (en) 2010-10-18 2018-04-25 Dyson Technology Ltd A fan assembly
EP2630373B1 (en) 2010-10-18 2016-12-28 Dyson Technology Limited A fan assembly
GB2493506B (en) 2011-07-27 2013-09-11 Dyson Technology Ltd A fan assembly
CA2842869C (en) 2011-07-27 2019-01-15 Dyson Technology Limited A fan assembly
GB2498547B (en) 2012-01-19 2015-02-18 Dyson Technology Ltd A fan
GB2499042A (en) 2012-02-06 2013-08-07 Dyson Technology Ltd A nozzle for a fan assembly
GB2499041A (en) 2012-02-06 2013-08-07 Dyson Technology Ltd Bladeless fan including an ionizer
GB2499044B (en) 2012-02-06 2014-03-19 Dyson Technology Ltd A fan
GB2500010B (en) 2012-03-06 2016-08-24 Dyson Technology Ltd A humidifying apparatus
GB2502103B (en) 2012-05-16 2015-09-23 Dyson Technology Ltd A fan
GB2502104B (en) 2012-05-16 2016-01-27 Dyson Technology Ltd A fan
AU350140S (en) 2013-01-18 2013-08-13 Dyson Technology Ltd Humidifier or fan
AU350179S (en) 2013-01-18 2013-08-15 Dyson Technology Ltd Humidifier or fan
BR302013003358S1 (en) 2013-01-18 2014-11-25 Dyson Technology Ltd CONFIGURATION APPLIED ON HUMIDIFIER
AU350181S (en) 2013-01-18 2013-08-15 Dyson Technology Ltd Humidifier or fan
CA152658S (en) 2013-03-07 2014-05-20 Dyson Technology Ltd Fan
CA152657S (en) 2013-03-07 2014-05-20 Dyson Technology Ltd Fan
CA152656S (en) 2013-03-07 2014-05-20 Dyson Technology Ltd Fan
CA152655S (en) 2013-03-07 2014-05-20 Dyson Technology Ltd Fan
USD729372S1 (en) 2013-03-07 2015-05-12 Dyson Technology Limited Fan
BR302013004394S1 (en) 2013-03-07 2014-12-02 Dyson Technology Ltd CONFIGURATION APPLIED TO FAN
CA154722S (en) 2013-08-01 2015-02-16 Dyson Technology Ltd Fan
TWD172707S (en) 2013-08-01 2015-12-21 戴森科技有限公司 A fan
CA154723S (en) 2013-08-01 2015-02-16 Dyson Technology Ltd Fan
GB2518638B (en) 2013-09-26 2016-10-12 Dyson Technology Ltd Humidifying apparatus
GB2528709B (en) 2014-07-29 2017-02-08 Dyson Technology Ltd Humidifying apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6288278A (en) * 1985-10-15 1987-04-22 Sumitomo Electric Ind Ltd Electrolyte circulation type secondary cell
JPS62229660A (en) * 1986-03-29 1987-10-08 Mitsubishi Plastics Ind Ltd Manufacture of electrode plate for cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6288278A (en) * 1985-10-15 1987-04-22 Sumitomo Electric Ind Ltd Electrolyte circulation type secondary cell
JPS62229660A (en) * 1986-03-29 1987-10-08 Mitsubishi Plastics Ind Ltd Manufacture of electrode plate for cell

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002101864A1 (en) * 2001-06-12 2002-12-19 Sumitomo Electric Industries, Ltd. Cell frame for redox flow cell and redox flow cell
WO2002101862A1 (en) * 2001-06-12 2002-12-19 Sumitomo Electric Industries, Ltd. Cell frame for redox-flow cell and redox-flow cell
US7670719B2 (en) 2001-06-12 2010-03-02 Sumitomo Electric Industries, Ltd. Cell stack for redox flow battery, and redox flow battery
JP2015520484A (en) * 2012-05-10 2015-07-16 イマジー パワー システムズ,インコーポレーテッド Vanadium flow battery
JP2015215948A (en) * 2014-05-07 2015-12-03 旭化成イーマテリアルズ株式会社 Cell laminate and storage battery
JPWO2016072191A1 (en) * 2014-11-06 2017-08-17 住友電気工業株式会社 Battery cell and redox flow battery
WO2019167143A1 (en) * 2018-02-27 2019-09-06 住友電気工業株式会社 Frame body, cell frame, cell stack, and redox flow battery

Also Published As

Publication number Publication date
JPH0821400B2 (en) 1996-03-04

Similar Documents

Publication Publication Date Title
JPS63216271A (en) Electrolyte circulation type secondary battery
CN106575785B (en) Battery battery core and redox flow batteries
JP2003031237A (en) Membrane and electrode structure and cell of fuel cell
JP2001155758A (en) Cell stack redox flow secondary cell
JP2002246061A (en) Cell frame structure for redox flow secondary cell, and manufacturing method therefor
JP2017016788A (en) Redox flow battery cell, redox flow battery cell stack, and redox flow battery
CN209389139U (en) A kind of redox flow batteries integration end deckle board
JP2842600B2 (en) Cell stack for electrolyte circulating type secondary battery and cell stack mounting member
JPS60262368A (en) Galvanic cell
JPS6158159A (en) Secondary battery
JPS6223027Y2 (en)
JPS6288278A (en) Electrolyte circulation type secondary cell
JPS6290876A (en) Structure of cell for electrolyte circulation type secondary battery
JPH01143161A (en) Electrolyte circulation type battery
CN220672649U (en) Lithium battery collet and lithium battery
JPH0537425Y2 (en)
JPS6151636B2 (en)
JPH0629893Y2 (en) Secondary battery separator
JPH0339207A (en) Molding device of plastic electrode
JPH04181662A (en) Metal-bromine battery
JPH0334843Y2 (en)
JPS63314774A (en) Sealed lead accumulator
JPH0648760Y2 (en) Electrode circulation type laminated battery electrode plate
JP2853296B2 (en) Bipolar electrode plate for stacked batteries
JPH05166550A (en) Electrolyte circulation type layered secondary battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term