JPS63216180A - Image pickup device - Google Patents

Image pickup device

Info

Publication number
JPS63216180A
JPS63216180A JP62049680A JP4968087A JPS63216180A JP S63216180 A JPS63216180 A JP S63216180A JP 62049680 A JP62049680 A JP 62049680A JP 4968087 A JP4968087 A JP 4968087A JP S63216180 A JPS63216180 A JP S63216180A
Authority
JP
Japan
Prior art keywords
optical sensor
imaging
imaging lens
scanning
image pickup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62049680A
Other languages
Japanese (ja)
Inventor
Kazuo Takashima
和夫 高嶋
Keiichi Yamaguchi
圭一 山口
Katsuya Ueki
勝也 植木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62049680A priority Critical patent/JPS63216180A/en
Publication of JPS63216180A publication Critical patent/JPS63216180A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To attain high resolution and high-speed image pickup by rotating a linear light sensor around the optical axis of an image pickup lens to obtain a 2-dimensional visual field. CONSTITUTION:A detection head 10 formed by incorporating a linear optical sensor 3b and an image pickup lens 2 is rotated by psi-degrees for N times by a scanning circuit 5 and a moving device 4 at each end of electric scanning of the linear light sensor 3b. The operation is repeated till the relation of psi.N=180 deg. exists to pick up the circular 2-dimensional visual field 1 on an object face and the output of the light sensor 3b obtained by the turning scanning is inputted to a processing section 8, where it is processed. Thus, the 2-dimensional visual field is obtained without being affected by its image pick up range and the image pickup device with high resolution and high speed is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は撮像装置、と(に物体を撮像して得られた映
像信号を処理することにより、物体の形状や特徴等を認
識する装置に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an imaging device and a device for recognizing the shape and characteristics of an object by processing a video signal obtained by imaging the object. It is something.

〔従来の技術〕[Conventional technology]

第3図軸)(b)(c)は各々例えば市子通゛信学会誌
(Voll。
(Axes in Figure 3) (b) and (c) are, for example, Ichiko Communication Society Journal (Vol.

64、 NO,4)に示された従来の撮像装置の撮像系
を示す構成図である。図において、(1)は対象物体の
撮像範囲を示す視野、(21は視舒内の像を撮像する撮
像レンズ、(3a)(3b)(3c)は各々撮像レンズ
(21の結像面に置かれる光センサ、矢印(7)、(イ
)は撮像レンズ(2)の移動(回転)方向を示す。また
第4図は従来装置の信号処理系を示すブロック図であり
、(4)は撮像レンズ(2)を移動させる移動機溝、(
5)は光センサ(3)および移動機構(4)の駆動信号
および処理部(8)へ同期信号を送出する走査回路、(
6)は走査に応じて光センサ(3)の出力を記憶する画
像メモリ回路、(7)は従来技術よりなる信号処理回路
であり、上記画像メモリ回路(6)及び信号処理回路(
7)で処理部(8)を構成する。
64, No. 4) is a configuration diagram showing an imaging system of the conventional imaging device shown in No. 64, No. 4). In the figure, (1) indicates the field of view that indicates the imaging range of the target object, (21 indicates the imaging lens that captures the image within the field of view, and (3a), (3b, and 3c) indicate the imaging plane of the imaging lens (21). The optical sensor placed, arrows (7) and (a) indicate the movement (rotation) direction of the imaging lens (2). Fig. 4 is a block diagram showing the signal processing system of the conventional device, and (4) A moving groove for moving the imaging lens (2), (
5) is a scanning circuit that sends a drive signal for the optical sensor (3) and the moving mechanism (4) and a synchronization signal to the processing unit (8);
6) is an image memory circuit that stores the output of the optical sensor (3) in accordance with scanning, and (7) is a signal processing circuit made of conventional technology.
7) constitutes a processing section (8).

次に動作について説明する。第3図(a)は光センサ(
3a)として単一受光面の物を用いて二次元的対象物体
を撮像する方式を示したもので、撮像レンズ(2)を矢
印(力で示す方向に回転移動させることにより視野上で
X方向に相当する走査が行なえ、同様にして矢印(イ)
方向の回転移動から視野上でy方向の走査が行なえる。
Next, the operation will be explained. Figure 3(a) shows the optical sensor (
3a) shows a method of imaging a two-dimensional target object using an object with a single light-receiving surface. A scan corresponding to can be performed, and in the same way, the arrow (a)
Scanning in the y direction can be performed on the field of view by rotational movement in the direction.

例えばX方向の走査を完了する毎に、y方向に一定量移
動させていけば必要な二次元視野(1)が得られる。
For example, the necessary two-dimensional field of view (1) can be obtained by moving a certain amount in the y direction every time a scan in the x direction is completed.

また第3図(b)は光センサ(3b)として複数個の受
光素子を直線状に配列した一次元光センサを用いて二次
元視野を得る方式を示したものである。この場合、一方
向(同図ではy方向)については光センサ(3b)を電
気的に走査することで良く、撮像レンズ(2)を矢印(
7)方向に回転移動させれば二次元視野(1)が得られ
る。
Further, FIG. 3(b) shows a method for obtaining a two-dimensional field of view using a one-dimensional optical sensor in which a plurality of light receiving elements are arranged in a straight line as an optical sensor (3b). In this case, it is sufficient to electrically scan the optical sensor (3b) in one direction (the y direction in the figure), and move the imaging lens (2) along the arrow (
A two-dimensional field of view (1) can be obtained by rotationally moving in the direction 7).

第3図(C)の方法は、光センサ(3c)として複数個
の光センサを二次元的に配列した二次元光センサを用い
たものである。この方式は光センサのゴス的走査のみで
光センサ(3c)の形状に応じた二次元視野(1)が得
られる。
The method shown in FIG. 3(C) uses a two-dimensional optical sensor in which a plurality of optical sensors are two-dimensionally arranged as the optical sensor (3c). In this method, a two-dimensional field of view (1) corresponding to the shape of the optical sensor (3c) can be obtained only by Gossian scanning of the optical sensor.

以上の各方式において撮像レンズ(2)は、第4図に示
す移動機構(4)によって駆動され、移動機@ (4)
の制御に必要な走査信号は走査回路(5)によって発生
する。また、走査回路(5)は電気走査が必要な光セン
サ(3b) 、 (3c)に走査信号を供給し、処理部
(8)にも同期信号を出力する。処理部(8)は撮像し
て得られた信号を目的に合わして処理し出力する。例え
ば図示するように走査回路(5)からの同期信号を用い
て光センサ(3)の出力を記憶する画像メモリ回路(6
)などから構成され、目的とする対象物体の形状や特徴
の認識を実行する。
In each of the above systems, the imaging lens (2) is driven by a moving mechanism (4) shown in FIG.
A scanning circuit (5) generates a scanning signal necessary for controlling the scanning circuit (5). Further, the scanning circuit (5) supplies scanning signals to the optical sensors (3b) and (3c) that require electrical scanning, and also outputs a synchronization signal to the processing section (8). The processing unit (8) processes the signals obtained by imaging according to the purpose and outputs the processed signals. For example, as shown in the figure, an image memory circuit (6) stores the output of the optical sensor (3) using a synchronization signal from a scanning circuit (5).
), etc., and performs recognition of the shape and characteristics of the target object.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の撮像装置は以上のように構成されているので、高
速かつ高分解能で物体を撮像したい用途に対して、単一
受光面の光センサ(3a)を用いる方式では二次元的(
二軸)移動機構が複雑になり走査時間も遅く高価になる
。また、二次元光センサ(3c)を用いる方式では分解
能がセンサ数で決定され、現状の光センサ型造技術にお
いては1000X 1000  程度しか実現していな
い。−次元光センサ(3b)を用いる方式は上記2方式
の中間的性質を有し、−次元光センサ(3b)は現有技
術において4000  素子程度のものが容易に得らす
る上、移動機構(4)も−次元(−軸)分だけで良く、
走査時間も高速化が可能なため、従来の撮像装置の中で
は最も有望な方式といえる。しかしながらこの方式では
対象物体と撮像装置までの距離が長くなるにつれて移動
機構(4)の走査精度を向上させる必要があり、装置が
複雑化、高価格化する等の問題点があった。
Conventional imaging devices are configured as described above, so for applications where it is desired to image an object at high speed and high resolution, a system using a single light receiving surface optical sensor (3a) is not suitable for two-dimensional (
(two-axis) movement mechanism is complicated, scanning time is slow and expensive. Furthermore, in a method using a two-dimensional optical sensor (3c), the resolution is determined by the number of sensors, and the current optical sensor molding technology can only achieve a resolution of about 1000×1000. The method using the -dimensional optical sensor (3b) has intermediate properties between the above two methods, and the -dimensional optical sensor (3b) can easily obtain about 4000 elements with the existing technology, and the moving mechanism (4 ) also needs only the − dimension (− axis),
It can be said to be the most promising method among conventional imaging devices because it can also speed up the scanning time. However, in this method, it is necessary to improve the scanning accuracy of the moving mechanism (4) as the distance between the target object and the imaging device becomes longer, and there are problems such as the device becomes complicated and expensive.

即ち、第5図に示すように対象視野(11上での分解能
lは移動機構(4)により回転させられる撮像レンズ(
2)の回転角θと、対象視野(1)と撮像レンズ(21
までの距離りにより決まり。
That is, as shown in FIG. 5, the resolution l on the target visual field (11) is determined by the imaging lens (
The rotation angle θ of 2), the target field of view (1), and the imaging lens (21
Determined by distance.

1=L−tanθ      ・(1)として得られる
It is obtained as 1=L-tanθ·(1).

従って、高分解能や撮像距離を長くすることが要求され
るとθの値が小さくなり、移動機構(4)の構造が複雑
になり、その分装置のコストが上る等の問題が発生する
Therefore, when high resolution and long imaging distance are required, the value of θ becomes small, the structure of the moving mechanism (4) becomes complicated, and the cost of the device increases accordingly.

この発明は上記のような問題点を解消するためになされ
たもので、撮像距離に影響されずに二次元視野が得られ
、高分解能で安価な撮像装置を提供することを目的とす
る。
This invention was made to solve the above-mentioned problems, and it is an object of the present invention to provide a high-resolution, inexpensive imaging device that can obtain a two-dimensional field of view without being affected by the imaging distance.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る撮像装置は、対象を撮像する撮像レンズ
、複数個の受光素子が上記撮像レンズの結像面に直線状
に配置された一次元光センサ、上記光センサを上記撮像
レンズの光軸のまわりに回転させる移動機構、上記光セ
ンサ及び上記移動機構を駆動する走査回路、並びに上記
光センサの出力及び上記走査回路の信号を処理し、上記
対象を認識する信号を作成する処理部を備えるものであ
る。
An imaging device according to the present invention includes an imaging lens that images an object, a one-dimensional optical sensor in which a plurality of light receiving elements are arranged linearly on an imaging plane of the imaging lens, and an optical axis of the imaging lens. A moving mechanism that rotates around the optical sensor, a scanning circuit that drives the optical sensor and the moving mechanism, and a processing unit that processes the output of the optical sensor and the signal of the scanning circuit to create a signal that recognizes the target. It is something.

〔作用〕[Effect]

この発明における撮像装置では、−次元光センサを撮像
レンズの光軸のまわりに回転走査されるので、分解%l
はJ=r−tanψ(但し、rは円形の対象視野の半径
、ψは回転角)で決まり、撮像距離りが含まれない。
In the imaging device according to the present invention, since the -dimensional optical sensor is rotated and scanned around the optical axis of the imaging lens, the resolution %l
is determined by J=r−tanψ (where r is the radius of the circular object visual field and ψ is the rotation angle), and does not include the imaging distance.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図はこの発明の一実施例による撮像装置を示す構成
図であり、図において、(4)は撮像レンズ(2)と−
次元光センサ(3b)を一体化した検出ヘッド00を、
撮像レンズ(21の光軸(至)を中心として矢印(ロ)
の方向に回転させる移動機構、(9)は回転走査により
得られた極座標信号を直交座標信号に変換する変換回路
である。
FIG. 1 is a configuration diagram showing an imaging device according to an embodiment of the present invention. In the figure, (4) indicates an imaging lens (2) and -
The detection head 00 integrated with the dimensional optical sensor (3b) is
Imaging lens (arrow (b) centered on the optical axis (to) of 21)
(9) is a conversion circuit that converts a polar coordinate signal obtained by rotational scanning into a rectangular coordinate signal.

次にこの発明の一実施例による撮像装置の動作を説明す
る。
Next, the operation of the imaging device according to an embodiment of the present invention will be described.

一次元光センサ(3b)と撮像レンズ(2)を一体化し
た検出ヘッドα0は走査図1i! (5)と移動機構(
4)により、−次元光センサ(3b)の電気的走査が終
了する毎にψ度だけN回回転させられ、 ψ・N=180  (度)  ・・・(2)になるまで
上記動作を繰り返えす。これにより、対象面上で円形の
二次元視野(1)が撮像できる。
The detection head α0 that integrates the one-dimensional optical sensor (3b) and the imaging lens (2) is shown in the scanning diagram 1i! (5) and the moving mechanism (
4), each time the -dimensional optical sensor (3b) completes electrical scanning, it is rotated by ψ degrees N times, and the above operation is repeated until ψ・N=180 (degrees)...(2). I'll give it back. Thereby, a circular two-dimensional field of view (1) can be imaged on the object plane.

この時の、移動機構(4)により決まるψ方向の分解能
lは、円形視野の周端側が最も悪くなり、1 = r 
−tan (p       −(31となる。
At this time, the resolution l in the ψ direction determined by the moving mechanism (4) is worst at the peripheral edge of the circular field of view, and 1 = r
-tan (p -(31).

ここでrは円形の対象視野(1)の半径、ψは回転角で
ある。こむから分かるように、上記分解能には撮像距M
Lが含まれていない。つまり撮像距離りの影響を考えず
に移動機構(4)を駆動できるのである。
Here, r is the radius of the circular object visual field (1), and ψ is the rotation angle. As can be seen from the above, the above resolution requires the imaging distance M.
L is not included. In other words, the moving mechanism (4) can be driven without considering the influence of the imaging distance.

以上の回転走査により得られた光センサ(3b)の出力
は、従来装置と同様の処理部(8)に入力され処理され
る。但しこの場合、出力はψ度毎に得られる極座標信号
になるので、場合によっては、これを従来装置同様X−
Yの直交座標信号に変換する変換回路(9)を用いる。
The output of the optical sensor (3b) obtained by the above-described rotational scanning is input to and processed by the processing section (8) similar to that of the conventional device. However, in this case, the output is a polar coordinate signal obtained every ψ degree, so in some cases, this may be converted to
A conversion circuit (9) for converting into a Y orthogonal coordinate signal is used.

また、上記説明では撮像レンズ(2)の光軸−と光セン
サ(3b)の受光面中心を合致させたものを示したが、
これは第2図(a) (b)に示すように両者の関係を
変えて構成することも可能である。第2図に示す場合で
は、 ψ・N=360  (度)  ・・・(4)となるまで
回転走査を行うことにより、第2図(a)に示すような
円形の、また第2図(b)に示すようなドーナツ形の二
次元視野(1)が得られる。
Also, in the above explanation, the optical axis of the imaging lens (2) and the center of the light receiving surface of the optical sensor (3b) are aligned, but
This can also be configured by changing the relationship between the two, as shown in FIGS. 2(a) and 2(b). In the case shown in Fig. 2, by performing rotational scanning until ψ・N=360 (degrees) (4), a circular shape as shown in Fig. 2(a), or a circular shape as shown in Fig. 2(a) is obtained. A donut-shaped two-dimensional field of view (1) as shown in b) is obtained.

なお、上記実施例では撮像レンズ(2)と光センサ(3
b)を一体化して同時に回転ζせるようにしたが、これ
は光センサ(3b)のみを回転させても同様の効果を得
る。また、上記実施例では移動機構(4)について具体
例を示さなかったが、これは従来技術で容易に実現でき
、回転方向については常に一定方向とするか、−視野を
撮像する毎に反転させるようにしても良い。
Note that in the above embodiment, the imaging lens (2) and the optical sensor (3)
b) are integrated so that they can be rotated at the same time, but the same effect can be obtained even if only the optical sensor (3b) is rotated. Further, although no specific example was given regarding the moving mechanism (4) in the above embodiment, this can be easily realized using conventional technology, and the rotation direction may be always fixed or reversed each time the field of view is imaged. You can do it like this.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば一次元光センサを撮像
レンズの光軸のまわりに回転させて二次元視野を得るよ
うにしたので、撮像対象までの撮像距離に影響されずに
撮像でき、高分解能で長距離撮像が可能となる効果があ
る。また装置も高速撮像可能で、安価なものが得られる
効果がある。
As described above, according to the present invention, since the one-dimensional optical sensor is rotated around the optical axis of the imaging lens to obtain a two-dimensional field of view, images can be captured without being affected by the imaging distance to the imaging target. This has the effect of enabling long-distance imaging with high resolution. Furthermore, the device is capable of high-speed imaging and has the advantage of being inexpensive.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による撮像装置を示す構成
図、第2図(a)(υは各々この発明の他の実施例によ
る撮像装置の撮像系を示す構成図、第3図(a) (b
) (c)は各々従来の号機装置の撮像系を示す構成図
、第4図は従来の撮像装置の信号処理系を示すブロック
図、および第5図は従来の撮像装置の分解能を説明する
説明図である。 (1)・・・二次元視野、(2)・・・撮像レンズ、(
3b)・・・−次元光センサ、(4)・・・移動機構、
(5)・・・走査回路、(8)・・・処理部、(9)・
・・変換回路、翰・・・光軸なお、図中、同一符号は同
−又は相当部分を示す。
FIG. 1 is a configuration diagram showing an imaging device according to an embodiment of the present invention, FIG. 2(a) (υ is a configuration diagram showing an imaging system of an imaging device according to another embodiment of the invention, and FIG. a) (b)
) (c) is a block diagram showing the imaging system of the conventional imaging device, FIG. 4 is a block diagram showing the signal processing system of the conventional imaging device, and FIG. 5 is an explanation explaining the resolution of the conventional imaging device. It is a diagram. (1)... Two-dimensional field of view, (2)... Imaging lens, (
3b)...-dimensional optical sensor, (4)... moving mechanism,
(5)...Scanning circuit, (8)...Processing section, (9)...
... Conversion circuit, wire... Optical axis In the drawings, the same reference numerals indicate the same or equivalent parts.

Claims (4)

【特許請求の範囲】[Claims] (1)、対象を撮像する撮像レンズ、複数個の受光素子
が上記撮像レンズの結像面に直線状に配置された一次元
光センサ、上記光センサを上記撮像レンズの光軸のまわ
りに回転させる移動機構、上記光センサ及び上記移動機
構を駆動する走査回路、並びに上記光センサの出力及び
上記走査回路の信号を処理し、上記対象を認識する信号
を作成する処理部を備えた撮像装置。
(1) An imaging lens that images an object, a one-dimensional optical sensor in which a plurality of light receiving elements are arranged linearly on the imaging plane of the imaging lens, and the optical sensor is rotated around the optical axis of the imaging lens. an imaging device comprising: a moving mechanism for moving the object; a scanning circuit for driving the optical sensor and the moving mechanism; and a processing unit that processes the output of the optical sensor and the signal of the scanning circuit to create a signal for recognizing the object.
(2)、撮像レンズの光軸と光センサの中心を合致させ
、180°の回転移動により円形の二次元視野を得る特
許請求の範囲第1項記載の撮像装置。
(2) The imaging device according to claim 1, in which the optical axis of the imaging lens and the center of the optical sensor are made to coincide with each other, and a circular two-dimensional field of view is obtained by rotationally moving through 180 degrees.
(3)、撮像レンズの光軸と光センサの中心をずらせ、
360°の回転移動により円形またはドーナツ形のいず
れかの二次元視野を得る特許請求の範囲第1項記載の撮
像装置。
(3), by shifting the optical axis of the imaging lens and the center of the optical sensor,
The imaging device according to claim 1, which obtains either a circular or donut-shaped two-dimensional field of view through 360° rotational movement.
(4)、処理部は走査回路から得られる極座標信号を直
交座標信号に変換する変換回路を有する特許請求の範囲
第1項ないし第3項のいずれかに記載の撮像装置。
(4) The imaging device according to any one of claims 1 to 3, wherein the processing section includes a conversion circuit that converts a polar coordinate signal obtained from the scanning circuit into a rectangular coordinate signal.
JP62049680A 1987-03-04 1987-03-04 Image pickup device Pending JPS63216180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62049680A JPS63216180A (en) 1987-03-04 1987-03-04 Image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62049680A JPS63216180A (en) 1987-03-04 1987-03-04 Image pickup device

Publications (1)

Publication Number Publication Date
JPS63216180A true JPS63216180A (en) 1988-09-08

Family

ID=12837890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62049680A Pending JPS63216180A (en) 1987-03-04 1987-03-04 Image pickup device

Country Status (1)

Country Link
JP (1) JPS63216180A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994013100A2 (en) * 1992-11-24 1994-06-09 Geeris Holding Nederland B.V. A method and device for producing panoramic images, and a method and device for consulting panoramic images

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994013100A2 (en) * 1992-11-24 1994-06-09 Geeris Holding Nederland B.V. A method and device for producing panoramic images, and a method and device for consulting panoramic images
WO1994013100A3 (en) * 1992-11-24 1994-07-21 Geeris Holding Nederland A method and device for producing panoramic images, and a method and device for consulting panoramic images
EP0623268A1 (en) * 1992-11-24 1994-11-09 Geeris Holding Nederland B.V. A method and device for producing panoramic images, and a method and device for consulting panoramic images

Similar Documents

Publication Publication Date Title
US6480287B2 (en) Three dimensional scanning system
US6689998B1 (en) Apparatus for optical distancing autofocus and imaging and method of using the same
EP2136551A2 (en) Omnidirectional imaging apparatus
KR20020007211A (en) Omnidirectional vision sensor
US6654063B1 (en) Image inverting device
JPH0146002B2 (en)
JPS63216180A (en) Image pickup device
JPS63284980A (en) Solid-state image pickup device
JP2656143B2 (en) Omnidirectional imaging device
JPS61234165A (en) Optical picture input device
JP2710211B2 (en) Image scanner device
JPS6261480A (en) Image pickup device
JP2632669B2 (en) Image recognition device
JPS6292666A (en) Two-dimensional image pickup device
JP2019220819A (en) Imaging apparatus
SU842872A1 (en) Device for recognition of objects with homogeneous structure
JPS59174705A (en) Position detecting device
JPH0330913Y2 (en)
JP2002318353A (en) Lens for endoscope
JPH0729964U (en) Imaging device
Yoshida et al. Binobjective monocular optical module for single-chip stereo vision sensor LSI
RU1841058C (en) Optoelectronic system
JPS6274179A (en) Image processor
JPH06319143A (en) Area sequential color camera provided with registration correction device
CN115718201A (en) System and method for monitoring motor rotating speed based on SPAD array