JPS63216033A - Organic nonlinear optical material - Google Patents

Organic nonlinear optical material

Info

Publication number
JPS63216033A
JPS63216033A JP4871387A JP4871387A JPS63216033A JP S63216033 A JPS63216033 A JP S63216033A JP 4871387 A JP4871387 A JP 4871387A JP 4871387 A JP4871387 A JP 4871387A JP S63216033 A JPS63216033 A JP S63216033A
Authority
JP
Japan
Prior art keywords
nonlinear optical
optical material
group
organic nonlinear
org
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4871387A
Other languages
Japanese (ja)
Other versions
JPH0660984B2 (en
Inventor
Takashi Kurihara
隆 栗原
Toshikuni Kaino
戒能 俊邦
Shiro Matsumoto
松元 史朗
Tetsuya Goto
哲哉 後藤
Keiichi Egawa
江川 啓一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Toray Industries Inc
Original Assignee
Nippon Telegraph and Telephone Corp
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Toray Industries Inc filed Critical Nippon Telegraph and Telephone Corp
Priority to JP4871387A priority Critical patent/JPH0660984B2/en
Publication of JPS63216033A publication Critical patent/JPS63216033A/en
Publication of JPH0660984B2 publication Critical patent/JPH0660984B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/361Organic materials

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To enable tertiary optical nonlinear response at high speed and high efficiency by using an org. nonlinear optical material expressed by the specified structural formula. CONSTITUTION:An org. nonlinear optical material is expressed by the formula I (where D is an electron donative group). The defect in the conventional technique wherein lengthener of absorption wavelength due to expansion of pi conjugation or increase of charge transfer accompanies if nonlinear optical effect is desired to be enhanced, is eliminated by symmetrically substituting polarizing groups having strong donative characteristic to both terminals of a relatively long molecule of pi-conjugated system [terephthal-bis-aniline (TBA) of 22pi electron system]. By this constitution, great tertiary nonlinear optical effect is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光双安定素子などの非線形光学素子用素材と
して有用な有機非線形光学材料に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an organic nonlinear optical material useful as a material for nonlinear optical elements such as optical bistable elements.

〔従来の技術〕[Conventional technology]

三次の非線形光学材料は、第三高調波発生(以下、TH
Gと略す)による周波数変換機能を有しているほか、光
双安定現象を利用した元スイッチ、元メモリへの応用な
どが可能であるため、将来の光素子の中心素材として、
活発な研究開発が進められている。なかでも、有機非線
形光学材料は、(11KDP−LiNbOs !どの無
機強誘電体結晶に比べ、非線形光学定数が大きい、(2
)ガリウムーヒ素などの無機半導体に比べ応答速度が速
い、(3)高速応答・室温動作が確認されている塩化第
一銅(CuCt)では困難なμmオーダーの薄膜化が容
易なこと、など従来の材料では同時に満たされることの
なかった要求条件をすべて満足する可能性全稈めており
、活発な材料探索が進められている。
Third-order nonlinear optical materials are used for third-harmonic generation (hereinafter referred to as TH).
In addition to having a frequency conversion function (abbreviated as G), it can also be applied to original switches and original memories using the optical bistable phenomenon, so it will be used as a central material for future optical devices.
Active research and development is underway. Among them, organic nonlinear optical materials include (11KDP-LiNbOs!), which has a large nonlinear optical constant compared to any inorganic ferroelectric crystal.
) It has a faster response speed than inorganic semiconductors such as gallium-arsenide, and (3) It is easy to make thin films on the μm order, which is difficult to do with cuprous chloride (CuCt), which has been confirmed to have high-speed response and room temperature operation. There is every possibility of satisfying all of the requirements that have not been met simultaneously with other materials, and active material searches are underway.

現在、三次の効果の大きい有機非線形元学材料ハ、■ポ
リジアセチレン〔特に、PTS:2゜4−へキサジイン
−1,6−ビス(p−トルエンスルホナート)〕、ポリ
アセチレンに代表されるπ共役高分子系と、■アミノニ
トロスチルベン(特に、DEANS : N、N−ジエ
チル−4−アミノ−4′−二トロスチルベン)に代表さ
れる、ドナー・アクセプターを非対称に置換した低分子
系の2種に分類できる0 〔発明が解決しようとする問題点〕 ■のπ共役高分子系の非線形性は、価電子帯の自由電子
の分極を根源としているため、無機半導体と極めて類似
した欠点、すなわち、狭いバンドギャップに基づい念共
鳴効果による応答速度の低下から逃れられない。■ドナ
ー・アクセプター非対称置換低分子系は、現状(DEA
NS)以上に効果を大きくしようとすると分子内電荷移
動による吸収帯の長波長化によって、■と同様の欠点を
露呈する0更に、結晶が非対称中心構造をとるものの一
部は、二次効果の混在によって、非線形動作の信頼性に
問題を生じる。
At present, organic nonlinear materials with large third-order effects are being developed. There are two types: high-molecular systems and low-molecular systems in which the donor and acceptor are asymmetrically substituted, such as (1) aminonitrostilbene (especially DEANS: N,N-diethyl-4-amino-4'-nitrostilbene). 0 [Problems to be Solved by the Invention] The nonlinearity of the π-conjugated polymer system in (2) is rooted in the polarization of free electrons in the valence band, so it has drawbacks that are very similar to those of inorganic semiconductors, namely: Due to the narrow bandgap, it is impossible to escape from a decrease in response speed due to the telephonic resonance effect. ■ Donor-acceptor asymmetrically substituted low-molecular systems are currently available (DEA
If you try to make the effect larger than NS), the wavelength of the absorption band will become longer due to intramolecular charge transfer, exposing the same drawbacks as in ■0.Furthermore, some of the crystals with an asymmetric center structure are affected by secondary effects. The mixture causes problems with the reliability of nonlinear operation.

本発明の目的は、上記従来技術の欠点を克服し、高速・
高効率の光非線形応答を示す有機非線形光学材料を提供
することにある0 〔問題点を解決するための手段〕 本発明を概説すれば、本発明は有機非線形光学材料に関
する発明であって、下記一般式l:(ただし、Dは電子
供与性基を示す)で表されることを特徴とする0 本発明による有機非線形光学材料の主要な特徴は、吸収
の長波長化全抑制して応答速度の低下を防いでいる上に
、従来になく大きな三次の非線形光学効果を有する点で
ある。これは、非線形光学効果を太きくしようとすると
、を共役の拡大や電荷移動の増大による吸収の長波長化
を伴うという従来技術の欠点を、比較的長いπ共役系(
22「電子系のテレフタル−ビス−アニリン: TBA
)の分子両端に、ドナー性の強い分極基金対称置換する
ことによって解決したものである。
The purpose of the present invention is to overcome the drawbacks of the above-mentioned prior art, and to
An object of the present invention is to provide an organic nonlinear optical material exhibiting highly efficient optical nonlinear response. The organic nonlinear optical material according to the present invention is characterized by being represented by the general formula l: (wherein D represents an electron-donating group). This feature not only prevents a decrease in the optical density but also has a larger third-order nonlinear optical effect than ever before. This eliminates the drawback of the conventional technology that attempting to increase the nonlinear optical effect results in longer absorption wavelengths due to conjugation expansion and charge transfer.
22 “Electronic terephthal-bis-aniline: TBA
) was solved by symmetrically substituting polarized funds with strong donor properties at both ends of the molecule.

本発明の有機非線形光学材料は、従来から報告例のある
ようなドナー・アクセプターを非対称に置換した低分子
系とは異なり、基底状態での分極が小さい上、励起状態
の電子雲が対称中心構造をとることに特徴がある。した
がって、本発明の有機非線形光学材料は本質的には二次
の非線形光学効果を発現しない材料であるから、二次の
非線形光学効果の混在によって、非線形光学素子の動作
が影響を受けることもない。
The organic nonlinear optical material of the present invention differs from conventionally reported low-molecular-weight systems in which donors and acceptors are asymmetrically substituted.In addition, the polarization in the ground state is small, and the electron cloud in the excited state has a symmetric center structure. It is characterized by taking Therefore, since the organic nonlinear optical material of the present invention is essentially a material that does not exhibit a second-order nonlinear optical effect, the operation of the nonlinear optical element will not be affected by the presence of the second-order nonlinear optical effect. .

本発明の有機非線形光学材料は、前記一般式1式% ここで、基りは、アミン基、モノあるいはジアルキルア
ミノ基、モノあるいはジ(ヒドロキシアルキル)アミン
基が代表的である。
The organic nonlinear optical material of the present invention has the general formula 1. Here, the group is typically an amine group, a mono- or dialkylamino group, or a mono- or di(hydroxyalkyl)amine group.

例えば、ドナー(D)がジアルキルアミノ基である場合
、ジエチルアミノ基とジメチルアミノ基とでは、ドナー
性に優9、平面共役構造金とシやすいジエチルアミノ基
のほうが、大きな非線形光学効果を発現する。更に、フ
レキシビリティの増大により、溶解性が高く、溶融結晶
化に適した融点を示す。エチル−ヒドロキシエチルアミ
ノ基ドナーにすると、溶解性は、更に向上する。Dがジ
メチルアミノ基の材料’iDM−TEA、  ドナーD
がジエチルアミノ基の材料全DE−TEA、Dがエチル
−ヒドロキシエチルアミノ基の材料’1EOE−TEA
と略称する。
For example, when the donor (D) is a dialkylamino group, between a diethylamino group and a dimethylamino group, the diethylamino group has superior donor properties9, and the diethylamino group, which is more easily bonded to planar conjugated gold, exhibits a greater nonlinear optical effect. Furthermore, due to increased flexibility, it exhibits high solubility and a melting point suitable for melt crystallization. When the ethyl-hydroxyethylamino group donor is used, the solubility is further improved. Material in which D is a dimethylamino group 'iDM-TEA, Donor D
All DE-TEA is a diethylamino group material, '1EOE-TEA is a material where D is an ethyl-hydroxyethylamino group.
It is abbreviated as.

以下、前記一般式Iで表される化合物の製造例金示すが
、これらに限定されない。
Examples of the production of the compound represented by the general formula I are shown below, but the invention is not limited thereto.

製造例1、DE−TBAの合成 N、N−ジエチル−p−フ二二レンジアミン(&6f、
22mmol)  のベンゼン−エタノール(1:1)
溶液に、テレフタルアルデヒド(1,3f、  10 
mmol )  のエタノール溶液と触媒量のベンゼン
スルホン酸を加え、室温で1時間かくはんした。更に、
油浴上で、3時間、加熱還流した0反応液を室温まで冷
し、生底物を完全に析出させた後、これをろ取、冷エタ
ノールにて充分洗浄した。メチルシクロヘキサン二〇−
ジクロロベンゼン(1:1)混合溶媒を用いて再結晶し
、橙色うろこ状結晶(2,6y )k得た。融点:22
7℃。第1図に、溶融結晶化薄膜のUV−VISスペク
トルを示す。すなわち第1図は本発明による有機非線形
光学材料:DE−TBA(7)溶融結晶化薄膜のUV−
V工Sスペクトル全波長(nm、横軸)と吸光度(任意
単位、縦軸)との関係で示したグラフである。
Production Example 1, Synthesis of DE-TBA N,N-diethyl-p-phenyl diamine (&6f,
22 mmol) of benzene-ethanol (1:1)
Add terephthalaldehyde (1,3f, 10
mmol) of ethanol solution and a catalytic amount of benzenesulfonic acid were added, and the mixture was stirred at room temperature for 1 hour. Furthermore,
The 0 reaction solution was heated under reflux on an oil bath for 3 hours and cooled to room temperature to completely precipitate the raw bottom material, which was collected by filtration and thoroughly washed with cold ethanol. Methylcyclohexane 20-
Recrystallization was performed using a dichlorobenzene (1:1) mixed solvent to obtain orange scaly crystals (2,6y)k. Melting point: 22
7℃. FIG. 1 shows the UV-VIS spectrum of the melt-crystallized thin film. That is, FIG. 1 shows the UV radiation of a melt-crystallized thin film of an organic nonlinear optical material according to the present invention: DE-TBA (7).
It is a graph showing the relationship between the total wavelength (nm, horizontal axis) and absorbance (arbitrary unit, vertical axis) of the V engineering S spectrum.

第1図から明らかなように、上記薄膜は長波長領域(約
700 nm以上)に吸収を持たない。
As is clear from FIG. 1, the thin film described above has no absorption in the long wavelength region (about 700 nm or more).

製造例2、DM−TEAの合成 N、 N−ジメチル−p−フェニレンジアミン(五〇 
? 、 22 mmol )  ノ工fi /  k溶
液VC、テレフタルアルデヒド(1,3t、 10 m
mol )のエタノール溶液と触媒量のベンゼンスルホ
ン酸を加え、室温で1時間かくはんし念0更に、油浴上
で、3時間、加熱還流した。析出物をろ取、冷エタノー
ルにて充分洗浄したのち、0−ジクロロベンゼンより再
結晶し橙色の結晶(2−2?)を得た。融点=300℃
以上。
Production Example 2, Synthesis of DM-TEA N, N-dimethyl-p-phenylenediamine (50
? , 22 mmol) engineering fi/k solution VC, terephthalaldehyde (1,3 t, 10 m
mol) of ethanol solution and a catalytic amount of benzenesulfonic acid were added, stirred at room temperature for 1 hour, and then heated under reflux on an oil bath for 3 hours. The precipitate was collected by filtration, thoroughly washed with cold ethanol, and then recrystallized from 0-dichlorobenzene to obtain orange crystals (2-2?). Melting point = 300℃
that's all.

製造例3、EOE−TEAの合成 硫酸−4−アミノ−N−(β−ヒドロキシエチル)−N
−エチルアニリン(9,5F、33mmo’l )  
のエタノール−水(1:1)溶液に、水酸化す) IJ
ウム水溶液を加え、弱酸性にすると均一溶液となるから
、この溶液にテレフタルアルデヒド(2,2F、16m
mol)  のエタノール溶tt−加え室温で3時間、
更に、油浴上で1時間加熱還流した。反応液を室温まで
冷却し、生成物を析出させ、これをろ取、冷エタノール
−水(1e4)混合溶媒更に冷水で充分洗浄した。得ら
れた粗結晶はエタノール−水(1:1)混合溶媒から再
結晶し、橙色結晶5.51を得た。
Production Example 3, Synthesis of EOE-TEA Sulfuric acid-4-amino-N-(β-hydroxyethyl)-N
-Ethylaniline (9,5F, 33mmol)
IJ
A homogeneous solution is obtained by adding an aqueous solution of terephthalaldehyde (2.2 F, 16 m
mol) of ethanol solution was added at room temperature for 3 hours.
Furthermore, the mixture was heated under reflux on an oil bath for 1 hour. The reaction solution was cooled to room temperature to precipitate a product, which was collected by filtration and thoroughly washed with a cold ethanol-water (1e4) mixed solvent and then with cold water. The obtained crude crystals were recrystallized from an ethanol-water (1:1) mixed solvent to obtain 5.51 orange crystals.

融点=113〜115℃。Melting point = 113-115°C.

〔実施例〕〔Example〕

以下、本発明を実ハ例によフ更に具体的に説明するが、
本発明はこれら実施例に限定されない0 実施例1〜3 製造例1〜3で得られた化合物について非線形光学特性
を測定した。
Hereinafter, the present invention will be explained in more detail with reference to actual examples.
The present invention is not limited to these examples.0 Examples 1 to 3 Nonlinear optical properties of the compounds obtained in Production Examples 1 to 3 were measured.

THG測定の方法は、以下に述べる通りである。光源に
は、Nd : YAGレーザ−(波長1.06μm 、
 j OHz −50MW/cm” ) k用い、可視
光をカットした後、レンズで集光したビームを試料に照
射し、試料より放射された元をモノクロメータに通して
、THG元((L35 μm)のみの強度をホトマルで
検知した。測定試料は、DM−TEA、DE−TEA%
EOE−’I’BAt−105〜120μmの粒径に粉
砕したものを用いた。更に、観測される’I’HG光が
、尿素や純粋に三次の効果のみによること全確認するた
めに、同一試料の第二高調波発生(以下、5H()と略
す)についても測定した。その結果を下記表1に示す。
The method of THG measurement is as described below. The light source was a Nd:YAG laser (wavelength: 1.06 μm,
After cutting off visible light, the sample is irradiated with a beam focused by a lens, and the source emitted from the sample is passed through a monochromator to obtain the THG source ((L35 μm) The intensity of
EOE-'I'BAt-ground to a particle size of 105 to 120 μm was used. Furthermore, in order to fully confirm that the observed 'I'HG light was due to urea or purely third-order effects, the second harmonic generation (hereinafter abbreviated as 5H()) of the same sample was also measured. The results are shown in Table 1 below.

なお、比較資料として、尿素、MNA及びDEANSの
結果を併記した。
In addition, the results of urea, MNA, and DEANS are also listed as comparative data.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の有機非線形光学材料は、
従来になく大きな三次の非線光学効果を有するので、こ
れ全利用した光学素子、例えば光双安定性素子、元スイ
ッチ、元メモリなど将来の元通信用光集積素子の中心素
材として利用できる。
As explained above, the organic nonlinear optical material of the present invention is
Since it has a larger third-order nonlinear optical effect than ever before, it can be used as a core material for future optical integrated devices for communication, such as optical devices that fully utilize this, such as optical bistable devices, original switches, and original memories.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明による有機非線形光学材料:DE−T
EA+7)溶融結晶化薄膜0UV−VISスペクトル図
である。 特許出願人 日本電信電話株式会社 同  東し株式会社
FIG. 1 shows an organic nonlinear optical material according to the present invention: DE-T.
EA+7) is a 0UV-VIS spectrum diagram of a melted crystallized thin film. Patent applicant Nippon Telegraph and Telephone Corporation Toshi Co., Ltd.

Claims (1)

【特許請求の範囲】 1、下記一般式 I : ▲数式、化学式、表等があります▼・・・〔 I 〕 (ただし、Dは電子供与性基を示す)で表されることを
特徴とする有機非線形光学材料。 2、該基Dが、アミノ基である特許請求の範囲第1項記
載の有機非線形光学材料。 3、該基Dが、モノ又はジアルキルアミノ基である特許
請求の範囲第1項又は第2項記載の有機非線形光学材料
。 4、該基Dが、モノ又はジ(ヒドロキシアルキル)アミ
ノ基である特許請求の範囲第1項又は第2項記載の有機
非線形光学材料。
[Scope of Claims] 1. Characterized by being represented by the following general formula I: ▲There are mathematical formulas, chemical formulas, tables, etc.▼...[I] (However, D represents an electron-donating group) Organic nonlinear optical materials. 2. The organic nonlinear optical material according to claim 1, wherein the group D is an amino group. 3. The organic nonlinear optical material according to claim 1 or 2, wherein the group D is a mono- or dialkylamino group. 4. The organic nonlinear optical material according to claim 1 or 2, wherein the group D is a mono- or di(hydroxyalkyl)amino group.
JP4871387A 1987-03-05 1987-03-05 Organic nonlinear optical material Expired - Fee Related JPH0660984B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4871387A JPH0660984B2 (en) 1987-03-05 1987-03-05 Organic nonlinear optical material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4871387A JPH0660984B2 (en) 1987-03-05 1987-03-05 Organic nonlinear optical material

Publications (2)

Publication Number Publication Date
JPS63216033A true JPS63216033A (en) 1988-09-08
JPH0660984B2 JPH0660984B2 (en) 1994-08-10

Family

ID=12810946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4871387A Expired - Fee Related JPH0660984B2 (en) 1987-03-05 1987-03-05 Organic nonlinear optical material

Country Status (1)

Country Link
JP (1) JPH0660984B2 (en)

Also Published As

Publication number Publication date
JPH0660984B2 (en) 1994-08-10

Similar Documents

Publication Publication Date Title
Naseema et al. Synthesis, characterization and studies on the nonlinear optical parameters of hydrazones
JPH0377923A (en) Organic nonlinear optical material
JPS63216033A (en) Organic nonlinear optical material
JPH0193720A (en) Organic nonlinear optical material
JPS62136601A (en) Organic nonlinear optical material
JPH03140927A (en) Organic nonlinear optical material
JP2530725B2 (en) Organic nonlinear optical material
JPH03230127A (en) Aromatic nonlinear optical material
JPH07117672B2 (en) Nonlinear optical organic material
EP0487019B1 (en) Use of a nonlinear optical compound
JPH01130136A (en) Organic nonlinear optical material
JPS63267924A (en) Organic nonlinear optical material
EP0355326A2 (en) Nonlinear optical material
JPH0795175B2 (en) Organic nonlinear optical material and nonlinear optical device
JPH0432822A (en) Nonlinear optical material containing aromatic ring
JPH03259126A (en) Novel aromatic nonlinear optical material
JPH01130135A (en) Organic nonlinear optical material
JPH0335021A (en) Preparation of organic polymer material showing non-linear optical characteristic
JPH02285329A (en) Nonlinear optical material
JPH0498224A (en) Nonlinear optical material
JPH02243644A (en) New organic compound
JPH06130435A (en) Organic nonlinear optical material
JPH02196759A (en) New organic compound
JPH0498225A (en) Nonlinear optical material
JPH05173208A (en) Organic non-linear optical material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees