JPS6321443A - Film covered heat storage pond - Google Patents

Film covered heat storage pond

Info

Publication number
JPS6321443A
JPS6321443A JP61165489A JP16548986A JPS6321443A JP S6321443 A JPS6321443 A JP S6321443A JP 61165489 A JP61165489 A JP 61165489A JP 16548986 A JP16548986 A JP 16548986A JP S6321443 A JPS6321443 A JP S6321443A
Authority
JP
Japan
Prior art keywords
heat storage
heat
film
storage fluid
pond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61165489A
Other languages
Japanese (ja)
Inventor
Katsuya Oota
太田 勝矢
Minoru Nikaido
稔 二階堂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP61165489A priority Critical patent/JPS6321443A/en
Publication of JPS6321443A publication Critical patent/JPS6321443A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/10Solar heat collectors using working fluids the working fluids forming pools or ponds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To improve the efficiency in the process of sun-light heat storage by filling a natural or an artificial pond with a heat storage fluid such as water or other suitable matters and covering the surface of the filling material with a film. CONSTITUTION:Because a film 3 has a high sun-light transmissivity tau it does not give hindrance to the absorption of sun-light S by a heat storage fluid 2, and, therefore, it secures the function of a heat storage pond 1 to absorb solar energy. When a heat insulation layers 4 are provided, those layers are formed with materials with a high sun-light transmissivity tau such as air, nitrogen gas, etc. of relatively thin layers, and the heat absorption action of the heat storage fluid 2 is not substantially hindered. The heat loss prevention action is provided by the coverage with a film 3 of the surface of the heat storage fluid 2, and even if the heat storage pond 1 is exposed to a high wind, the surface of the heat storage fluid 2 develops no wave or water splash so that the surface heat loss especially the surface heat loss amount during a high wind can be suppressed remarkably.

Description

【発明の詳細な説明】 産業−ヒの利用ノ)! 本発明は、太陽エネルギーを吸収して貯える蓄熱ポンド
に関し、特に膜被覆により表面からの熱損失を少なくし
た膜被覆蓄熱ポンドに関する。
[Detailed Description of the Invention] Industry - Utilization of H)! The present invention relates to a heat storage pond that absorbs and stores solar energy, and particularly to a film-coated heat storage pond that reduces heat loss from the surface by coating with a film.

【え立且遺 ソーラポンド等の蓄熱ポンドは、人工若しくは天然の池
に水、塩水その他の蓄熱流体を一定の態様で満し、その
蓄熱流体に太陽エネルギーを吸収して貯えるものであり
、昼夜を問わず冬でもさらに北国でも連続して安全に運
転できる利点を有する。本出願人は、特願昭58−14
9120号においてソーラポンドにプールを併設して総
合的利用効率を4謔する技術を開示し、さらに特願昭5
8−149121号においてソーラポンドの蓄熱流体た
る非対波層の流体を熱ポンプユニットへ循環させる方式
の太陽熱利用形熱ポンプ装置を開示した。
A heat storage pond such as a solar pond is an artificial or natural pond filled with water, salt water, or other heat storage fluid in a certain manner, and the heat storage fluid absorbs and stores solar energy, and is used day and night. It has the advantage of being able to be safely driven continuously in winter and even in northern countries. The applicant has filed a patent application for
In No. 9120, we disclosed a technology to increase the overall usage efficiency by adding a pool to a solar pond, and we also applied for a patent application in 1973.
No. 8-149121 discloses a solar heat-utilizing heat pump device in which the fluid in the non-paired wave layer, which is the heat storage fluid of a solar pond, is circulated to a heat pump unit.

従来の蓄熱ポンドにおいては、蓄熱流体表面から大気へ
の熱の伝導・対流・放射が相当にあり。
In conventional heat storage ponds, there is considerable conduction, convection, and radiation of heat from the surface of the heat storage fluid to the atmosphere.

それによる表面からの熱損失驕(以下、表面損という。The resulting heat loss from the surface (hereinafter referred to as surface loss).

)が大きいため、蓄熱過程の効率が低かった。とくに蓄
熱流体表面が強風に曝され波や飛沫が生ずる場合には表
面積が大きい、ソーラポンドの場合、蓄熱流体への入射
太陽光のエネルギーを100tとしたときに表面積が5
0%以上にのぼるとの報告もある。この表面積を抑える
ため、ソーラポンドの表面にポリエチレンネットを浮べ
る方法やpvc管等を適当間隔で並べる方法等が提案さ
れたが、未だ満足すべき解決は得られていない。
) was large, so the efficiency of the heat storage process was low. The surface area is particularly large when the heat storage fluid surface is exposed to strong winds and waves and splashes occur.In the case of solar ponds, the surface area is 5 when the energy of sunlight incident on the heat storage fluid is 100 tons.
There are also reports that it is over 0%. In order to reduce this surface area, methods such as floating a polyethylene net on the surface of the solar pond and arranging PVC pipes at appropriate intervals have been proposed, but a satisfactory solution has not yet been obtained.

−が  しようと るU へ 従って、本発明が解決しようとする闇題点は。− is trying to go to U Therefore, the problem to be solved by the present invention is as follows.

蓄熱ポンドの表面積の低減にある。This consists in reducing the surface area of the heat storage pond.

。 占    るた の− 第1図及び第2図に示した本発明による蓄熱ポンド1の
一実施例は、地表Eにおける天然又は人工の池に水その
他の適当な蓄熱流体2を入れ、蓄熱流体2の表面に膜3
を被覆して構築される。好ましくは、複数枚の膜3を設
けそれらを支持部材5により適当間隔で保持する。膜3
は、太陽光S(波長0.3−2.5μm)に対する大き
な透過率τ、小さな熱吸収率及び熱伝導率ε、並びに波
長が長い(波長2.5μ層以上)熱線L(第4図)に対
する大きな反射率(′を有するものである。v3の材料
の例はポリエステル、ポリカーボネート、アクリル樹脂
、ガラス等の膜又はそれらの膜に熱線反射フィルムを蒸
着等により形成したものである。
. One embodiment of the heat storage pond 1 according to the present invention shown in FIGS. film 3 on the surface of
It is constructed by covering the Preferably, a plurality of membranes 3 are provided and held by support members 5 at appropriate intervals. membrane 3
has a large transmittance τ for sunlight S (wavelength 0.3-2.5 μm), a small heat absorption rate and thermal conductivity ε, and a heat ray L with a long wavelength (wavelength 2.5 μm or more) (Figure 4). Examples of V3 materials include films of polyester, polycarbonate, acrylic resin, glass, etc., or films on which a heat ray reflective film is formed by vapor deposition or the like.

第2図及び第4図の実施例は、4枚の膜3を使っており
6膜3の太陽光反射率をそれぞれ(2)ε2.ε3、ε
4で示し、熱線反射率をそれぞれ、/・ ε2′・ (
3′、ε4′で示してし翫る。
In the embodiments shown in FIGS. 2 and 4, four films 3 are used, and the solar reflectance of each of the six films 3 is (2)ε2. ε3, ε
4, and the heat ray reflectance is expressed as /・ε2′・(
3' and ε4'.

好ましくは、隣接膜3の間に太陽光を良く透し太陽光吸
収率a及び熱線吸収率a′が共に小さい物質1例えば真
空、空気又は窒素ガスからなる断熱層4を形成する。第
2図及び第4図の例は4枚のrF23の間に3段に断熱
層4を設けており各断熱層4の太陽光吸収率をal 、
a2.a3で示し。
Preferably, a heat insulating layer 4 is formed between adjacent films 3, which is made of a material 1, such as vacuum, air, or nitrogen gas, which allows sunlight to pass through well and has a small solar absorption rate a and a small heat ray absorption rate a'. In the examples shown in FIGS. 2 and 4, three layers of heat insulation layers 4 are provided between four rF23 sheets, and the solar absorption rate of each heat insulation layer 4 is set to al,
a2. Indicated by a3.

熱線吸収率をaI′、a2′、a3′で示している。The heat ray absorption coefficients are shown as aI', a2', and a3'.

塩」 第1図を参照するに、膜3は太陽光透過率でか大きいか
ら、蓄熱流体2による太陽光Sの吸収に支障を与えず、
従って太陽エネルギーを吸収する蓄熱ポンド1の機能を
確保する。断熱層4を設けた場合にも、それらの層は例
えば空気や窒素ガスの様に太陽光透過率での大きい物質
で比較的薄い層状に形成されるから、蓄熱流体2の熱吸
収作用が実質的に阻害されることはない。
Referring to FIG. 1, since the membrane 3 has a large solar transmittance, it does not interfere with the absorption of sunlight S by the heat storage fluid 2.
Therefore, the function of the heat storage pond 1 to absorb solar energy is ensured. Even when the heat insulating layer 4 is provided, the layer is formed in a relatively thin layer using a substance with high solar transmittance, such as air or nitrogen gas, so that the heat absorption effect of the heat storage fluid 2 is substantially reduced. will not be hindered.

熱損失防止作用について説明するに、蓄熱流体2の表面
が膜3により覆われるので、たとえ蓄熱ポンドlが強風
に曝されても蓄熱流体2の表面に波や飛沫が生じること
がなく、風による表面積とくに強風時の表面積が著しく
抑制される。
To explain the heat loss prevention effect, since the surface of the heat storage fluid 2 is covered with the film 3, even if the heat storage pond l is exposed to strong winds, no waves or splashes will occur on the surface of the heat storage fluid 2, and the heat storage fluid 2 will not be affected by the wind. The surface area, especially during strong winds, is significantly reduced.

熱伝導による表面積を低減するためには、隣接膜3の間
に熱伝導率の小さな材料1例えば屹燥空気若しくは窒素
を封入して断熱層4を形成すること、隣接膜3の間を真
空とすること、又は隣接膜3間の間隔、例えば第3図の
It、、Q2)fI3を長くすること等の手段を講じる
In order to reduce the surface area due to heat conduction, it is possible to form a heat insulating layer 4 by sealing a material 1 with low thermal conductivity, such as dried air or nitrogen, between adjacent films 3, or to create a vacuum between adjacent films 3. or take measures such as increasing the distance between adjacent films 3, for example, It, Q2)fI3 in FIG.

熱放射につき第4図を参照して考察するに、蓄熱流体2
から大気へ放射される熱MALに対する膜3の熱線反射
率ε′が大きいから、熱線りのうち蓄熱流体2へ反射さ
れる部分が大きく放射による表面積は大幅に抑制される
。複数枚の膜3と断熱層4を設ければ、放射表面積は一
層抑制される。
Considering heat radiation with reference to FIG. 4, heat storage fluid 2
Since the heat ray reflectance ε' of the film 3 with respect to the heat MAL radiated from the heat rays to the atmosphere is large, a large portion of the heat rays is reflected to the heat storage fluid 2, and the surface area due to radiation is greatly suppressed. By providing a plurality of membranes 3 and heat insulating layers 4, the radiation surface area can be further suppressed.

膜の厚さを著しく誇張して示す第5図を参照するに、蓄
熱流体2と直接に接触する膜3の面に、熱吸収率ao′
が小さく熱線反射率@o′が特に大きい材料、例えば酸
化チタン、酸化錫、酸化インジウム、又は銀を誘電体で
はさんだフィルム等を選択反射Fi膜6として蒸着等に
より形成すれば、放射による表面積をさらに低減するこ
とができる。
Referring to FIG. 5, in which the thickness of the membrane is greatly exaggerated, the surface of the membrane 3 in direct contact with the heat storage fluid 2 has a heat absorption rate ao'
If the selective reflective Fi film 6 is formed by vapor deposition or the like using a material that has a small value and a particularly high heat reflectance @o', such as titanium oxide, tin oxide, indium oxide, or a film in which silver is sandwiched between dielectric materials, the surface area due to radiation can be reduced. It can be further reduced.

対流についても、複数枚の膜を使用し、膜間に熱対流の
小さな材料1例えば乾燥空気、窒素等を封入することに
よって蓄熱流体2から大気への対流による熱損失が抑制
される。従って、蓄熱流体と大気とが直接に接触する構
造の従来の蓄熱ポンドに比し、本発明においては対流に
よる表面積が著しく低減される。第6図に示される様に
、複数の上記断熱層4を設けた場合には、各断熱層4に
おける対流α1、α2)α3が非常に小さく保たれるの
で、蓄熱流体2から大気への対流による表面積は大幅に
抑制される。
Regarding convection, heat loss due to convection from the heat storage fluid 2 to the atmosphere can be suppressed by using a plurality of membranes and sealing a material 1 with low thermal convection, such as dry air or nitrogen, between the membranes. Therefore, compared to conventional heat storage ponds in which the heat storage fluid is in direct contact with the atmosphere, the surface area due to convection is significantly reduced in the present invention. As shown in FIG. 6, when a plurality of heat insulating layers 4 are provided, the convection α1, α2) and α3 in each heat insulating layer 4 are kept very small, so that convection from the heat storage fluid 2 to the atmosphere is reduced. surface area is significantly reduced.

こうして本発明の目的である蓄熱ポンド表面損の低減が
達成される。
In this way, the objective of the present invention, the reduction of heat storage pond surface loss, is achieved.

灸ムj 本発明者は上記膜3を厚さ1 mm程度に工場で製作し
、その膜を数枚重ねて多層構造とし、折畳んで設置場所
へ運搬し、施工現場で層間即ち隣接膜間に乾燥空気或い
は窒素を封入して隣接膜の間隔を約20 cmとした後
人工の蓄熱ポンドlの蓄熱流体2の上に浮べ、第1図の
支持部材5により支持した。
Moxibustion j The present inventor manufactured the membrane 3 with a thickness of about 1 mm in a factory, stacked several membranes to form a multilayer structure, folded it and transported it to the installation site, and installed the membrane 3 at the construction site between the layers, that is, between adjacent membranes. The membrane was filled with dry air or nitrogen so that the distance between adjacent membranes was about 20 cm, and then floated on the heat storage fluid 2 of an artificial heat storage pond 1 and supported by the support member 5 shown in FIG.

実際には、上記多層構造の膜3を天然の湖沼や海上に浮
べ、アンカー(図示せず)等に係留して固定設置するこ
とができる。
In reality, the membrane 3 having the multilayer structure described above can be fixedly installed by floating on a natural lake or ocean and moored to an anchor (not shown) or the like.

上記膜3による太陽光蓄熱ポンドの表面積低減効果を検
討した。第7図を参照するに、日射エネルギーを3.0
00 Kcal/m”e日とし、蓄熱流体温度を80℃
とし、大気温度を30℃とし、隣接膜3間の間隔を20
 cmとし、断熱層4の封入材料を乾燥空気とし、1枚
の11513の太陽光透過率τを80$とし。
The effect of reducing the surface area of the solar heat storage pond by the above film 3 was investigated. Referring to Figure 7, solar radiation energy is 3.0
00 Kcal/m”e day, and the heat storage fluid temperature is 80°C.
The atmospheric temperature is 30°C, and the distance between adjacent films 3 is 20°C.
cm, the sealing material of the heat insulating layer 4 is dry air, and the sunlight transmittance τ of one sheet of 11513 is 80 dollars.

1枚の膜3の低温放射率τ′ (第4図)を1ozとす
ると、膜3なしでは熱損失量が集熱量を上回って3.0
00 Kca l/m2s日以上に達し、1枚の膜3で
熱損失量が集熱量とほぼ等しくなり、2枚の膜3と1層
の断熱層4とにより蓄熱量が約1350 Kcal/m
2・日となり、3枚の膜3と2層の断熱層4とにより蓄
熱量が約720 Kcal/m2・日となり、4枚の膜
3と3層の断熱層4とにより蓄熱量が約820 Kca
l/m′!e日となることが見出された。
If the low-temperature emissivity τ' (Fig. 4) of one film 3 is 1 oz, then without the film 3, the amount of heat loss exceeds the amount of heat collected, which is 3.0
00 Kcal/m2s day or more, the amount of heat loss is almost equal to the amount of heat collected with one membrane 3, and the amount of heat storage is approximately 1350 Kcal/m with two membranes 3 and one layer of heat insulation layer 4.
The amount of heat stored by the three membranes 3 and the two layers of heat insulating layer 4 is approximately 720 Kcal/m2・day, and the amount of heat stored by the four membranes 3 and three layers of heat insulating layer 4 is approximately 820 Kcal/m2・day. Kca
l/m′! It was found that this is the day e.

この検討結果を第8図のグラフに示す0以上の検討結果
は、本発明による蓄熱ポンド1が太陽光蓄熱過程の効率
向上に有効であることを示す。
The results of this study are shown in the graph of FIG. 8. A study result of 0 or more indicates that the heat storage pond 1 according to the present invention is effective in improving the efficiency of the solar heat storage process.

i更り皇」 以上説明した如く1本発明による蓄熱ポンド1は、表面
種を大幅に低減するので、太陽光蓄熱過程の効率を著し
く改善する顕著な効果を奏する。
As explained above, the heat storage pond 1 according to the present invention significantly reduces surface species, and therefore has the remarkable effect of significantly improving the efficiency of the solar heat storage process.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による蓄熱ポンドの説明図、第2図は太
陽熱吸収過程の説明図、第3図から第6図までは表面種
低減作用の説明図、第7図及び第8図は検討例の説明図
である。 l・・・蓄熱ポンド、 2・・・蓄熱流体、 3・・・
膜、4・・・断熱層、 5・・・支持部材、 6・・・
薄膜。 特許出願人  鹿島建設株式会社 特許出願代理人   弁理士  市束禮次部第1図 第2図
Fig. 1 is an explanatory diagram of the heat storage pond according to the present invention, Fig. 2 is an explanatory diagram of the solar heat absorption process, Figs. 3 to 6 are explanatory diagrams of the surface species reduction effect, and Figs. 7 and 8 are explanatory diagrams of the solar heat absorption process. It is an explanatory diagram of an example. l... Heat storage pond, 2... Heat storage fluid, 3...
Membrane, 4... Heat insulation layer, 5... Support member, 6...
Thin film. Patent applicant Kajima Corporation Patent application agent Patent attorney Tsugube Ichizuka Figure 1 Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)太陽熱を吸収する蓄熱流体を貯えた蓄熱ポンドに
おいて、大きな太陽光透過率、小さな熱伝導率及び熱吸
収率、並びに波長が長い熱線に対する大きな反射率を有
する膜により上記蓄熱流体の大気接触面を被覆してなる
膜被覆蓄熱ポンド。
(1) In a heat storage pond that stores a heat storage fluid that absorbs solar heat, the heat storage fluid comes into contact with the atmosphere through a film that has high solar transmittance, low thermal conductivity and heat absorption, and high reflectance for heat rays with long wavelengths. A membrane-covered heat storage pond with a surface covered.
(2)特許請求の範囲第1項記載の膜被覆蓄熱ポンドに
おいて、上記蓄熱流体の大気接触面を複数枚の上記膜で
被覆し、隣接する上記膜の間に大きな太陽光透過率と小
さな熱伝導率とを有する断熱層を形成してなる膜被覆蓄
熱ポンド。
(2) In the membrane-coated heat storage pond according to claim 1, the air contact surface of the heat storage fluid is coated with a plurality of the above films, and between the adjacent films there is a large solar transmittance and a small amount of heat. A membrane-coated heat storage pond formed by forming a heat insulating layer having conductivity.
(3)特許請求の範囲第1項記載の膜被覆蓄熱ポンドに
おいて、上記膜の上記蓄熱流体との接触面に、波長が長
い熱線に対する大きな反射率を有する薄膜を形成してな
る膜被覆蓄熱ポンド。
(3) A film-coated heat storage pond according to claim 1, wherein a thin film having a high reflectance to long-wavelength heat rays is formed on the surface of the film that comes into contact with the heat storage fluid. .
JP61165489A 1986-07-16 1986-07-16 Film covered heat storage pond Pending JPS6321443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61165489A JPS6321443A (en) 1986-07-16 1986-07-16 Film covered heat storage pond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61165489A JPS6321443A (en) 1986-07-16 1986-07-16 Film covered heat storage pond

Publications (1)

Publication Number Publication Date
JPS6321443A true JPS6321443A (en) 1988-01-29

Family

ID=15813371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61165489A Pending JPS6321443A (en) 1986-07-16 1986-07-16 Film covered heat storage pond

Country Status (1)

Country Link
JP (1) JPS6321443A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57174659A (en) * 1981-03-30 1982-10-27 Kuriaa Shimon Light transmitting heat insulator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57174659A (en) * 1981-03-30 1982-10-27 Kuriaa Shimon Light transmitting heat insulator

Similar Documents

Publication Publication Date Title
US3072920A (en) Swimming pool cover for collection or reflection of solar heat
US6274860B1 (en) Device for concentrating optical radiation
US5220462A (en) Diode glazing with radiant energy trapping
US6822157B2 (en) Thin film solar battery module
US20100212719A1 (en) System and methods of utilizing solar energy
US4368725A (en) Solar energy collector
FR2757151B1 (en) GLAZING COMPRISING A SUBSTRATE PROVIDED WITH A STACK OF THIN FILMS FOR SUN PROTECTION AND / OR THERMAL INSULATION
FR2483564A1 (en) Double-skinned panels for glazing or storage systems - has the inner space maintained under vacuum
WO1999004296A1 (en) Device for concentrating optical radiation
US4191169A (en) Solar energy panel
US4928665A (en) Light transmissive insulation apparatus
JP2006310711A (en) Optical thin film for solar battery, and manufacturing method therefor
US4243022A (en) Solar pick-up panel
US4246042A (en) Fixed solar energy concentrator
US5167217A (en) Light transmissive insulation apparatus
US4716882A (en) Solar heat collector
JPS6321443A (en) Film covered heat storage pond
JP2000243989A (en) Transparent film solar-cell module
JPH06507948A (en) Light-tolerant thermal insulation structure
JP2000307137A (en) Solar cell cover film and solar cell module using the same
EP0601157B1 (en) Solar thermal cell
EP0076875B1 (en) Solar energy collector
US4467786A (en) Solar heating of water utilizing coverites
EP0138574B1 (en) Light transmissive insulation apparatus
JPS5812857B2 (en) Toumei Dunnetsu Sheet