JPS63213809A - Non-halogen flame retardant cable - Google Patents

Non-halogen flame retardant cable

Info

Publication number
JPS63213809A
JPS63213809A JP62047369A JP4736987A JPS63213809A JP S63213809 A JPS63213809 A JP S63213809A JP 62047369 A JP62047369 A JP 62047369A JP 4736987 A JP4736987 A JP 4736987A JP S63213809 A JPS63213809 A JP S63213809A
Authority
JP
Japan
Prior art keywords
flame retardant
cable
flame
softening point
retardant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62047369A
Other languages
Japanese (ja)
Inventor
Tsuneo Konaka
小中 庸夫
Norio Murata
則夫 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP62047369A priority Critical patent/JPS63213809A/en
Publication of JPS63213809A publication Critical patent/JPS63213809A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/4436Heat resistant

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To obtain the title flame retardant cable having excellent flame retardancy and mechanical characteristic by using a material contg. glass having a specified softening point along with a non-halogen flame retardant, as the sheath. CONSTITUTION:The sheath is formed with the material contg. 100pts.wt. polyolefin polymer, 40-150pts.wt. non-halogen flame retardant, and at least 2pts.wt. glass powder having a softening point lower than the thermal decomposition temp. of the polymer. The glass powder having a low softening point is appropriately used, and the softening point must be lower than the thermal decomposition temp. of the polyolefin polymer to be used in the sheathing material. When the cable is placed in a combustion atmosphere, glass is deposited on the surface of the sheath at a temp. lower than the thermal decomposition temp. of the polyolefin polymer, and an inert and incombustible surface layer is formed. The surface layer has the function of protecting the cable from oxygen and flame. As a result, a sufficient flame retarding effect can be exhibited without using a halogen-based flame retardant.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、難燃性と機械的特性に優れたノンハロゲン難
燃ケーブルに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a non-halogen flame retardant cable with excellent flame retardancy and mechanical properties.

従来の技術 有機高分子材料は本質的に燃え易いため、有機高分子材
料により光ファイバや電カケープル等を被覆するには材
料に難燃性を持たせる必要がある。
BACKGROUND OF THE INVENTION Organic polymer materials are inherently flammable, so in order to coat optical fibers, electrical cables, etc. with organic polymer materials, it is necessary to make the materials flame retardant.

このような有機高分子材料を難燃化する方法として、高
分子化合物の構造自体を難燃性を有するように分子設計
する方法、高分子材料の成型時ないし紡糸時に難燃剤を
添加する方法、あるいは反応性難燃剤を高分子鎖に共有
結合させる方法等が知られている。
Methods for making such organic polymer materials flame retardant include methods of molecularly designing the structure of the polymer compound itself to have flame retardancy, methods of adding flame retardants during molding or spinning of the polymer material, Alternatively, a method of covalently bonding a reactive flame retardant to a polymer chain is known.

上記方法のうち難燃剤を添加する方法は汎用性の高いポ
リマーに好適であるため広く用いられ、難燃化剤として
、有機ハロゲン化合物、赤リン、有機リン化合物、金属
酸化物等が挙げられる。
Among the above methods, the method of adding a flame retardant is widely used because it is suitable for highly versatile polymers, and examples of the flame retardant include organic halogen compounds, red phosphorus, organic phosphorus compounds, and metal oxides.

しかしながら、有機ハロゲン化合物は燃焼雰囲気中で有
毒かつ腐食性の分解生成物を発生するため安全上の問題
が指摘されている。
However, safety problems have been pointed out because organic halogen compounds generate toxic and corrosive decomposition products in the combustion atmosphere.

一方、金属酸化物等の難燃剤としては水酸化アルミニウ
ムをはじめとする種々の金属酸化物やその水和物が用い
られている。
On the other hand, various metal oxides including aluminum hydroxide and their hydrates are used as flame retardants such as metal oxides.

一般に使用されている難燃剤の難燃化機構としては、 i)熱分解による結晶水の放出や揮発による熱エネルギ
ー吸収、 ii〉放出ガスによる可燃性ガスの希釈、iii )表
面部分で炭化被膜や不揮発性被膜形成による熱エネルギ
ーや酸素の浸入遮断 等が説明されている。上記したi)及びii)の作用は
、難燃剤の熱分解によるものである。一方、上記したi
ii )の被膜形成の作用は、化学反応のため、難燃作
用出現にばらつきがあり、十分な難燃性を確保できない
場合がある。
The flame retardant mechanisms of commonly used flame retardants include: i) release of crystal water through thermal decomposition and absorption of thermal energy through volatilization, ii> dilution of combustible gas by released gas, and iii) formation of a carbonized film on the surface. It explains how to block thermal energy and oxygen from entering by forming a non-volatile film. The above effects i) and ii) are due to thermal decomposition of the flame retardant. On the other hand, the above i
Since the action of film formation in ii) is a chemical reaction, the appearance of the flame retardant effect varies, and sufficient flame retardancy may not be ensured.

発明が解決しようとする問題点 一方、金属酸化物等の難燃剤を高分子材料に配合する際
、部分な難燃性の効果を得るには、通常、樹脂重量に対
して50%以上使用する必要があり、FRP樹脂に対し
てはその3倍と多量を使用しなかればならなかった。
Problems to be Solved by the Invention On the other hand, when blending flame retardants such as metal oxides into polymeric materials, in order to obtain a partial flame retardant effect, they are usually used in an amount of 50% or more based on the weight of the resin. Therefore, it was necessary to use three times the amount for FRP resin.

しかしながら、樹脂に対して多量の難燃剤を添加すると
被覆材(外皮)の機械的特性を低下させ、外皮およびケ
ーブルに外傷が発生し易くなるという問題があった。
However, there is a problem in that when a large amount of flame retardant is added to the resin, the mechanical properties of the covering material (sheath) are reduced, making the sheath and cable more likely to be damaged.

そこで、本発明の目的は1、ノンハロゲン難燃剤を使用
しつつ難燃性および機械的特性の優れた難燃ケーブルを
提供することにある。
Therefore, an object of the present invention is to provide a flame-retardant cable that uses a non-halogen flame retardant and has excellent flame retardancy and mechanical properties.

問題点を解決するための手段 本発明者らは上記問題を解決するために鋭意検討・研究
した結果、ノンハロゲン難燃剤とともに特定の軟化点を
有するガラスを有する材料を外皮として使用することに
より難燃性におよび機械的特性に優れた難燃ケーブルを
開発をすることに成功した。
Means for Solving the Problems As a result of intensive study and research in order to solve the above problems, the present inventors have found that flame retardancy can be achieved by using a non-halogen flame retardant and a material containing glass with a specific softening point as the outer skin. We succeeded in developing a flame-retardant cable with excellent strength and mechanical properties.

すなわち本発明は、ポリオレフィン系ポリマー100重
量部に対しノンハロゲン系難燃剤を40〜150重量部
と該ポリマーの熱分解温度以下の軟化点を有するガラス
粉末を少なくとも2重量部とを含有する材料で外皮が形
成されていることを特徴とするノンハロゲン難燃ケーブ
ルを提供することにある。
That is, the present invention provides an outer shell made of a material containing 40 to 150 parts by weight of a non-halogen flame retardant and at least 2 parts by weight of a glass powder having a softening point below the thermal decomposition temperature of the polymer, based on 100 parts by weight of a polyolefin polymer. An object of the present invention is to provide a non-halogen flame-retardant cable characterized in that it is formed with.

本発明において使用するガラス粉末はとしては、その軟
化点の低いものが好適であり、特に外皮材料に使用する
ポリオレフィン系ポリマーの熱分解温度より低いことが
必要である。このケーブルに使用されるポリオレフィン
系ポリマーの熱分解温度は450〜500℃であるため
、該ガラス粉末の軟化点としては450℃以下が好適で
ある。
The glass powder used in the present invention preferably has a low softening point, and in particular, it needs to have a softening point lower than the thermal decomposition temperature of the polyolefin polymer used for the outer skin material. Since the thermal decomposition temperature of the polyolefin polymer used in this cable is 450 to 500°C, the softening point of the glass powder is preferably 450°C or lower.

このようなガラス粉末の配合量は、外皮材料の主成分で
あるポリオレフィン系ポリマー100重1部に対し少な
くとも2重量部であることが必要である。
The blending amount of such glass powder needs to be at least 2 parts by weight per 100 parts by weight of the polyolefin polymer which is the main component of the outer skin material.

上記ガラス粉末の配合量が2重量部未満であると本発明
の難燃性の効果が殆ど現れないため好ましくない。
If the blending amount of the glass powder is less than 2 parts by weight, the flame retardant effect of the present invention will hardly be exhibited, which is not preferable.

本発明で使用する難燃剤は、通常この種のケーブルに使
用できるノンハロゲン系の難燃剤でよく、例えば、水酸
化マグネシウム、水酸化アルミニウム、水酸化カルシウ
ム、炭酸カルシウム、リン、リン化合物等あるいはこれ
らの混合物が挙げられるが特にこれらに限定されない。
The flame retardant used in the present invention may be a non-halogen flame retardant that is normally used for this type of cable, such as magnesium hydroxide, aluminum hydroxide, calcium hydroxide, calcium carbonate, phosphorus, phosphorus compounds, etc. Examples include, but are not limited to, mixtures.

このような難燃剤の配合量としては、ポリオレフィン系
ポリマー100重量部に対し40〜150重盪部である
ことが好ましい。難燃剤の配合量がポリマーに対して4
0重量部未満であると難燃性の効果が顕著に現れず、1
50重量部を超えると外皮材の機械的特性が低下するの
で実用上好ましくない。
The amount of such a flame retardant to be blended is preferably 40 to 150 parts by weight per 100 parts by weight of the polyolefin polymer. The amount of flame retardant added to the polymer is 4
If it is less than 0 parts by weight, the flame retardant effect will not be noticeable, and 1
If it exceeds 50 parts by weight, the mechanical properties of the outer skin material will deteriorate, which is not preferred in practice.

また、本発明のケーブルには、通常ケーブル被覆に使用
する添加剤を加えてもよい。そのような添加剤として、
例えばカーボンブラック、酸化防止剤、滑剤、分散剤が
挙げられる。
The cable of the present invention may also contain additives commonly used in cable coatings. As such an additive,
Examples include carbon black, antioxidants, lubricants, and dispersants.

本発明の難燃ケーブルの外皮は、ケーブル外被として被
便するには通常用いられる押出成型により、あるいは本
発明の外皮材からなるテープをケーブルの外側に巻き付
けて外被とすることもできる。
The outer sheath of the flame-retardant cable of the present invention can be formed by extrusion molding, which is commonly used for use as a cable sheath, or by wrapping a tape made of the sheathing material of the present invention around the outside of the cable.

作用 本発明によるケーブルは、ポリオレフィン系ポリマーに
、難燃材だけでな(、所定の軟化点を有する一定量以上
のガラスを配合した材料で外皮を形成したことを特徴と
する。
Function: The cable according to the present invention is characterized in that the outer sheath is made of a polyolefin polymer mixed with not only a flame retardant (but also a certain amount or more of glass having a predetermined softening point).

本発明のケーブルは、燃焼雰囲気におかれるとポリオレ
フィン系ポリマーの熱分解温度以下において外皮材表面
にガラスを析出し、不活性かつ不燃性の表面層を形成す
る。この表面層は、ケーブルを酸素や炎から遮断さする
機能を有する。従って、ハロゲン系難燃剤を用いること
なく、十分な難燃効果を発揮することができる。
When the cable of the present invention is placed in a combustion atmosphere, glass is deposited on the surface of the jacket material at a temperature below the thermal decomposition temperature of the polyolefin polymer, forming an inert and nonflammable surface layer. This surface layer has the function of shielding the cable from oxygen and flame. Therefore, a sufficient flame retardant effect can be exhibited without using a halogen flame retardant.

このように本発明においては、ケーブル外皮の難燃効果
は、主に配合成分のガラス粉末により得られるため、従
来のような被覆材の機械的特性を低下させていた難燃材
は大量に必要としない。
In this way, in the present invention, the flame-retardant effect of the cable sheath is mainly achieved by the glass powder, which is a compounded ingredient, so a large amount of flame-retardant material, which conventionally degrades the mechanical properties of the sheath, is not required. I don't.

このため本発明のケーブルは、被覆膜の機械的特性をも
向上させることができる。
Therefore, the cable of the present invention can also improve the mechanical properties of the coating film.

本発明の難燃ケーブルは、通常の電カケープル、光フア
イバケーブル、複合ケーブル等に適用でき、特に高温雰
囲気下で使用するケーブルに好適である。
The flame-retardant cable of the present invention can be applied to ordinary electric cables, optical fiber cables, composite cables, etc., and is particularly suitable for cables used in high-temperature atmospheres.

実施例 以下、本発明を実施例により更に具体的に説明するが、
本発明はこれらに何等限定されない。
Examples Hereinafter, the present invention will be explained in more detail with reference to Examples.
The present invention is not limited to these in any way.

第1図は、本発明による外皮を設けまたは比較例による
外皮が設けられる、200心スロツトタイプの光フアイ
バケーブルの断面図である。
FIG. 1 is a cross-sectional view of a 200-fiber slot type optical fiber cable provided with a jacket according to the present invention or a jacket according to a comparative example.

第1図において、断面図の中心に配置するテンションメ
ンバー6の外部に、外周上に光フアイバテープ5を収容
する溝を配設したポリエチレンロッド4が被覆され、該
溝内には光フアイバテープ5が埋設されている。
In FIG. 1, a polyethylene rod 4 having a groove for accommodating an optical fiber tape 5 on the outer periphery is coated on the outside of a tension member 6 disposed at the center of the cross-sectional view. is buried.

さらにその外周にはポリエステル系の不織布3および厚
さ0.2mmのアルミラップ2が順次巻設されており、
最外周部には厚さ23mmの外皮1が被覆されている。
Furthermore, a polyester nonwoven fabric 3 and an aluminum wrap 2 with a thickness of 0.2 mm are sequentially wound around the outer circumference.
The outermost periphery is covered with an outer skin 1 having a thickness of 23 mm.

以下の実施例および比較例において、本発明の外皮材料
を所定の配合量で調製し、上記した外皮1(!:して試
験用ケーブルに被覆した後、このようなケーブルについ
て難燃性および機械的特性の試験を行った。
In the following Examples and Comparative Examples, the sheathing material of the present invention was prepared in a predetermined amount and coated on a test cable with the sheath 1 (!) described above, and then the flame retardant and mechanical We conducted tests on its physical properties.

難燃試験用のケーブルには、光ファイバ等の心線を実装
していないケーブルを使用した。
Cables without core wires such as optical fibers were used for the flame retardant test.

また難燃性試験は垂直トレイ燃焼試験(、IEEIE3
83)によりケーブルの難燃性を評価した。垂直トレイ
燃焼試験は、長さ240cmのケーブルを架に立てケー
ブル下端から5Qcmの高さの所をバーナで20分間加
熱した後、ケーブルが損傷している長さが180cm以
下である場合を合格と評価するケーブルの難燃性評価法
の一つである。
In addition, the flame retardancy test is a vertical tray combustion test (, IEEE 3
83) was used to evaluate the flame retardancy of the cable. In the vertical tray combustion test, a cable with a length of 240 cm is placed on a rack and heated with a burner at a height of 5 Q cm from the bottom end of the cable for 20 minutes, and the cable is passed if the length of the damaged cable is 180 cm or less. This is one of the methods for evaluating the flame retardancy of the cable being evaluated.

実施例1 本発明の難燃性外皮材料として、粒径が300メツシユ
以下で軟化点が365℃のガラス粉末(IIIIPフリ
ットT−015イワキガラス社製)、水酸化マグネシウ
ム、ポリオレフィン系ポリマーとしてエチレン−アクリ
ル酸エチル共重合体、カーボンブラック、および酸化防
止剤を、第1表に示す配合割合で含む混合材料を用意し
た。
Example 1 As a flame-retardant outer skin material of the present invention, glass powder with a particle size of 300 mesh or less and a softening point of 365°C (IIIP frit T-015 manufactured by Iwaki Glass Co., Ltd.), magnesium hydroxide, and ethylene as a polyolefin polymer were used. A mixed material containing an ethyl acrylate copolymer, carbon black, and an antioxidant in the proportions shown in Table 1 was prepared.

このような難燃性外皮材料を、通常、この種の被覆処理
に使われる条件にて押出機によりケーブルに被覆させた
。得られた被覆ケーブルについて、上述した難燃性試験
を行った。その結果を第1表に示す。
The flame retardant jacket material was coated onto the cable using an extruder under conditions normally used for this type of coating process. The above-mentioned flame retardancy test was conducted on the obtained coated cable. The results are shown in Table 1.

この実施例において、難燃樹脂の燃焼ガス分析を行った
が有毒ガス全くは検出されなかった。
In this example, combustion gas analysis of the flame retardant resin was conducted, but no toxic gas was detected.

実施例2 難燃性被覆剤として第1表に示した配合成分を用いた以
外は、実施例1と同様にして材料を調製し、上記の試験
を行った。得られた結果を第1表に示す。
Example 2 A material was prepared in the same manner as in Example 1, except that the ingredients shown in Table 1 were used as the flame-retardant coating, and the above tests were conducted. The results obtained are shown in Table 1.

比較例1 難燃性被覆剤として第1表に示した配合成分を用いた以
外は、実施例1と同様にして材料を調製し、上記試験を
行った。得られた結果を第1表に示す。
Comparative Example 1 A material was prepared in the same manner as in Example 1, except that the ingredients shown in Table 1 were used as the flame-retardant coating, and the above tests were conducted. The results obtained are shown in Table 1.

この場合、ガラス粉末は使用しておらず、難燃剤である
水酸化マグネシウムの使用量を実施例1および2の場合
より増加したにもかかわらずケーブルの難燃性は劣って
いることがわかる。また、機械的特性についても実施例
1より劣っている。
In this case, it can be seen that although no glass powder was used and the amount of magnesium hydroxide used as a flame retardant was increased compared to Examples 1 and 2, the flame retardance of the cable was inferior. Further, the mechanical properties are also inferior to Example 1.

比較例2 難燃性被覆剤として第1表に示した配合成分を用いた以
外は、実施例1と同様にして材料を調製し、上記の試験
を行った。得られた結果を第1表に同様に示す。
Comparative Example 2 A material was prepared in the same manner as in Example 1, except that the ingredients shown in Table 1 were used as the flame-retardant coating, and the above tests were conducted. The results obtained are also shown in Table 1.

この場合、ガラス粉末を使用しない以外は実施例1と同
じ条件であったが、得られた被覆の難燃性については実
施例1より明らかに劣っており、実施例2よりも劣って
いることがわかる。
In this case, the conditions were the same as in Example 1 except that no glass powder was used, but the flame retardancy of the resulting coating was clearly inferior to that of Example 1 and inferior to that of Example 2. I understand.

比較例3 難燃性被覆剤として第1表に示した配合成分を用いた以
外は、実施例1と同様にして材料を調製し、上記の試験
を行った。この場合に使用したガラスは、軟化点がエチ
レン−アクリル酸エチル共重合体の熱分解温度より高い
480℃で、粒径が300メツシユ以下のガラス粉末(
IIIFフリットT−077イワキガラス社製)を使用
した。得られた結果を第1表に示す。
Comparative Example 3 A material was prepared in the same manner as in Example 1, except that the ingredients shown in Table 1 were used as the flame-retardant coating, and the above tests were conducted. The glass used in this case had a softening point of 480°C, which is higher than the thermal decomposition temperature of ethylene-ethyl acrylate copolymer, and a glass powder with a particle size of 300 mesh or less (
IIIF frit T-077 (manufactured by Iwaki Glass Co., Ltd.) was used. The results obtained are shown in Table 1.

第1表より、軟化点がポリマーの熱分解温度以上のガラ
スを用いた場合、難燃性は殆ど向上しないことが実施例
1および比較例2との比較よりわかる。
From Table 1, it can be seen from the comparison with Example 1 and Comparative Example 2 that when a glass whose softening point is higher than the thermal decomposition temperature of the polymer is used, the flame retardance hardly improves.

また、以上に示した実施例および比較例からすると、本
発明の外皮材は低温における伸びおよび脆性において従
来の難燃剤のみ使用した場合と同等の特性を維持してい
る。
Moreover, according to the Examples and Comparative Examples shown above, the skin material of the present invention maintains the same properties in terms of elongation and brittleness at low temperatures as when only conventional flame retardants are used.

発明の詳細 な説明したように本発明のノンハロゲン難燃ケーブルは
、燃焼時に有害ガスが発生せず、優れた難燃性を有する
As described in detail, the non-halogen flame-retardant cable of the present invention does not generate harmful gases during combustion and has excellent flame retardancy.

また、難燃剤の配合量を低減できるため、機械的特性が
向上するという特徴がある。このため、外傷が付きにく
いケーブルを実現することができる。
Furthermore, since the amount of flame retardant added can be reduced, mechanical properties are improved. Therefore, it is possible to realize a cable that is less susceptible to damage.

これらのことからすれば、本発明のケーブルは、ケーブ
ルの難燃性が要求される環境、例えば、トンネル、局内
、ビル内、船舶等に使用する電力、通信力よび複合ケー
ブルに極めて有用なものであり、当業界における価値は
高い。
Considering these points, the cable of the present invention is extremely useful for power, communication power, and composite cables used in environments where flame retardant cables are required, such as tunnels, inside stations, inside buildings, and on ships. Therefore, its value in this industry is high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、200心スロツトタイプの光フアイバケーブ
ルの断面図である。 (主な参照番号) ■・・難燃樹脂外被、 2・・アルミラップ、 3・・不織布、 4・・ポリエチレンロッド、 5・・5心光フアイバテープ、 6・・中心テンションメンバー
FIG. 1 is a sectional view of a 200-fiber slot type optical fiber cable. (Main reference numbers) ■...Flame retardant resin jacket, 2...Aluminum wrap, 3...Non-woven fabric, 4...Polyethylene rod, 5...5-fiber optical fiber tape, 6...Central tension member

Claims (4)

【特許請求の範囲】[Claims] (1)ポリオレフィン系ポリマー100重量部に対しノ
ンハロゲン系難燃剤を40〜150重量部と該ポリマー
の熱分解温度以下の軟化点を有するガラス粉末を少なく
とも2重量部とを含有する材料で外皮が形成されている
ことを特徴とするノンハロゲン難燃ケーブル。
(1) An outer skin is formed of a material containing 40 to 150 parts by weight of a non-halogen flame retardant and at least 2 parts by weight of a glass powder having a softening point below the thermal decomposition temperature of the polymer based on 100 parts by weight of the polyolefin polymer. A non-halogen flame retardant cable characterized by:
(2)上記ガラス粉末の軟化点が450℃以下であるこ
とを特徴とする特許請求の範囲第1項記載のノンハロゲ
ン難燃ケーブル。
(2) The non-halogen flame-retardant cable according to claim 1, wherein the glass powder has a softening point of 450° C. or lower.
(3)上記難燃剤が、水酸化マグネシウム、水酸化アル
ミニウム、水酸化カルシウム、炭酸カルシウム、リン、
リン化合物からなる群のうちから選ばれる少なくとも1
種であることを特徴とする特許請求の範囲第1項または
第2項に記載のノンハロゲン難燃ケーブル。
(3) The above flame retardant is magnesium hydroxide, aluminum hydroxide, calcium hydroxide, calcium carbonate, phosphorus,
At least one selected from the group consisting of phosphorus compounds
The non-halogen flame-retardant cable according to claim 1 or 2, which is a seed.
(4)上記外皮材料が、カーボンブラック、酸化防止剤
、滑剤、分散剤からなる群のうちから選ばれる少なくと
も1種を含むことを特徴とする特許請求の範囲第1項乃
至第3項のいずれか一項に記載のノンハロゲン難燃ケー
ブル。
(4) Any of claims 1 to 3, wherein the outer skin material contains at least one member selected from the group consisting of carbon black, an antioxidant, a lubricant, and a dispersant. The non-halogen flame-retardant cable described in item (1) above.
JP62047369A 1987-03-02 1987-03-02 Non-halogen flame retardant cable Pending JPS63213809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62047369A JPS63213809A (en) 1987-03-02 1987-03-02 Non-halogen flame retardant cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62047369A JPS63213809A (en) 1987-03-02 1987-03-02 Non-halogen flame retardant cable

Publications (1)

Publication Number Publication Date
JPS63213809A true JPS63213809A (en) 1988-09-06

Family

ID=12773191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62047369A Pending JPS63213809A (en) 1987-03-02 1987-03-02 Non-halogen flame retardant cable

Country Status (1)

Country Link
JP (1) JPS63213809A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0288653A (en) * 1988-09-27 1990-03-28 Showa Electric Wire & Cable Co Ltd Flame-retardant vibration-damping material composition
EP0831120A1 (en) * 1996-09-23 1998-03-25 PIRELLI CAVI E SISTEMI S.p.A. Flame-retardant composition for polymer compounds
WO2001002888A1 (en) * 1999-06-30 2001-01-11 The Furukawa Electric Co., Ltd. Optical fiber cord
JP2012053484A (en) * 2008-11-18 2012-03-15 Fujikura Ltd Optical fiber cable

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5979202A (en) * 1982-10-01 1984-05-08 アーエーゲー−テレフンケン・カーベルヴエルケ・アクチエンゲゼルシヤフト・ライト Flame resistant communication cable
JPS60133059A (en) * 1983-12-22 1985-07-16 Karupu Kogyo Kk Composite resin composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5979202A (en) * 1982-10-01 1984-05-08 アーエーゲー−テレフンケン・カーベルヴエルケ・アクチエンゲゼルシヤフト・ライト Flame resistant communication cable
JPS60133059A (en) * 1983-12-22 1985-07-16 Karupu Kogyo Kk Composite resin composition

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0288653A (en) * 1988-09-27 1990-03-28 Showa Electric Wire & Cable Co Ltd Flame-retardant vibration-damping material composition
EP0831120A1 (en) * 1996-09-23 1998-03-25 PIRELLI CAVI E SISTEMI S.p.A. Flame-retardant composition for polymer compounds
US6555605B1 (en) 1996-09-23 2003-04-29 Pirelli Cavi E Sistemi S.P.A. Flame-retardant composition for polymer compounds
WO2001002888A1 (en) * 1999-06-30 2001-01-11 The Furukawa Electric Co., Ltd. Optical fiber cord
US6893719B1 (en) * 1999-06-30 2005-05-17 The Furukawa Electric Co., Ltd. Optical fiber cord
US7153570B2 (en) 1999-06-30 2006-12-26 The Furukawa Electric Co., Ltd. Optical fiber cord
JP2012053484A (en) * 2008-11-18 2012-03-15 Fujikura Ltd Optical fiber cable

Similar Documents

Publication Publication Date Title
CA1218482A (en) Flame-retardant cross-linked composition and flame- retardant cable using same
GB2156825A (en) Flame-retardant cross-linked composition and flame-retardant cable using same
CN85101356B (en) Flame-retardant cross linking composite and flame-retardant cable thereby
JPS63213809A (en) Non-halogen flame retardant cable
CN116031019A (en) Oxygen-isolation layer high-flame-retardance control cable
JPH0244612A (en) Flame retardant tape for cable
CN210295933U (en) Flame-retardant halogen-free low-smoke non-toxic cable
JP3514036B2 (en) Flame retardant wires and cables
JPH02255843A (en) Flame-retarding resin composition and flame-retarding cable prepared by using same
CN211208038U (en) A-type flame-retardant low-smoke halogen-free control cable
JPH03254016A (en) Flame retardant cable
CN108129742A (en) High fire-retardance thermoplastic low-smoke halide-free polyolefine material
RU203261U1 (en) CONTROL CABLE
JP3129084B2 (en) Fire resistant cable and method of manufacturing the same
JPS5966006A (en) Flame resistant composition for wire and cable
JPS6334805A (en) Flame resisting electrically insulating composition
JPH04101109A (en) Flame retardant waterproof optical fiber cable
JPS61283638A (en) Flame-retardant electrical insulating composition
JPH0430692B2 (en)
JPH04253745A (en) Flame-retarding composition
JP3050584B2 (en) Flame retardant wires and cables
JPS62144120A (en) Flame-retardant optical fiber cable
JPH0750573B2 (en) Flame-retardant electric cable
JPH05182532A (en) Fire-resisting cable
JPH01186708A (en) Fire-resistant insulating composition