JPS63213601A - Production of low oxygen tool steel powder - Google Patents

Production of low oxygen tool steel powder

Info

Publication number
JPS63213601A
JPS63213601A JP62045787A JP4578787A JPS63213601A JP S63213601 A JPS63213601 A JP S63213601A JP 62045787 A JP62045787 A JP 62045787A JP 4578787 A JP4578787 A JP 4578787A JP S63213601 A JPS63213601 A JP S63213601A
Authority
JP
Japan
Prior art keywords
powder
tool steel
oxide
steel powder
low oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62045787A
Other languages
Japanese (ja)
Inventor
Minoru Hirano
稔 平野
Kiyomi Oe
大江 清美
Hiroshi Takigawa
滝川 博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP62045787A priority Critical patent/JPS63213601A/en
Publication of JPS63213601A publication Critical patent/JPS63213601A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily obtain low oxygen tool steel powder having satisfactory formability by crushing oxide on the surface of water atomized tool steel powder of a specified particle size by a mechanical means and by separating and removing the crushed oxide. CONSTITUTION:Oxide on the surface of tool steel powder of <=350 mesh produced by water atomization is crushed by a wet mechanical crushing means such as an attriter or a ball mill. The oxide crushed and peeled from the surface of the powder is separated and removed by a proper means such as flotation or air elutriation to produce the titled powder. The low oxygen content of the powder can be easily and effectively attained and the recrushing or classification of sintered particles formed by reduction is made unnecessary. The powder is uniformly miscible with hard powder, is easily formable and can give a sound sintered body.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は切削工具、金型、圧延ロールをはじめ他の耐摩
耗用部品の焼結用原料粉末としても好適な低酸素工具鋼
粉末の製造方法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention is directed to the production of low-oxygen tool steel powder suitable as a raw material powder for sintering cutting tools, molds, rolling rolls, and other wear-resistant parts. Regarding the method.

(従来の技術とその問題点) 金属粉末の製造方法のうちアトマイズ法は周知のように
、溶湯ノズルを流下する金属溶湯に液体または気体のジ
ェット流を作用させて溶湯流を粉砕すると共に急冷凝固
させ金属粉末を得る方法である。
(Prior art and its problems) As is well known, the atomization method among metal powder manufacturing methods involves applying a jet stream of liquid or gas to the molten metal flowing down a molten metal nozzle to pulverize the molten metal stream and rapidly solidifying it. This is a method to obtain metal powder.

液体ジェットとしては水が主として用いられているが、
この水アトマイズ法によって製造された金属粉末は必然
的に酸化されるので、通常、アトマイズ後の粉末表面に
付着している酸化物を還元して用いている。
Water is mainly used as a liquid jet, but
Since the metal powder produced by this water atomization method is inevitably oxidized, the oxides adhering to the powder surface after atomization are usually reduced before use.

一方気体ジェ7トは、噴霧媒ガスを非酸化性ガスとする
ことによって低酸素粉末を得ることができるが、粉末が
球形で冷開成形が困難である。
On the other hand, with gas jets, a low-oxygen powder can be obtained by using a non-oxidizing gas as the atomizing medium gas, but the powder is spherical and cold-open molding is difficult.

なお上記水アトマイズ粉末の形状は不規則形である。Note that the shape of the water atomized powder is irregular.

ところで、近年、加工の精密化に伴い高硬度と共に高靭
性を有し、しかも機械加工の容易な工具材が要求せられ
、か\る工具材による精密工具として高硬度・高靭性ハ
イス工具やコーテングハイス工具が用いられているが、
これらの工具材料には偉績性が高く高硬度化が可能な粉
末冶金法にょるハイス材(粉末ハイス)が最適である。
By the way, in recent years, as processing becomes more precise, tool materials that have both high hardness and high toughness and are easy to machine are required. Although high speed tools are used,
The most suitable material for these tools is high-speed steel material made by powder metallurgy (powdered high-speed steel), which has high performance and can be hardened.

つまり溶製ハイスでは溶製に伴う支障、たとえば高硬度
付与のために多量含有させた炭化物の偏析や、溶製上か
らの組成の制限などがあるのに比し、粉末ハイスでは高
合金化が比較的容易であり、靭性、耐熱性、耐摩耗性な
どにおいて溶製ハイス以上のものが製造できる。更に一
種の原料粉末では不十分な、あるいは持たない特性を複
数種の粉末混合によって強化あるいは付与することが可
能で、たとえば350メツシュ以下のハイス粉末にTi
N。
In other words, unlike melted HSS, which has problems associated with melting, such as the segregation of carbides that are added in large amounts to give it high hardness, and restrictions on the composition from the melting process, powdered HSS has problems with high alloying. It is relatively easy to manufacture, and it can be manufactured in terms of toughness, heat resistance, abrasion resistance, etc. that are better than melted high speed steel. Furthermore, it is possible to strengthen or impart properties that are insufficient or not possessed by one type of raw material powder by mixing multiple types of powder. For example, Ti
N.

VC等の窒化物や炭化物粉末を添加焼結した高耐摩耗性
焼結ハイスの製造も試みられている。
Attempts have also been made to produce highly wear-resistant sintered high speed steel by adding and sintering nitride or carbide powder such as VC.

上記ハイスは従来の粉末ハイスが超硬合金に比して劣る
耐摩耗性を補い、低級の超硬合金に匹敵する耐摩耗性を
備えると共に、超硬合金に優る靭性を有し、超硬合金に
は施し得ない機械加工を可能とした工具材である。
The above-mentioned high speed steel compensates for the wear resistance of conventional powdered high speed steel compared to cemented carbide, has wear resistance comparable to lower grade cemented carbide, and has toughness superior to cemented carbide. It is a tool material that enables machining that cannot be performed on other machines.

上述の超硬合金板の耐摩耗性に加え優れた靭性を備え、
機械加工を可能とした焼結ハイスにおいて、350メツ
シュ以下の微粉ハイス粉末を用いるのは、350メツシ
ュ以上の場合、TiN等の硬質粒子を混合してもその均
一分散が困難なためである。
In addition to the wear resistance of the cemented carbide plate mentioned above, it has excellent toughness,
The reason why fine HSS powder with a mesh size of 350 mesh or less is used in sintered high speed steel that can be machined is because if the mesh size is 350 mesh or more, even if hard particles such as TiN are mixed, it is difficult to uniformly disperse the powder.

それに使用粉末としては成形性のよい水アトマイズ法に
よるハイス粉末が好適であるが、既述のように水アトマ
イズ法によるものは表面に付着の酸化物が多く、これを
還元除去する必要があるが、特に、前記硬質粒子混合に
好適な350メツシュ以下の微粉の還元においては粉末
が凝集し解粒が困難となる点が問題である。
The suitable powder to use for this is high-speed steel powder produced by the water atomization method, which has good moldability, but as mentioned above, powder produced by the water atomization method has a lot of oxides attached to the surface, which must be reduced and removed. In particular, when reducing fine powder of 350 mesh or less, which is suitable for the hard particle mixing, the problem is that the powder aggregates and disintegration becomes difficult.

本発明はか\る問題点に鑑み、上記ハイス粉末のみなら
ず、ハイスを含む広い範囲の工具鋼の粉末の製造におい
て、350メツシュ以下の微粉で、低酸素かつ成形性の
良好な工具鋼粉末を容易に得る目的を以ってなされたも
のである。
In view of these problems, the present invention is aimed at producing not only the above-mentioned high speed steel powder but also a wide range of tool steel powders including high speed steel. This was done with the purpose of easily obtaining the following.

(問題点を解決するための手段) すなわち上記目的達成のために、本発明では、350メ
ツシュ以下の水アトマイズ工具鋼粉末の表面酸化物を、
機械的粉砕手段により粉砕し、次いで粉末酸化物を分離
除去する手段を採用したのである。
(Means for solving the problem) That is, in order to achieve the above object, in the present invention, the surface oxide of water atomized tool steel powder of 350 mesh or less is
They adopted a method of pulverizing by mechanical pulverizing means and then separating and removing the powdered oxide.

(実施例) 以下、本発明を実施例と共に説明する。(Example) The present invention will be explained below along with examples.

本発明で対象とする工具鋼粉末が、成形性の良い粉末を
得るために水アトマイズ粉末であり、硬質粉末との混合
分散性の面から、350メ・7シユ以下の微粉であるこ
とは既に述べたが、更に350メツシュ以下の粉末が3
50メツシュ以上の粉末に辻して表面酸化物の粉砕が容
易な点を知見し利用しているのである。
The tool steel powder targeted by the present invention is a water atomized powder in order to obtain a powder with good formability, and from the standpoint of mixing and dispersibility with hard powder, it is already known that it is a fine powder of 350 mm.7 or less. As mentioned above, powder of 350 mesh or less is 3
They discovered that it is easy to crush surface oxides in powders with a mesh size of 50 or more, and utilized this knowledge.

第1図〜第3図は水アトマイズ工具鋼粉末例の金属組織
写真(xlOO)であり、第1図は粒度10(〜150
メツシュ、第2図は200〜300メツシュ、第3図が
350メツシュ以下の粉末であり、350メツシュより
粗い粉末は表面がぶどう房状を呈して表面酸化物の粉砕
が困難である。
Figures 1 to 3 are metallographic photographs (xlOO) of examples of water atomized tool steel powder, and Figure 1 shows particle size of 10 (~150).
The mesh size is 200 to 300 meshes in FIG. 2, and 350 meshes or less in FIG. 3. Powders coarser than 350 meshes have a grape cluster-like surface, making it difficult to crush surface oxides.

表面酸化物の機械的粉砕手段としては、たとえばアトラ
イター、ボールミル等による湿式の粉砕手段に依ること
ができる。
As the mechanical crushing means for the surface oxide, wet crushing means such as an attritor or a ball mill can be used.

次に上記粉砕によりて、粉末表面から剥落した粉砕酸化
物の除去は浮遊選鉱あるいは気流分離等の適宜の手段に
よって分離し除去することができるのである。
Next, the pulverized oxides flaked off from the powder surface by the above-mentioned pulverization can be separated and removed by appropriate means such as flotation or air separation.

以下更に具体的実施例を説明する。Further specific examples will be described below.

下記第1表は、本発明方法により低酸素工具鋼粉末とし
た原料粉末(水アトマイズ工具鋼粉末・350メツシュ
以下)の化学組成を示したもので、これらの各粉末をそ
れぞれ1回量を3.7kgとしてアトライターに入れ、
アルコール中で10分間混合した。つまり激しい混合に
よって粉末同士が摩擦され表面酸化物が粉砕されるので
ある。
Table 1 below shows the chemical composition of the raw material powder (water atomized tool steel powder, 350 mesh or less) made into low-oxygen tool steel powder by the method of the present invention. Put it in the attritor as .7kg,
Mixed in alcohol for 10 minutes. In other words, the intense mixing causes the powders to rub against each other and pulverize the surface oxides.

′        、1よ −・ かくて粉砕処理した粉末をアトライターから取り出し、
更にアルコールを加えて懸濁させた混合液を静置し沈積
させた。
' , 1 - The thus pulverized powder is taken out of the attritor,
Further alcohol was added and the suspended mixture was allowed to stand and settle.

これによって比重及び粒径の大きい銅粉(比重約8g/
cc、粒径約5μm〜以上)が先に沈み、比重及び粒径
の小さい酸化物(比重約3g/cc、粒径約1μm以下
)が多量に液中に懸濁状態で残ったので、固液を分離す
ることによって酸化物の多くを除去することができた。
This results in copper powder with large specific gravity and particle size (specific gravity approximately 8g/
cc, particle size of about 5 μm or more) sank first, and a large amount of oxides with small specific gravity and particle size (specific gravity of about 3 g/cc, particle size of about 1 μm or less) remained in suspension in the liquid. By separating the liquid, much of the oxide could be removed.

第2表に上記手段による酸化物除去状況を、酸素量の変
化によって示した。
Table 2 shows the status of oxide removal by the above means, as a function of changes in the amount of oxygen.

第2表 単位 wt、χ 次に上記供試粉末のうち、鋼種A粉末について、本発明
の低酸素処理を行った粉末と、無処理粉末とを用意し、
いずれも次のようにして焼結体(焼結ハイス材)とした
Table 2 Unit wt, χ Next, among the above sample powders, for steel type A powder, a powder subjected to the low oxygen treatment of the present invention and an untreated powder were prepared,
Both were made into sintered bodies (sintered high speed steel materials) in the following manner.

すなわち上記両者のいずれもに、10χTiN粉末、6
.5χVC粉末を添加し、これらの混合をアトライター
を用いてアルコール中で5時間行った後、混合粉末を乾
燥し、乾燥の混合粉末にパラフィンを4χ添加してよく
混練した。
That is, in both of the above, 10χTiN powder, 6
.. After adding 5χ VC powder and mixing them in alcohol using an attritor for 5 hours, the mixed powder was dried, and 4χ of paraffin was added to the dry mixed powder and kneaded well.

上記混練物を3t/cm2の圧力を加える冷間静水圧プ
レスで25φX100(n)の丸棒状に成形し、次いで
同成形体を真空中で1150℃に加熱して還元処理を行
った。但し還元処理時間は、 低酸素処理粉末成形体−・−・−2時間無処理粉末成形
体−・・−一−−−−−−・−4時間。
The above-mentioned kneaded product was molded into a round bar shape of 25φ×100(n) using a cold isostatic press applying a pressure of 3 t/cm 2 , and then the molded product was heated to 1150° C. in a vacuum to perform a reduction treatment. However, the reduction treatment time was as follows: Low-oxygen treated powder compact: -2 hours; Untreated powder compact: -1:4 hours.

次いで上記処理後の各成形体をそれぞれ、1290℃で
1時間加熱して焼結を行い焼結体(焼結ハイス材)を製
造した各焼結体の酸素量を調査したところ、 低酸素化処理粉末焼結体酸素量−・−0,043χ無処
理粉末焼結体酸素量−−−−m=−−−・・・・−・・
−・−0,082Zであった。
Next, each molded body after the above treatment was heated at 1290°C for 1 hour and sintered to produce a sintered body (sintered high speed steel material).When the oxygen content of each sintered body was investigated, it was found that the oxygen content was low. Oxygen content in treated powder sintered body - 0,043χ Oxygen content in untreated powder sintered body ----m=----...
-・-0,082Z.

(発明の効果) 以上のように、本発明では350メソシユ以下の水アト
マイズ工具鋼粉末の表面酸化物を、機械的粉砕手段によ
り粉砕し、粉砕の酸化物を分離除去するようにしたので
、従来の還元による低酸素化に比し、容易にかつ効果的
に低酸素化を実現することができたのであり、しかも還
元に伴う焼結粒子の再粉砕や分級等の処理を必要としな
いのである。
(Effects of the Invention) As described above, in the present invention, the surface oxide of water atomized tool steel powder of 350 mesos or less is crushed by mechanical crushing means, and the crushed oxide is separated and removed. Compared to low oxygen reduction through reduction, it was possible to achieve low oxygen reduction easily and effectively, and there was no need to re-grind or classify the sintered particles associated with reduction. .

それに低酸素化の効果は上記具体的実施例に示したよう
に優れたものであり、従って本発明による粉末使用の焼
結体は、その製造時における還元工程を短縮でき、しか
も健全な焼結体が得られるのである。
In addition, the effect of reducing oxygen is excellent as shown in the above-mentioned specific examples, and therefore, the sintered body using powder according to the present invention can shorten the reduction process during its production, and can also achieve sound sintering. You will gain a body.

本発明による粉末は350メソシユ以下で、かつ成形性
のよい水アトマイズ法による粉末を基本としたものであ
るから、硬質粉末との均一混合性もよく、成形も容易で
、この面からも健全な焼結体が得られるのであり、本発
明の工業的価値は著大である。
The powder according to the present invention has a particle size of 350 mesosius or less and is based on a water atomized powder with good moldability, so it has good uniformity in mixing with hard powder, is easy to mold, and is healthy from this point of view. A sintered body can be obtained, and the industrial value of the present invention is significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は水アトマイズ工具鋼粉末例の金属組織
写真(xloo)であり、第1図は粒度100〜150
メソシユ、第2図は200〜300メツシュ、第3図は
350メソシユ以下め粉末を示す。 第 3 図 (x TOO) 第 2図 第1図
Figures 1 to 3 are metallographic photographs (xloo) of examples of water atomized tool steel powder, and Figure 1 has a grain size of 100 to 150.
Figure 2 shows powders of 200 to 300 mesh, and Figure 3 shows powders of 350 mesh or less. Figure 3 (x TOO) Figure 2 Figure 1

Claims (1)

【特許請求の範囲】[Claims] (1)350メッシュ以下の水アトマイズ工具鋼粉末の
表面酸化物を、機械的粉砕手段により粉砕し、次いで粉
砕酸化物を分離除去することを特徴とする低酸素工具鋼
粉末の製造方法
(1) A method for producing low-oxygen tool steel powder, which comprises pulverizing surface oxides of water atomized tool steel powder with a size of 350 mesh or less by mechanical pulverization means, and then separating and removing the pulverized oxides.
JP62045787A 1987-02-28 1987-02-28 Production of low oxygen tool steel powder Pending JPS63213601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62045787A JPS63213601A (en) 1987-02-28 1987-02-28 Production of low oxygen tool steel powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62045787A JPS63213601A (en) 1987-02-28 1987-02-28 Production of low oxygen tool steel powder

Publications (1)

Publication Number Publication Date
JPS63213601A true JPS63213601A (en) 1988-09-06

Family

ID=12728991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62045787A Pending JPS63213601A (en) 1987-02-28 1987-02-28 Production of low oxygen tool steel powder

Country Status (1)

Country Link
JP (1) JPS63213601A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016516135A (en) * 2013-03-15 2016-06-02 フェデラル−モーグル コーポレイション Powder metal composition for wear and temperature resistant applications and method for producing the same
US10124411B2 (en) 2008-04-08 2018-11-13 Federal-Mogul Llc Method for producing powder metal compositions for wear and temperature resistance applications and method of producing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10124411B2 (en) 2008-04-08 2018-11-13 Federal-Mogul Llc Method for producing powder metal compositions for wear and temperature resistance applications and method of producing same
US10543535B2 (en) 2008-04-08 2020-01-28 Tenneco Inc. Method for producing powder metal compositions for wear and temperature resistance applications
JP2016516135A (en) * 2013-03-15 2016-06-02 フェデラル−モーグル コーポレイション Powder metal composition for wear and temperature resistant applications and method for producing the same

Similar Documents

Publication Publication Date Title
US3846126A (en) Powder metallurgy production of high performance alloys
WO1994005822A1 (en) Powder metal alloy process
SE452634B (en) SET TO MAKE A SINTRATE SPEED QUALITY WITH HIGH VANAD CONTENT
JP2000290738A (en) Manufacture of hard carbide powder having low compacting pressure
JPH01263204A (en) Low oxygen content fine globular particles and production thereof by fluid energy milling and high temperature treatment
JPH0539501A (en) Hard particle dispersed alloy powder and production thereof
JP3361331B2 (en) Composite consisting of powder of sponge iron and hard phase material
JPH0475295B2 (en)
DE3138669A1 (en) METHOD FOR PRODUCING MOLDED OBJECTS
CN112626404A (en) 3D printing high-performance WMoTaTi high-entropy alloy and low-cost powder preparation method thereof
EP1554070B1 (en) Iron-based powder composition including a silane lubricant
JPS63213601A (en) Production of low oxygen tool steel powder
JP2012117101A (en) Method for manufacturing cemented carbide
JP2012117100A (en) Cemented carbide
CN101565176B (en) Method for dispersing nanometer TiN powder
US3597188A (en) Method of making high density iron powder
CN113020605B (en) Special in-situ toughening high-performance spherical tungsten powder for laser 3D printing and preparation method thereof
JP2018053358A (en) Method for producing cemented carbide
JPH07310101A (en) Reduced iron powder for sintered oilless bearing and its production
JPH0222121B2 (en)
KR950007174B1 (en) Hard alloy process of watch case
JPH01184203A (en) Alloy powder for injected-compacting
RU2110598C1 (en) Method of manufacturing products from sintered hard-alloy material
JPH01205402A (en) Manufacture of rare earth fe-b magnetic powder
JPH02263901A (en) Powder for metal injection-molding and manufacture thereof