JPS63213262A - Power generation system with fuel cell - Google Patents

Power generation system with fuel cell

Info

Publication number
JPS63213262A
JPS63213262A JP62042631A JP4263187A JPS63213262A JP S63213262 A JPS63213262 A JP S63213262A JP 62042631 A JP62042631 A JP 62042631A JP 4263187 A JP4263187 A JP 4263187A JP S63213262 A JPS63213262 A JP S63213262A
Authority
JP
Japan
Prior art keywords
fuel
air
control
control device
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62042631A
Other languages
Japanese (ja)
Inventor
Toshio Kasano
笠野 利夫
Minoru Izumitani
泉谷 稔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62042631A priority Critical patent/JPS63213262A/en
Publication of JPS63213262A publication Critical patent/JPS63213262A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04388Pressure; Ambient pressure; Flow of anode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04395Pressure; Ambient pressure; Flow of cathode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04559Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04574Current
    • H01M8/04589Current of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04865Voltage
    • H01M8/0488Voltage of fuel cell stacks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To make it possible to operate a fuel cell stably by adding a proceeding control to a feedback control loop of an interelectrode voltage difference control valve depending on preset air and fuel flow values, as well as controlling the ratio of the gas amount consumed inside the cell to the feeding amounts of the air and the fuel within a specific range. CONSTITUTION:The cell furnishes a main controller 16 and the like to control in a package a D/A converting controller 11, flow controllers 4 and 5 between the electrodes, an interelectrode voltage difference controller 9, and the like, according to the operator instructions. In the power generation system of such a fuel cell, as well as the D/A converting controller 11, and the air and the fuel flow controllers 4 and 5 are controlled in a cross limit control to make the ratio of the gas amount consumed inside the cell to the air and fuel feeding amounts within a specific range, a proceeding control is added to the feedback control loop of an interelectrode voltage difference control valve 8 depending on the preset values of the air and the fuel flows. As a result, the voltage difference between the cell electrodes is controlled within a specific range, as well as the gas shortage of the fuel and the air is prevented against a sudden variation of the load instruction or the variation of the actual load, and the fuel cell is operated stably.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は燃料電池発電システムに関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to a fuel cell power generation system.

〔従来の技術〕[Conventional technology]

従来の燃料電池発電システムの燃料電池制御装置は特開
昭59−111270号公報に記載されているように、
燃料電池に供給する燃料および空気流量は負荷指令値ま
たは負荷に見合って制御する構成となっており、燃料電
池の空気極〜燃料極間の差圧も各種の圧力あるいは極間
差圧を検出して、差圧調節弁により一定の値以下に制御
する構成となっていた。しかしこの装置は、燃料電池に
供給する燃料、空気の流量調節弁や電池極間差圧を制御
する差圧調節弁には必ず動作遅れが生じるため、負荷急
変時には燃料電池に供給する燃料、空気のガス量が不足
したり、過渡的に発生する極間差圧の抑制が困難である
など負荷あるいは負荷指令急変に対する燃料電池の安定
運転性に関して配慮されていなかった。
A conventional fuel cell control device for a fuel cell power generation system is as described in Japanese Patent Application Laid-Open No. 111270/1983.
The fuel and air flow rates supplied to the fuel cell are controlled according to the load command value or the load, and the differential pressure between the air electrode and fuel electrode of the fuel cell is also detected by various pressures or differential pressure between the electrodes. Therefore, the pressure was controlled to below a certain value using a differential pressure control valve. However, with this device, there is always a delay in the operation of the flow control valve for the fuel and air supplied to the fuel cell and the differential pressure control valve that controls the differential pressure between the battery electrodes. No consideration was given to the stable operation of the fuel cell in response to sudden changes in load or load command, such as insufficient gas volume or difficulty in suppressing transiently occurring interelectrode differential pressure.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、負荷あるいは急荷指令値急変時の燃料
電池安定運転性に関して配慮されておらず、急激に負荷
指令値を増加させた場合、電気的には直交変換装置の応
答が早いものの、発電に必要な燃料、空気の供給は流量
調節弁の動作遅れにより不足する可能性がある。また、
何等かに要因で実際の負荷が負荷指令値より増加した場
合、燃料、空気が負荷指令値を基に設定される従来技術
では発電に必要なガス量が不足する可能性がある。
The above-mentioned conventional technology does not take into account stable operation of the fuel cell when the load or urgent command value suddenly changes, and when the load command value is suddenly increased, the response of the orthogonal conversion device is electrically quick; The supply of fuel and air necessary for power generation may be insufficient due to delays in the operation of flow control valves. Also,
If the actual load increases from the load command value for some reason, the amount of gas required for power generation may be insufficient in the conventional technology in which fuel and air are set based on the load command value.

電池の極間差圧に関しても差圧調節弁には動作遅れが生
じるため、各種の圧力あるいは極間差圧によるフィード
バック制御のみでは負荷急変等の過渡的に発生する差圧
抑制が廻しい等、電池性能の急激な劣化につながる問題
点があった。
There is also a delay in the operation of the differential pressure regulating valve regarding the differential pressure between the battery's poles, so feedback control based only on various pressures or the differential pressure between the poles will not be able to suppress the differential pressure that occurs transiently due to sudden changes in load, etc. There was a problem that led to rapid deterioration of battery performance.

本発明は以上の点に鑑みなされたものであり、急激な負
荷指令の変化や実負荷の変化に対し燃料。
The present invention has been made in view of the above points, and it is possible to use fuel for rapid changes in load commands and changes in actual load.

空気のガス不足を防止すると共に、電池極間差圧を一定
範囲にコントロールして燃料電池の安定運転を可能とし
た燃料電池発電システムを提供することを目的とするも
のである。
The object of the present invention is to provide a fuel cell power generation system that prevents air gas shortage and controls the differential pressure between battery electrodes within a certain range to enable stable operation of the fuel cell.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、直交変換制御装置と空気、燃料流量制御装
置とをクロスリミット制御で空気、燃料の供給量に対す
る電池内部で消費するガス量の比を一定範囲にコントロ
ールすると共に、空気、燃料の流量の設定値を基に極間
蓋間調節弁のフィードバック制御ループに先行制御を付
加することにより、達成される。
The above purpose is to control the ratio of the amount of gas consumed inside the battery to the amount of air and fuel supplied to a certain range by cross limit control of the orthogonal conversion control device and the air and fuel flow rate control device, and to control the flow rate of air and fuel This is achieved by adding advance control to the feedback control loop of the pole-to-cover control valve based on the set value of .

〔作用〕[Effect]

本発明のクロスリミット制御は次に述べるようなもので
ある。燃料電池に供給される燃料および空気流量の実測
値を計測して各々のガス流量に対して許容上限電流値を
演算し、燃料流量で決まる許容電流値と空気流量で決ま
る許容電流値とを低値選択を行う。この選択された信号
と燃料電池の実測電圧(DC)とを基に許容発電々力を
演算して、この許容発電々力値と直交変換装置に設定さ
れる負荷指令値とを低値選択する。この選択された信号
を直交変換装置の有効電力設定値として与えることによ
り、燃料電池に供給する燃料または空気流量が不足した
場合には発電々力を制限することと、何等かの要因で有
効電力設定値よりも多めの出力がとられた場合を考慮し
、電池電流を基に燃料下限流量値および空気下限流量値
を演算し、これらを負荷指令値から設定される燃料、空
気の流量設定値と各々高値選択して燃料、空気の各々の
高値選択された信号とを各流量制御装置に設定する。こ
のようにすることにより、負荷変化時におけるガス不足
防止が可能となり、ガス不足による電池性能劣化の心配
がない。
The cross limit control of the present invention is as described below. Measure the actual values of the fuel and air flow rates supplied to the fuel cell, calculate the allowable upper limit current value for each gas flow rate, and lower the allowable current value determined by the fuel flow rate and the allowable current value determined by the air flow rate. Make a value selection. The allowable generated power is calculated based on this selected signal and the measured voltage (DC) of the fuel cell, and a low value is selected for this allowable generated power value and the load command value set to the orthogonal conversion device. . By giving this selected signal as the active power setting value of the orthogonal conversion device, it is possible to limit the power generation when the fuel or air flow rate supplied to the fuel cell is insufficient, and to reduce the active power due to some reason. Considering the case where the output is higher than the set value, the fuel lower limit flow rate value and air lower limit flow rate value are calculated based on the battery current, and these are used as the fuel and air flow rate set value set from the load command value. and the respective high values are selected, and the high value selected signals for each of fuel and air are set in each flow rate control device. By doing so, it is possible to prevent gas shortage when the load changes, and there is no fear of deterioration of battery performance due to gas shortage.

また、燃料、空気流量の実測値を計測し、各々のガス流
量に対してH2利用率、02利用率下限値をベースに下
限電流値を演算して高値選択を行う。この選択された信
号と電池電圧実測値とを基に発電々力下限値を演算して
、直交変換装置に設定される負荷指令値と上述の発電名
刀下限値とを高値選択する。この選択された信号を直交
変換装置への有効電力設定値として与えることにより、
燃料、空気どちらも予め設定した利用率の範囲でコント
ロールすることが可能となり、電池に供給するガス量か
ら電池の排ガス量が推定できる。
In addition, actual measured values of fuel and air flow rates are measured, and a lower limit current value is calculated based on the H2 utilization rate and 02 utilization rate lower limit value for each gas flow rate, and a high value is selected. A power generation lower limit value is calculated based on the selected signal and the measured battery voltage value, and a higher value is selected between the load command value set in the orthogonal conversion device and the above-mentioned power generation lower limit value. By giving this selected signal as the active power setting value to the orthogonal transformer,
Both fuel and air can be controlled within a preset utilization rate range, and the amount of exhaust gas from the battery can be estimated from the amount of gas supplied to the battery.

電池の排ガス量が判ると極間差圧調節弁の弁開度一定状
態で、電池に供給するガス流量を変化させた場合の電池
排ガス量が及ぼす極間差圧への影響が推定できる。この
ためこれをパラメータとして電池に供給されるガス流量
設定値を基に極間差圧制御装置への先行制御を付加する
ことにより、負荷指令急変時の極間差圧を一定範囲に抑
制することが可能となり、燃料電池の安定運転を図るこ
とができる。
Once the amount of exhaust gas from the battery is known, it is possible to estimate the effect of the amount of battery exhaust gas on the differential pressure between the electrodes when the gas flow rate supplied to the battery is varied while the opening degree of the electrode differential pressure regulating valve is constant. Therefore, by using this as a parameter and adding advance control to the inter-electrode differential pressure control device based on the gas flow rate set value supplied to the battery, it is possible to suppress the inter-electrode differential pressure within a certain range when the load command suddenly changes. This makes it possible to achieve stable operation of the fuel cell.

〔実施例〕〔Example〕

以下、図示した実施例に基づいて本発明を説明する。第
1図および第2図には本発明の一実施例が示されている
。第1図に示されているように燃料電池発電システムは
次に述べるように構成されている。燃料と空気との供給
を受けて発電する燃料電池1、空気および燃料流量を調
節する空気、燃料流量調節弁2,3、この流量調節弁2
,3を各々フィードバック制御する空気、燃料流量制御
装置4,5、燃料電池1の空気極6、燃料極7間の差圧
を一定範囲に調節する極間差圧調節弁8等を備えている
。また、この極間差圧調節弁8をフィードバック制御す
る極間差圧制御装置9、極間差圧を検出するセンサー(
極間差圧検出器)10、燃料電池1の出力である直流を
交流に変換する直交変換器11A、この直交変換器11
Aを制御する直交変換制御装置11等を備えている。そ
してまた、燃料電池1に供給する空気、燃料の空気、燃
料流量センサー(空気、燃料流量検出器)12゜13の
信号や電池電圧検出器14、電池電流検出器15の信号
を取込み、オペレータ指示に従い直交変換制御装置11
、各種の流量制御装置4,5、極間差圧制御装置9等を
一括コントロールする主制御装置16等を備えている。
The present invention will be explained below based on the illustrated embodiments. An embodiment of the invention is shown in FIGS. 1 and 2. FIG. As shown in FIG. 1, the fuel cell power generation system is constructed as described below. A fuel cell 1 that receives supply of fuel and air to generate electricity, air that adjusts air and fuel flow rates, fuel flow control valves 2 and 3, and this flow control valve 2.
. . In addition, there is also an inter-electrode differential pressure control device 9 that performs feedback control of the inter-electrode differential pressure regulating valve 8, and a sensor that detects the inter-electrode differential pressure (
interelectrode differential pressure detector) 10, an orthogonal converter 11A that converts direct current that is the output of the fuel cell 1 into alternating current, and this orthogonal converter 11
It is equipped with an orthogonal transformation control device 11 and the like that control A. It also captures the air supplied to the fuel cell 1, the fuel air, the signals of the fuel flow rate sensors (air and fuel flow rate detectors) 12 and 13, the battery voltage detector 14, and the battery current detector 15, and provides operator instructions. According to the orthogonal transformation control device 11
, the various flow rate control devices 4, 5, the interelectrode pressure differential control device 9, etc., are provided with a main control device 16 and the like that collectively control them.

このように構成された燃料電池発電システムで本実施例
では直交変換制御装置11と空気、燃料流量制御装置4
,5とをクロスリミット制御で空気、燃料の供給量に対
する電池内部で消費するガス量の比を一定範囲にコント
ロールすると共に、空気、燃料の流量の設定値を基に相
間差圧調節弁8のフィードバック制御ループに先行制御
を付加した。このようにすることにより急激な負荷指令
の変化や実負荷の変化に対し燃料、空気のガス不足が防
止されると共に、電池極間差圧を一定範囲にコントロー
ルして燃料電池が安定運転されるようになって、急激な
負荷指令の変化や実負荷の変化に対し燃料、空気のガス
不足を防止すると共に、電池極間差圧を一定範囲にコン
トロールして燃料電池の安定運転を可能とした燃料電池
発電システムを得ることができる。
In the fuel cell power generation system configured as described above, in this embodiment, the orthogonal conversion control device 11 and the air and fuel flow rate control device 4 are used.
. Preliminary control was added to the feedback control loop. By doing this, fuel and air gas shortages are prevented in response to sudden changes in load commands and changes in actual load, and the differential pressure between the battery electrodes is controlled within a certain range to ensure stable operation of the fuel cell. This prevents fuel and air gas shortages due to sudden changes in load commands or changes in actual load, and also enables stable operation of fuel cells by controlling the differential pressure between the battery electrodes within a certain range. A fuel cell power generation system can be obtained.

すなわち空気、燃料流量制御装置4,5、極間差圧制御
装置9、直交変換制御装置11を主制御装置16で次に
述べるような制御を行うが、それを第2図により説明す
る。燃料電池1に供給される空気、燃料流量の空気、燃
料流量検出器1?。
That is, the air and fuel flow control devices 4 and 5, the interpole differential pressure control device 9, and the orthogonal conversion control device 11 are controlled by the main control device 16 as described below, which will be explained with reference to FIG. Air supplied to fuel cell 1, fuel flow rate air, fuel flow rate detector 1? .

13の信号を基に、各々のガス流量で決まる許容上限電
流値を演算器17.18で演算し、空気流量で決まる許
容上限電流値と燃料流量とで決まる許容上限電流値を低
値選択器19で低値選択を行う。この選択された信号と
電池電圧検出器14の信号とを基に演算器2oで許容発
電々力値を演算して、この許容発電々力値と直交変換制
御装置11へ設定される負荷指令値21とを低値選択器
22で低値選択を行う。この選択された信号23を直交
変換制御装置11の有効電力設定値として与えることに
より、燃料電池1(第1図参照)に供給するガス流量が
不足した場合には発電々力を制限することと、また、何
等かに要因で有効電力設定値よりも多めの出力がとられ
た場合を考慮して、電池電流検出器15の信号を基に空
気、燃料の下限流量値を演算器24.25で演算し、こ
れらと負荷指令値21とを基に演算器26で演算される
空気流量設定値と演算器27で演算される燃料流量設定
値との各々に対して高値選択器28゜29により高値選
択を行う。各々高値選択された信号を空気流量制御装置
4や燃料流量制御装置5に設定することにより、負荷変
動時のガス不足防止が可能となり、ガス不足による電池
性能劣化の問題点が解消される。
Based on the signals of 13, the allowable upper limit current value determined by each gas flow rate is calculated by the calculator 17 and 18, and the allowable upper limit current value determined by the allowable upper limit current value determined by the air flow rate and the fuel flow rate is calculated by the low value selector. A low value selection is made in step 19. Based on this selected signal and the signal from the battery voltage detector 14, the calculator 2o calculates an allowable generated energy value, and uses this allowable generated energy value and a load command value set to the orthogonal conversion control device 11. 21 is selected by a low value selector 22. By giving this selected signal 23 as the active power setting value of the orthogonal conversion control device 11, it is possible to limit the power generated when the gas flow rate supplied to the fuel cell 1 (see Fig. 1) is insufficient. In addition, in consideration of the case where the output is higher than the active power setting value due to some reason, the lower limit flow rate value of air and fuel is calculated by the calculator 24.25 based on the signal of the battery current detector 15. The air flow rate set value calculated by the calculator 26 and the fuel flow rate set value calculated by the calculator 27 based on these and the load command value 21 are set by the high value selectors 28 and 29 respectively. Make high selections. By setting the respective high value selected signals to the air flow rate control device 4 and the fuel flow rate control device 5, it is possible to prevent gas shortage during load fluctuations, and the problem of deterioration of battery performance due to gas shortage can be solved.

この他、燃料電池1に供給される空気、燃料の空気、燃
料流量検出器12.13の信号を基に各各のガス流量に
対してH2利用率、02利用率下限値を設定して、これ
らのガス利用率下限値から決まる下限電流値を演算器3
0.31で演算する。
In addition, H2 utilization rate and 02 utilization rate lower limit values are set for each gas flow rate based on the air supplied to the fuel cell 1, the fuel air, and the signal of the fuel flow rate detector 12.13. The lower limit current value determined from these gas utilization rate lower limit values is calculated by the calculator 3.
Calculate with 0.31.

各演算器30.31の出力である下限電流値を高値選択
器32で高値選択を行う。この高値選択された信号と電
池電圧検出器14の信号とを基に演算器33で下限発電
々力値を演算する。この下限発電々力値と直交変換制御
装置11に設定する負荷指令値21とを高値選択器34
で高値選択を行ない、選択された信号を低値選択器22
を介して直交変換制御装置11に設定する。このように
することにより燃料、空気とも予め設定したガス利用率
の範囲でコントロールすることが可能となり。
A high value selector 32 selects a lower limit current value, which is the output of each computing unit 30, 31, as a high value. Based on this high value selected signal and the signal from the battery voltage detector 14, the calculator 33 calculates a lower limit power generation value. This lower limit power generation value and the load command value 21 to be set in the orthogonal conversion control device 11 are selected by the high value selector 34.
to select a high value, and send the selected signal to the low value selector 22.
is set in the orthogonal transformation control device 11 via. By doing this, it becomes possible to control both fuel and air within a preset gas utilization rate range.

電池1に供給するガス量から電池1の排ガス量が推定で
きる。電池1の排ガス量が判ると、相間差圧調節弁8の
弁開度一定状態で電池1に供給するガス流量を変化させ
た場合の電池1の排ガス量がおよぼす極間差圧への影響
が推定できるので、これをパラメータとして電池1に供
給されるガス流量設定値を基にした先行制御を極間差圧
制御装置9に付加することにより、負荷指令値21急変
時の極間差圧を一定範囲に抑制することができる。
The amount of exhaust gas from the battery 1 can be estimated from the amount of gas supplied to the battery 1. Once the amount of exhaust gas from battery 1 is known, the effect of the amount of exhaust gas from battery 1 on the interelectrode pressure when the gas flow rate supplied to battery 1 is changed while the phase differential pressure regulating valve 8 is kept constant can be determined. By using this as a parameter and adding advance control based on the set value of the gas flow rate supplied to the battery 1 to the interelectrode differential pressure control device 9, the interelectrode differential pressure when the load command value 21 suddenly changes can be estimated. It can be suppressed within a certain range.

このように本実施例によれば燃料発電時に燃料。In this way, according to this embodiment, the fuel is used during power generation.

空気が不足気味になれば燃料、空気のガス利用率上限値
を基に発電々力を制限したり、有効電力設定値よりも発
電々力実測値が増加し燃料、空気が不足気味になれば、
電池電流実測値を基に燃料。
If there is a shortage of air, we will limit the power generation based on the upper limit of the gas utilization rate of fuel or air, or if the actual power generation value increases more than the set value of active power and there is a shortage of fuel or air. ,
Fuel based on actual battery current measurements.

空気流量を増加させることにより、燃料、空気のガス不
足を防止できるので、ガス不足による電池性能劣化の問
題点を解消することができる。また、電池に供給する燃
料、空気流量設定値をベースにした先行制御を極間差圧
制御装置に付加することにより、発電々力を急激に変化
させても極間差圧を一定範囲に抑制することができる。
By increasing the air flow rate, gas shortages of fuel and air can be prevented, thereby solving the problem of deterioration of battery performance due to gas shortages. In addition, by adding advance control to the interelectrode differential pressure control device based on fuel and air flow rate setting values supplied to the battery, the interelectrode differential pressure can be suppressed within a certain range even if the power generation force changes suddenly. can do.

〔発明の効果〕 上述のように本発明は急激な負荷指令の変化や実負荷の
変化に対して燃料、空気のガス不足が防止されると共に
、電池極間差圧を一定範囲にコントロールして燃料電池
の安定運転ができるようになって、急激な負荷指令の変
化や実負荷の変化に対し燃料、空気のガス不足を防止す
ると共に、電池極間差圧を一定範囲にコントロールして
燃料電池の安定運転を可能とした燃料電池発電システム
を得ることができる。
[Effects of the Invention] As described above, the present invention prevents fuel and air gas shortages in response to sudden changes in load commands and changes in actual load, and also controls the differential pressure between battery electrodes within a certain range. The fuel cell can now operate stably, preventing fuel and air gas shortages due to sudden changes in load commands and changes in actual load, and controlling the differential pressure between the battery electrodes within a certain range. A fuel cell power generation system capable of stable operation can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の燃料電池発電システムの一実施例の発
電システムの構成を示す説明図、第2図は同じく一実施
例の制御構成を示す説明図である。 1・・・燃料電池、2・・・空気流量調節弁、3・・・
燃料流量調節弁、4・・・空気流量制御装置、5・・・
燃料流量制御装置、6・・・空気極、7・・・燃料極、
8・・・極間差圧調節弁、9・・・極間差圧制御装置、
10・・・極間差圧検出器、11・・・直交変換制御装
置、11A・・・直交変換器、12・・・空気流量検出
器、13・・・燃料流も1図 手続補正書(自発) 1 昭和62年11月 2−
FIG. 1 is an explanatory diagram showing the configuration of a power generation system according to an embodiment of the fuel cell power generation system of the present invention, and FIG. 2 is an explanatory diagram showing the control configuration of the same embodiment. 1...Fuel cell, 2...Air flow control valve, 3...
Fuel flow rate control valve, 4...Air flow rate control device, 5...
Fuel flow control device, 6... air electrode, 7... fuel electrode,
8... Interpole differential pressure control valve, 9... Interelectrode differential pressure control device,
10... Interpole differential pressure detector, 11... Orthogonal conversion control device, 11A... Orthogonal converter, 12... Air flow rate detector, 13... Fuel flow also requires figure 1 procedure amendment ( Voluntary) 1 November 1986 2-

Claims (1)

【特許請求の範囲】[Claims] 1、燃料と空気との供給を受けて発電する燃料電池と、
前記燃料および空気の流量を調節する空気、燃料流量調
節弁と、これらの流量調節弁を夫々フィードバック制御
する空気、燃料流量制御装置と、前記燃料電池の空気極
と燃料極との間の差圧を一定範囲に制御し、かつ前記燃
料極の出口部に設けられる極間差圧調節弁と、前記空気
極、燃料極間の差圧を検出する極間差圧検出器の信号を
フィードバック量として取込み、前記極間差圧調節弁を
制御する相間差圧制御装置と、前記燃料電池の出力の直
流を交流に変換する直交変換器およびこの直交変換器を
制御する直交変換制御装置と、前記燃料電池へ供給され
る空気、燃料の流量検出器の信号および電池電圧検出器
、電池電流検出器の信号を取込み、オペレータ指示に従
つて前記直交変換制御装置、空気、燃料流量制御装置、
相間差圧制御装置を一括コントロールする主制御装置と
を備えた燃料電池発電システムにおいて、前記直交変換
制御装置と空気、燃料流量制御装置とをクロスリミット
制御で前記空気、燃料の供給量に対する電池内部で消費
するガス量の比を一定範囲にコントロールすると共に、
前記空気、燃料の流量の設定値を基に前記極間差圧調節
弁のフィードバック制御ループに先行制御を付加したこ
とを特徴とする燃料電池発電システム。
1. A fuel cell that generates electricity by receiving fuel and air supply,
Air that adjusts the flow rates of the fuel and air, a fuel flow control valve, air that performs feedback control of these flow control valves, a fuel flow control device, and a pressure difference between the air electrode and the fuel electrode of the fuel cell. is controlled within a certain range, and a signal from an interelectrode differential pressure regulating valve provided at the outlet of the fuel electrode and an interelectrode differential pressure detector that detects the differential pressure between the air electrode and the fuel electrode is used as a feedback amount. an interphase differential pressure control device that controls the interelectrode differential pressure regulating valve; an orthogonal converter that converts direct current output from the fuel cell into alternating current; an orthogonal conversion control device that controls the orthogonal converter; The signals of the air and fuel flow rate detectors, the battery voltage detectors, and the battery current detectors supplied to the battery are taken in, and the orthogonal conversion control device, air and fuel flow rate control device,
In a fuel cell power generation system equipped with a main control device that collectively controls an interphase differential pressure control device, cross limit control is performed between the orthogonal conversion control device and the air and fuel flow rate control devices to control the inside of the battery with respect to the supply amount of the air and fuel. In addition to controlling the ratio of gas consumption within a certain range,
A fuel cell power generation system characterized in that advance control is added to the feedback control loop of the interelectrode pressure differential control valve based on the set values of the flow rates of the air and fuel.
JP62042631A 1987-02-27 1987-02-27 Power generation system with fuel cell Pending JPS63213262A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62042631A JPS63213262A (en) 1987-02-27 1987-02-27 Power generation system with fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62042631A JPS63213262A (en) 1987-02-27 1987-02-27 Power generation system with fuel cell

Publications (1)

Publication Number Publication Date
JPS63213262A true JPS63213262A (en) 1988-09-06

Family

ID=12641362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62042631A Pending JPS63213262A (en) 1987-02-27 1987-02-27 Power generation system with fuel cell

Country Status (1)

Country Link
JP (1) JPS63213262A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03108003A (en) * 1989-09-21 1991-05-08 Shimadzu Corp Control system
JPH03156602A (en) * 1989-11-15 1991-07-04 Hitachi Ltd Method and device for control of plant
JP2004193042A (en) * 2002-12-13 2004-07-08 Nissan Motor Co Ltd Fuel cell system
WO2006109756A1 (en) * 2005-04-06 2006-10-19 Toyota Jidosha Kabushiki Kaisha Fuel cell system
CN105591135A (en) * 2014-11-10 2016-05-18 丰田自动车株式会社 Fuel cell system and control method of fuel cell system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03108003A (en) * 1989-09-21 1991-05-08 Shimadzu Corp Control system
JPH03156602A (en) * 1989-11-15 1991-07-04 Hitachi Ltd Method and device for control of plant
JP2004193042A (en) * 2002-12-13 2004-07-08 Nissan Motor Co Ltd Fuel cell system
JP4576790B2 (en) * 2002-12-13 2010-11-10 日産自動車株式会社 Fuel cell system
WO2006109756A1 (en) * 2005-04-06 2006-10-19 Toyota Jidosha Kabushiki Kaisha Fuel cell system
US8795917B2 (en) 2005-04-06 2014-08-05 Toyota Jidosha Kabushiki Kaisha Fuel cell system with control of the pressure of the reactants within the system
CN105591135A (en) * 2014-11-10 2016-05-18 丰田自动车株式会社 Fuel cell system and control method of fuel cell system

Similar Documents

Publication Publication Date Title
US7795753B2 (en) Fuel cell control system
EP3014684B1 (en) A method for controlling air flow in a fuel cell power system
JP2924673B2 (en) Operation control method for fuel cell power generation system
JP2009148152A (en) Fuel cell power blending device
JP2000251911A (en) Fuel cell power generating system
JPS6151772A (en) Flow rate controller of fuel cell system
JPH0715653B2 (en) Fuel cell output controller
JPH0757753A (en) Fuel cell power generator and operation control thereof
JPS63213262A (en) Power generation system with fuel cell
JP2011233439A (en) Operation control method and system for fuel cell
JP3651927B2 (en) Load control device for fuel cell power generator
JP2001346332A (en) Power fluctuation compensating system
JP2520963B2 (en) Fuel cell DC parallel operation system
JP3808636B2 (en) Fuel cell power generation system and power generation system
JPH0461464B2 (en)
JP2860208B2 (en) Operation control device for fuel cell power generator
JP3810567B2 (en) Legged mobile robot
EP4358338A1 (en) Grid-connected operation control method and apparatus for fuel cell combined heat and power system
JPS6345763A (en) Operation controller of fuel cell power generating plant
JPH0461465B2 (en)
CN113241802B (en) Microgrid grid-connected point voltage control system and method based on power cooperative regulation
JPH079813B2 (en) Fuel cell power plant
JP2838087B2 (en) Operation control device for fuel cell power generation system
JPH05137258A (en) Dc power supply system
JP2022154174A (en) Power supply system