JPS63212905A - Waveguide type optical filter - Google Patents

Waveguide type optical filter

Info

Publication number
JPS63212905A
JPS63212905A JP4532987A JP4532987A JPS63212905A JP S63212905 A JPS63212905 A JP S63212905A JP 4532987 A JP4532987 A JP 4532987A JP 4532987 A JP4532987 A JP 4532987A JP S63212905 A JPS63212905 A JP S63212905A
Authority
JP
Japan
Prior art keywords
wavelength
optical filter
light
bragg
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4532987A
Other languages
Japanese (ja)
Inventor
Norio Nishi
功雄 西
Senta Suzuki
扇太 鈴木
Kosuke Katsura
浩輔 桂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP4532987A priority Critical patent/JPS63212905A/en
Publication of JPS63212905A publication Critical patent/JPS63212905A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/124Geodesic lenses or integrated gratings

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To make a wavelength region of transmitted light through a waveguide type optical filter flat and to make its selectively for wavelength steep by forming a first and a second periodical structure having each specified Bragg wavelength, length, and coupling factor on an optical waveguide. CONSTITUTION:A clad layer 8 comprising SiO2 and a core layer 9 comprising SiO2 are formed on a substrate 7, and an optical filter 10 is formed on the core layer 9. A first periodical structure 11 having lambda1 Bragg wavelength L1 length, and N coupling factor, a periodical structure having by pi lagged phase 12, and a second periodical structure 13 having lambda1 Bragg wavelength L2 length, and N coupling factor are formed on the core layer 9. Thus, light of lambda1 Bragg wavelength and light having lambda2 cut-off wavelength out of said Bragg wavelength are made incident to the optical waveguide. In this stage, the light having lambda1 wavelength passes through an optical filter 10 and the light having lambda2 wavelength is reflected by the effect of the first and second periodical structure 11, 13, so the optical filter functions as an optical branching filter. if the number M of the first periodical structure 11 is increased, the transmitting loss can be decreased. Thus, the wavelength region of transmitted light is widened and the selectivity for wavelength is made steep.

Description

【発明の詳細な説明】 〈産業上の利用分針〉 本発明は波長選択特性が急峻にして、平坦な通過波長特
性を有する導波路形光フィルタに関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Minute Hand> The present invention relates to a waveguide type optical filter having steep wavelength selection characteristics and flat transmission wavelength characteristics.

〈従来の技術及びその問題点〉 従来の導波路形光フィルタとしては分布帰還形半導体レ
ーザに応用されたブラグ導波路が代表的!ある。第4図
はこのブラグ導波路の構造であって、1はn−1nP基
板、2は導波層、3は活性層、4はバッファ層、5はP
−夏nP層、6はn−1nP基板1と導波層2の境界面
に設けた結合次数が1次の周期性構造である。第5図は
第4図に示したブラグ導波路の周期性構造の拡大モデル
図であり、周期性構造の途中において周期性構造の位相
がπずれている。第6図は、この周期性構造の左端にお
けるパワー反射率の特性を示したものである。ただし、
Δβ#β−β1、β=π/(周期性構造の周期)、βは
導波光の伝搬定数、Lは周期性構造の長さである。
<Conventional technology and its problems> A typical example of a conventional waveguide optical filter is the Bragg waveguide applied to distributed feedback semiconductor lasers! be. Figure 4 shows the structure of this Bragg waveguide, where 1 is an n-1nP substrate, 2 is a waveguide layer, 3 is an active layer, 4 is a buffer layer, and 5 is a P
- Summer nP layer 6 is a periodic structure with a first-order coupling order provided at the interface between the n-1nP substrate 1 and the waveguide layer 2. FIG. 5 is an enlarged model diagram of the periodic structure of the Bragg waveguide shown in FIG. 4, and the phase of the periodic structure is shifted by π in the middle of the periodic structure. FIG. 6 shows the power reflectance characteristics at the left end of this periodic structure. however,
Δβ#β−β1, β=π/(period of the periodic structure), β is the propagation constant of the guided light, and L is the length of the periodic structure.

Δβはブラグ波長λ (=2π/β)からのずれを示す
。またχは結合係数であって、これは導波路内を伝搬す
る固有モードの中で着目する2個のモード間が、周期性
構造部分で摂動を受けて生じろものである。ここで2個
のモードとしては同一の固有値を有して、伝搬方向のみ
が異なるものも含むものとする。第6図において憤軸は
、規格化されたブラグ波長からの導波光波長のずれ、縦
軸は光フィルタによる反射率を示す。この図から明らか
なように光フィルタはΔβ=0となるブラグ波長の光に
おいて反射率が零となり、ブラグ波長の光を透過させる
光フィルタとして動作する。しかし、光合分波器用とし
て用いるには、透過波長がブラグ波長の近傍に限定され
狭帯域であること、阻止域での減衰量が十分大きくない
等の欠点があった。
Δβ indicates the deviation from the Bragg wavelength λ (=2π/β). Further, χ is a coupling coefficient, which is generated when two modes of interest among the eigenmodes propagating in the waveguide are perturbed in the periodic structure portion. Here, the two modes include modes that have the same eigenvalue but differ only in the propagation direction. In FIG. 6, the vertical axis shows the deviation of the guided light wavelength from the standardized Bragg wavelength, and the vertical axis shows the reflectance by the optical filter. As is clear from this figure, the optical filter has a reflectance of zero for light at the Bragg wavelength where Δβ=0, and operates as an optical filter that transmits the light at the Bragg wavelength. However, when used as an optical multiplexer/demultiplexer, the transmission wavelength is limited to a narrow band near the Bragg wavelength, and the attenuation in the stopband is not large enough.

〈発明の目的〉 本発明の目的は、従来のブラグ反射を用いた光フィルタ
の透過波長がブラグ波長のみという波長透過特性の狭帯
域性を解決し、平坦な透過波長域を有し、且つ急峻な波
長選択性を有するブラグ反射を用いた導波路形光フィル
タを提供することにある。
<Objective of the Invention> The object of the present invention is to solve the narrow-band characteristic of the wavelength transmission characteristic in which the transmission wavelength of a conventional optical filter using Bragg reflection is only the Bragg wavelength, and to have a flat transmission wavelength range and a steep transmission wavelength. An object of the present invention is to provide a waveguide-type optical filter using Bragg reflection having excellent wavelength selectivity.

く問題点を解決するための手段〉 斯かる目的を達成する本発明の構成は光導波路上に形成
したブラグ波長λ8、長さLlの結合次数がN次の第1
の周期性構造を位相差がπ/NになるようにM個縦続接
続した前後に、ブラグ波長λ1、長さL2の結合次数が
N次の第2の周期性構造を位相差がπ/Nになるよう1
個ずつ縦続接続することを最も主要な特徴とする。
Means for Solving the Problems〉 The structure of the present invention to achieve the above object is a first optical waveguide having a Bragg wavelength λ8 and a length Ll formed on an optical waveguide and whose coupling order is Nth.
Before and after cascade-connecting M periodic structures with a phase difference of π/N, a second periodic structure with a Bragg wavelength λ1 and a length L2 with a coupling order of Nth is connected with a phase difference of π/N. so that it becomes 1
The main feature is that they are connected in cascade one by one.

く実 施 例〉 第1図は、本発明の第一の実施例を説明する図であって
、第1図(a)は本発明を用いた光分波器を示し、第1
図(blは周期性構造の光フィルタ10の断面図である
。周期性構造は、1次の周期性構造を用いた。図中、7
は基板、8はクラッド層、9はコア層、10は本発明の
光フィルタ、11は長さLlなる第1の周期性構造部、
12は周期性構造のπなる位相ずれ部、13は長さL2
なる第2の周期性構造部である。
Embodiment> FIG. 1 is a diagram for explaining a first embodiment of the present invention, in which FIG. 1(a) shows an optical demultiplexer using the present invention;
Figure (bl is a cross-sectional view of the optical filter 10 with a periodic structure. A first-order periodic structure was used as the periodic structure. In the figure, 7
is a substrate, 8 is a cladding layer, 9 is a core layer, 10 is an optical filter of the present invention, 11 is a first periodic structure having a length Ll,
12 is a phase shift part of π of the periodic structure, 13 is the length L2
This is the second periodic structure portion.

本実施例においては、基板7は厚さ0.5mmのシリコ
ンウェハを用い、クラッド層8はウェット0中における
熱酸化により形成した屈折率1.46の5LO2である
。コア層9には、屈折率1.53のコーニング7059
ガラスをスパッタ法で形成した。光フィルタ10の周期
性構造11.13は、干渉露光法と、リアクティブイオ
ンビームエツチング法により、コア層上部を波形に加工
し形成しな。周期性構造11.13は、入射光と反射光
を分離するために、光軸に対し1度傾けている。
In this embodiment, a silicon wafer with a thickness of 0.5 mm is used as the substrate 7, and the cladding layer 8 is 5LO2 with a refractive index of 1.46 formed by thermal oxidation in wet 0. The core layer 9 is made of Corning 7059 with a refractive index of 1.53.
Glass was formed by sputtering. The periodic structures 11 and 13 of the optical filter 10 are formed by processing the upper part of the core layer into a waveform using an interference exposure method and a reactive ion beam etching method. The periodic structure 11.13 is tilted by 1 degree with respect to the optical axis in order to separate incident light and reflected light.

本実施例の動作を以下に示す。The operation of this embodiment is shown below.

光フィルタ10の通過波長であるブラグ波長λの光と、
ブラグ波長からずれた遮断波長λである光を、光導波路
に入射する。導波路が周期性構造11.13の光フィル
タ10に達すると、波長λ、の光は光フィルタ10を通
過し、波長λ2の光は反射される。この場合は光分波器
として動作しているが、光の入射を逆にすれば光合波器
として動作することば明らかである。
Light having a Bragg wavelength λ, which is a wavelength passed through the optical filter 10,
Light having a cutoff wavelength λ shifted from the Bragg wavelength is input to the optical waveguide. When the waveguide reaches the optical filter 10 of the periodic structure 11, 13, the light of wavelength λ passes through the optical filter 10, and the light of wavelength λ2 is reflected. In this case, it operates as an optical demultiplexer, but it is clear that if the incident light is reversed, it operates as an optical multiplexer.

周期性構造のパラメータと、光フィルタ10の通過特性
の関係を理論的に検討した結果を第2図、第3図に示す
。両図において横軸は、導波光伝搬定数のブラグ波長か
らのずれΔβを結合係数χで規格化したもので、縦軸は
光フィルタの通過損失を示す。第2図は第1の周期性構
造11の個数M(M〉l)に対する特性であり、M=1
の場合が第4図に示した分布帰還形半導体レーザのブラ
グ導波路の場合に相当する。M=1では、ブラグ波長Δ
β/χ=0において通過損失が零となりその後通過損失
は増加するが、Mを増加するとΔβ/χ<0.3の通過
域内においてΔβ/χ=0以外でも通過損失が零となる
点が生じリプルが現われると同時に、Δβ/χ=1付近
の遮断域での通過損失が増加する。
The results of a theoretical study of the relationship between the parameters of the periodic structure and the transmission characteristics of the optical filter 10 are shown in FIGS. 2 and 3. In both figures, the horizontal axis represents the deviation Δβ of the guided light propagation constant from the Bragg wavelength, normalized by the coupling coefficient χ, and the vertical axis represents the passage loss of the optical filter. FIG. 2 shows the characteristics with respect to the number M (M>l) of the first periodic structures 11, where M=1
The case corresponds to the case of the Bragg waveguide of the distributed feedback semiconductor laser shown in FIG. For M=1, the Bragg wavelength Δ
At β/χ = 0, the passing loss becomes zero and thereafter the passing loss increases, but when M is increased, a point occurs where the passing loss becomes zero even at other than Δβ/χ = 0 within the passband of Δβ/χ < 0.3. At the same time as the ripple appears, the passing loss in the cutoff region around Δβ/χ=1 increases.

このようにボ発明では、第一の周期性構造110個数M
を増加させることにより、通過波長域の広帯域化、波長
選択特性の急峻化、遮断波長域での漏話の減少が可能で
ある。
In this way, in the invention, the first periodic structure 110 number M
By increasing , it is possible to widen the pass wavelength range, steepen the wavelength selection characteristics, and reduce crosstalk in the cutoff wavelength range.

第3図は、第1の周期性構造11の長さし。FIG. 3 shows the length of the first periodic structure 11.

と第2の周期性構造13の長さし2の比り、/L。and the length 2 of the second periodic structure 13, /L.

に対する特性である。L2/L、<0.5では、Δβ/
χ<0.3の透過域内でリプルは生じなく、L2/L1
〉0.5から増加すると透過域が広くなると共にリプル
の高さも高くなる。しかし、その変化は、Mを変化させ
た場合より小さいので、周期性構造の長さの比L2/L
It is a characteristic for L2/L, <0.5, Δβ/
No ripple occurs within the transmission range of χ<0.3, and L2/L1
>0.5, the transmission range becomes wider and the ripple height also becomes higher. However, since the change is smaller than when M is changed, the length ratio of the periodic structure L2/L
.

を調整することにより、光フィルタの波長通過特性を細
かく変化させることが可能である。
By adjusting , it is possible to finely change the wavelength passing characteristics of the optical filter.

〈発明の効果〉 以上説明したように、本発明においては従来のブラグ反
射形フィルタに比べ、通過波長域の広帯域化、波長選択
性の急峻化が可能であり、光源の波長が温度などの原因
により変動した場合でも特性が変化しないような光合分
波器への適用ができる利点がある。
<Effects of the Invention> As explained above, in the present invention, compared to conventional Bragg reflection filters, it is possible to widen the passing wavelength range and sharpen the wavelength selectivity, and the wavelength of the light source is not affected by factors such as temperature. This has the advantage that it can be applied to an optical multiplexer/demultiplexer whose characteristics do not change even when the characteristics change.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(al (b)は、本発明の第1の実施例の斜視
図、断面図であり、図中、7は基板、8はクラッド層、
9はコア層、1oは本発明の光フィルタ、11は第1の
周期性構造部、12は周期性構造の位相ずれ部、13は
第2の周期性構造部である。第2図は、第1の周期性構
造の個数に対する通過特性図、第3図は第1の周期性構
造の長さと第2の周期性構造の長さの比に対する通過特
性図である。第4図は、分布帰還形半導体レーザに応用
された従来のブラグ導波路の構造図であり、図中、1は
n−1nP基板、2は導波層、3は活性層、4はバッフ
ァ層、5はP−InP層、6は周期性構造である。第5
図は、第4図に示したブラグ導波路の周期性構造のモデ
ル図、第6図は周期性構造のパワー反射率特性図である
FIG. 1 (al(b)) is a perspective view and a sectional view of the first embodiment of the present invention, in which 7 is a substrate, 8 is a cladding layer,
9 is a core layer, 1o is an optical filter of the present invention, 11 is a first periodic structure section, 12 is a phase shift section of the periodic structure, and 13 is a second periodic structure section. FIG. 2 is a transmission characteristic diagram for the number of first periodic structures, and FIG. 3 is a transmission characteristic diagram for the ratio of the length of the first periodic structure to the length of the second periodic structure. FIG. 4 is a structural diagram of a conventional Bragg waveguide applied to a distributed feedback semiconductor laser. In the figure, 1 is an n-1nP substrate, 2 is a waveguide layer, 3 is an active layer, and 4 is a buffer layer. , 5 is a P-InP layer, and 6 is a periodic structure. Fifth
The figure is a model diagram of the periodic structure of the Bragg waveguide shown in FIG. 4, and FIG. 6 is a power reflectance characteristic diagram of the periodic structure.

Claims (1)

【特許請求の範囲】[Claims] 光導波路上に形成したブラグ波長λ_1、長さL_1な
る結合次数がN次(N≧1)の第1の周期性構造を、隣
接する周期性構造の位相差がπ/NとなるごとくM個(
M≧1)縦続接続し、この縦続接続したM個の第1の周
期性構造の前段および後段に、ブラグ波長λ_1、長さ
L_2なる結合次数がN次の第2の周期性構造をそれぞ
れ1個ずつ、隣接する周期性構造の位相差がπ/Nとな
るごとく縦続接続したことを特徴とする導波路形光フィ
ルタ。
M first periodic structures with a Bragg wavelength λ_1 and a length L_1 and a coupling order of Nth order (N≧1) formed on an optical waveguide are arranged so that the phase difference between adjacent periodic structures is π/N. (
M≧1) One second periodic structure with a Bragg wavelength λ_1 and a length L_2 and a coupling order of N order is connected in cascade, and one second periodic structure with a coupling order of Nth order and a Bragg wavelength λ_1 and a length L_2 is connected before and after the M first periodic structures connected in cascade. 1. A waveguide-type optical filter characterized in that the waveguide-type optical filters are cascade-connected so that the phase difference between adjacent periodic structures is π/N.
JP4532987A 1987-03-02 1987-03-02 Waveguide type optical filter Pending JPS63212905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4532987A JPS63212905A (en) 1987-03-02 1987-03-02 Waveguide type optical filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4532987A JPS63212905A (en) 1987-03-02 1987-03-02 Waveguide type optical filter

Publications (1)

Publication Number Publication Date
JPS63212905A true JPS63212905A (en) 1988-09-05

Family

ID=12716273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4532987A Pending JPS63212905A (en) 1987-03-02 1987-03-02 Waveguide type optical filter

Country Status (1)

Country Link
JP (1) JPS63212905A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0647861A1 (en) * 1993-09-10 1995-04-12 AT&T Corp. Polarization-independent optical wavelength selective coupler

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0647861A1 (en) * 1993-09-10 1995-04-12 AT&T Corp. Polarization-independent optical wavelength selective coupler

Similar Documents

Publication Publication Date Title
US6243516B1 (en) Merging optical waveguides having branch angle within a specific range
EP0304709B1 (en) Waveguide type optical device
JP4190733B2 (en) Arrayed waveguide grating optical multiplexer / demultiplexer
US5764825A (en) Optical wavelength division multiplexer device
JP3615069B2 (en) Arrayed waveguide grating optical multiplexer / demultiplexer
JPH06324225A (en) Optical filter having plurality of interference stages
JPH1090551A (en) Band filter written in optical waveguide
JP2871893B2 (en) Branch coupler with filter
JPH04212108A (en) Waveguide type light branching element
US5526439A (en) Optical filter using electro-optic material
Mao et al. An ARROW optical wavelength filter: design and analysis
JPS63212905A (en) Waveguide type optical filter
JPS6123522B2 (en)
JP2002511157A (en) Narrowband transmission filter using Bragg grating for mode conversion
JP2013041146A (en) Wavelength-selective multimode interference waveguide device
Takato et al. Silica-based single-mode guided-wave devices
JPS63254404A (en) Optical multiplexer/demultiplexer
De Sario et al. Realistic design of a WDM duplexer made from Ti: LiNbO3 optical filters
JPH01231006A (en) Optical multiplexer/demultiplexer
JPH1031121A (en) Waveguide type composing/branching filter using grating
JPH01169407A (en) Wavelength filter
JPS6266208A (en) Waveguide type optical demultiplexer
JPH05164924A (en) Waveguide type device with wavelength flattening monitor
JP2641238B2 (en) Polarizer
JPH1039163A (en) Optical waveguide type diffraction grating