JPS632123B2 - - Google Patents

Info

Publication number
JPS632123B2
JPS632123B2 JP10154181A JP10154181A JPS632123B2 JP S632123 B2 JPS632123 B2 JP S632123B2 JP 10154181 A JP10154181 A JP 10154181A JP 10154181 A JP10154181 A JP 10154181A JP S632123 B2 JPS632123 B2 JP S632123B2
Authority
JP
Japan
Prior art keywords
superconducting electromagnet
voltage
superconducting
terminal
voltage dividing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10154181A
Other languages
Japanese (ja)
Other versions
JPS583207A (en
Inventor
Osamu Oosaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP10154181A priority Critical patent/JPS583207A/en
Publication of JPS583207A publication Critical patent/JPS583207A/en
Publication of JPS632123B2 publication Critical patent/JPS632123B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor
    • H01F6/065Feed-through bushings, terminals and joints

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Arc-Extinguishing Devices That Are Switches (AREA)

Description

【発明の詳細な説明】 本発明は極低温で使用される超電導電磁石装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a superconducting electromagnet device used at extremely low temperatures.

従来、超電導電磁石装置は極低温で電気抵抗が
零となる超電導線を巻回してなる超電導電磁石1
と、周囲の常温部と上記極低温の超電導電磁石1
とを断熱する断熱容器8と、常温部から超電導電
磁石1に電流を供給する電流リード2と、超電導
電磁石1が超電導であるか否かを検出するための
電圧端子A,B、電磁石中点端子Cと、ハーメチ
ツクシール10、電圧端子A,Bの出力ケーブル
7とからなる。この他に外部回路としては、転移
検出器5と検出器出力信号ケーブル6と、超電導
電磁石1の電源4と、遮断器3と、保護抵抗器9
がある。ここで、保護抵抗9の抵抗値R9は、超
電導電磁石1が抵抗値が零の超電導状態から、常
電導状態に転移して抵抵抗値R1に変化した場合
に、超電導電磁石1が焼損しないようにR9≫R1
なる関係に選定してある。
Conventionally, a superconducting electromagnet device consists of a superconducting electromagnet 1 made by winding a superconducting wire whose electrical resistance becomes zero at extremely low temperatures.
, the surrounding room temperature area and the superconducting electromagnet 1 at the above-mentioned cryogenic temperature
a heat insulating container 8 that insulates the superconducting electromagnet 1, a current lead 2 that supplies current from the normal temperature part to the superconducting electromagnet 1, voltage terminals A and B for detecting whether the superconducting electromagnet 1 is superconducting, and an electromagnet midpoint terminal. C, a hermetic seal 10, and an output cable 7 for voltage terminals A and B. In addition, external circuits include a transition detector 5, a detector output signal cable 6, a power source 4 for the superconducting electromagnet 1, a circuit breaker 3, and a protective resistor 9.
There is. Here, the resistance value R 9 of the protective resistor 9 is such that the superconducting electromagnet 1 will not be burnt out when the superconducting electromagnet 1 transitions from a superconducting state with zero resistance to a normal conducting state and changes to a resistance value R 1 . Like R 9 ≫R 1
The relationship has been selected as follows.

かかる超電導電磁石装置において、正常運転時
には遮断器3を投入し、電源4から電流リード2
を通して超電導電磁石1に電流を供給する。そし
て、正常時には超電導電磁石1が超電導であるか
ら、電磁石中点Cに対して電磁石1両端電位
(A,B点の電位)は同じであるが、超電導電磁
石1の一部が常電導に転移したような場合には、
Cに対するA点、B点の夫々の電位VA,VBは等
しくならなくなる。これを、転移検出器5で検出
して遮断器3を開とし、超電導電磁石1の蒸気エ
ネルギーを保護抵抗9で回収する。
In such a superconducting electromagnet device, during normal operation, the circuit breaker 3 is closed and the current lead 2 is connected from the power source 4.
A current is supplied to the superconducting electromagnet 1 through the superconducting electromagnet 1. Since the superconducting electromagnet 1 is superconducting under normal conditions, the potentials at both ends of the electromagnet 1 (potentials at points A and B) are the same with respect to the midpoint C of the electromagnet, but a part of the superconducting electromagnet 1 has transitioned to normal conductivity. In such a case,
The potentials V A and V B at points A and B with respect to C are no longer equal. This is detected by the transition detector 5, the circuit breaker 3 is opened, and the steam energy of the superconducting electromagnet 1 is recovered by the protective resistor 9.

一方、遮断器3動作時にはコイル両端にはコイ
ル電流I(A)と保護抵抗R9(Ω)との積により決ま
る電圧V9(V)が生ずる。また、コイル電圧端子
A,B,Cは第2図、第3図に示すようなハーメ
チツクシールによつて断熱容器8と絶縁されてい
る。図中の13は断熱容器壁、11はセラミツク
ス絶縁物、12は導入端子である。図中の14側
はヘリウム等の冷媒の気体が充満している。例え
ば、ヘリウムガスの絶縁耐圧は30mmで3000V程度
であり、空気の耐圧3000V/mmに比べて非常に低
い、このため、例えば電流10000(A)保護抵抗R9
0.3(Ω)の場合電圧V9は3000Vとなり、ハーメチ
ツクシール部の必要間隔は30mmとなり、セラミツ
クス11の直径としては最低60mm必要となる。
On the other hand, when the circuit breaker 3 is operating, a voltage V 9 (V) determined by the product of the coil current I(A) and the protective resistance R 9 (Ω) is generated across the coil. Further, the coil voltage terminals A, B, and C are insulated from the heat insulating container 8 by a hermetic seal as shown in FIGS. 2 and 3. In the figure, 13 is a heat insulating container wall, 11 is a ceramic insulator, and 12 is an introduction terminal. The 14 side in the figure is filled with refrigerant gas such as helium. For example, the dielectric strength of helium gas is about 3000 V at 30 mm, which is much lower than the 3000 V/mm of air .
In the case of 0.3 (Ω), the voltage V 9 is 3000 V, the required interval between the hermetic seals is 30 mm, and the diameter of the ceramic 11 is at least 60 mm.

然乍ら、このような大きな直径のセラミツクス
を使用することは、装置が大形化するのみなら
ず、破損し易いセラミツクス材料を使用している
ために、例えばその破損により冷却としてのヘリ
ウムガスが漏れて良好な冷却を行なうことができ
ないという問題がある。さらに、例えばこの端子
が断熱容器8に接地されたような場合には超電導
電磁石1が短絡し、その蒸気エネルギーによつて
超電導電磁石1を焼損してしまい、電気的信頼性
が低下するという問題がある。
Of course, using ceramics with such a large diameter not only increases the size of the device, but also uses a ceramic material that is easily damaged, which may cause damage to the helium gas used for cooling, for example. There is a problem that leakage occurs and good cooling cannot be achieved. Furthermore, if this terminal is grounded to the heat insulating container 8, for example, the superconducting electromagnet 1 will be short-circuited, and the superconducting electromagnet 1 will be burnt out by the steam energy, reducing electrical reliability. be.

本発明は上記のような問題を解決するために成
されたもので、その目的は装置の小形化、電気的
信頼性および冷却特性の向上を図ることが可能な
超電導電磁石装置を提供することにある。
The present invention has been made to solve the above problems, and its purpose is to provide a superconducting electromagnet device that can reduce the size of the device and improve electrical reliability and cooling characteristics. be.

以下、本発明の一実施例について図面を参照し
て説明する。
An embodiment of the present invention will be described below with reference to the drawings.

第4図は、本発明により超電導電磁石装置の構
成例を示すもので、第1図と同一部分には同一符
号を付してその説明を省略し、ここでは異なる部
分についてのみ述べる。第4図において、21は
前記断熱容器8内の超電導電磁石1の両端に接続
した端子電圧分圧抵抗(以下、単に分圧抵抗と称
する。)であり、前記保護抵抗9に比べて十分大
きな値の抵抗R21を有する。また、22,23,
24は常温側に取出した分圧抵抗21の接地側出
力電圧端子(以下、分圧端子と称する)であり、
そのうち分圧端子23を接地している。
FIG. 4 shows an example of the configuration of a superconducting electromagnet device according to the present invention. The same parts as those in FIG. In FIG. 4, 21 is a terminal voltage dividing resistor (hereinafter simply referred to as a voltage dividing resistor) connected to both ends of the superconducting electromagnet 1 in the heat insulating container 8, and has a value sufficiently larger than that of the protective resistor 9. has a resistance R 21 . Also, 22, 23,
24 is a ground side output voltage terminal (hereinafter referred to as a voltage dividing terminal) of the voltage dividing resistor 21 taken out to the room temperature side;
Of these, the voltage dividing terminal 23 is grounded.

ここで、分圧端子22,23間の分圧抵抗R22
と分圧端子23,24間の分圧抵抗R24とは等し
く、R22,R24≪R21なる関係としている。(以下
の説明では、R22,R24をR21の1/100とした場合
を例として述べる。) かかる如き構成の超電導電磁石装置とすれば、
超電導電磁石1の一部が常電導状態に転移した場
合、分圧端子22,24の最大電圧は電圧端子
A,Bの電圧の1/100以内になり、よつてハーメ
チツクシール部での対地電圧は、前述した従来の
方式に比べて1/100以内となる。
Here, voltage dividing resistor R 22 between voltage dividing terminals 22 and 23
and the voltage dividing resistance R 24 between the voltage dividing terminals 23 and 24 are equal, and the relationship is such that R 22 , R 24 ≪R 21 . (In the following explanation, the case where R 22 and R 24 are set to 1/100 of R 21 will be described as an example.) If a superconducting electromagnet device having such a configuration is used,
When a part of the superconducting electromagnet 1 transitions to a normal conducting state, the maximum voltage at the voltage dividing terminals 22 and 24 becomes within 1/100 of the voltage at the voltage terminals A and B, and therefore The voltage is less than 1/100 compared to the conventional method mentioned above.

このように、極低温電気抵抗が例となる超伝導
線を巻回してなる超電導電磁石1と、この超電導
電磁石1と周囲の常温部を断熱する断熱容器8と
を備えた超電導電磁石装置において、上記断熱容
器8内に超電導電磁石1の両端に接続した分圧抵
抗21を備え、且つその分圧端子22,23,2
4を常温側に取出す構成としたものである。
In this way, in a superconducting electromagnet device comprising a superconducting electromagnet 1 formed by winding a superconducting wire having an example of cryogenic electrical resistance, and a heat insulating container 8 for insulating the superconducting electromagnet 1 and the surrounding normal temperature part, the above-mentioned A voltage dividing resistor 21 connected to both ends of the superconducting electromagnet 1 is provided in the heat insulating container 8, and its voltage dividing terminals 22, 23, 2 are provided.
4 is taken out to the room temperature side.

従つて、かかる超電導電磁石装置では、転移検
出電圧が超電導電磁石1の端子電圧に比べて格段
に低くてよいため、セラミツクス11としては小
直径のものでよく、ハーメチツクシール部を小形
として、装置全体の小形化を図ることができる。
また、セラミツクス11は小直径のものでよいた
め、その破損をなくしてヘリウムガスの漏れをな
くし、冷却特性を向上させることができる。さら
に、超電導電磁石1の短絡による焼損の可能性が
極めて少なくなり、電気的信頼性の向上を図るこ
とができる。
Therefore, in such a superconducting electromagnet device, the transition detection voltage may be much lower than the terminal voltage of the superconducting electromagnet 1, so the ceramic 11 may have a small diameter, and the hermetic seal portion may be small, so that the device The overall size can be reduced.
Further, since the ceramics 11 may have a small diameter, it is possible to eliminate breakage thereof, eliminate helium gas leakage, and improve cooling characteristics. Furthermore, the possibility of burnout due to a short circuit of the superconducting electromagnet 1 is extremely reduced, and electrical reliability can be improved.

尚、本発明は上記実施例に限られることなく、
例えば複数個の超電導電磁石装置がある場合にも
同様に構成できるものである。
Note that the present invention is not limited to the above embodiments,
For example, a similar configuration can be made even when there are a plurality of superconducting electromagnet devices.

第5図は、2個の超電導電磁石装置の場合の構
成例を示すものである。すなわち本実施例では、
各断熱容器31,31′内の超電導電磁石1,
1′の両端に、図示の如く分圧抵抗21,21′を
夫々接続し、その分圧端子22,24を常温側に
取出して、転移検出器5に接続している。さら
に、電源4に対して互いに直列に接続された超電
導電磁石1,1′の接続部から分圧端子23を取
出し、この分圧端子23を接地すると共に転移検
出器5に接続している。
FIG. 5 shows a configuration example in the case of two superconducting electromagnet devices. That is, in this example,
Superconducting electromagnet 1 in each insulating container 31, 31',
As shown in the figure, voltage dividing resistors 21 and 21' are respectively connected to both ends of 1', and the voltage dividing terminals 22 and 24 thereof are taken out to the room temperature side and connected to the transition detector 5. Further, a voltage dividing terminal 23 is taken out from the connecting portion of the superconducting electromagnets 1 and 1' connected in series to the power source 4, and this voltage dividing terminal 23 is grounded and connected to the transfer detector 5.

第5図の如き構成の超電導電磁石装置において
は、例えば超電導電磁石1が常電導転移した場
合、アース電位に対する分圧端子22の電圧は、
アース電位に対する分圧端子24の電圧よりも高
くなり、転移検出器5が動作して遮断器3を開に
し、超電導電磁石1と電源4とを切り離すことに
より、超電導電磁石1を保護する。この場合、遮
断器3を開にすると、超電導電磁石1のコイル電
流と保護抵抗9との積で決まる電圧が発生する
が、分圧抵抗21,21′によつて端子電圧を分
圧しているため、分圧端子22,24のアースに
対する電圧は、端子電圧よりも十分小さく選定で
きる。従つて、ハーメチツクシール部を小型化す
ることができ、かつ電気的信頼性も高くなる。
In the superconducting electromagnet device having the configuration as shown in FIG. 5, for example, when the superconducting electromagnet 1 undergoes a normal conduction transition, the voltage of the voltage dividing terminal 22 with respect to the ground potential is as follows.
The voltage becomes higher than the voltage at the voltage dividing terminal 24 with respect to the ground potential, and the transition detector 5 operates to open the circuit breaker 3 and disconnect the superconducting electromagnet 1 from the power source 4, thereby protecting the superconducting electromagnet 1. In this case, when the circuit breaker 3 is opened, a voltage determined by the product of the coil current of the superconducting electromagnet 1 and the protective resistor 9 is generated, but since the terminal voltage is divided by the voltage dividing resistors 21 and 21', The voltage of the voltage dividing terminals 22 and 24 relative to the ground can be selected to be sufficiently smaller than the terminal voltage. Therefore, the hermetic seal portion can be downsized and electrical reliability is also improved.

以上説明したように本発明によれば、装置の小
形化、電気的信頼性および冷却特性の向上を図る
ことができる超電導電磁石装置が提供できる。
As explained above, according to the present invention, it is possible to provide a superconducting electromagnet device that can be made smaller and have improved electrical reliability and cooling characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の超電導電磁石装置を示す構成
図、第2図及び第3図はハーメチツクシール部を
夫々示す図、第4図は本発明の一実施例を示す構
成図、第5図は本発明の他の実施例を示す構成図
である。 1…超電導電磁石、5…転移検出器、8…断熱
容器、21…分圧抵抗、22…分圧端子、23…
分圧端子、24…分圧端子。
FIG. 1 is a configuration diagram showing a conventional superconducting electromagnet device, FIGS. 2 and 3 are diagrams showing hermetic seals, respectively, FIG. 4 is a configuration diagram showing an embodiment of the present invention, and FIG. 5 FIG. 2 is a configuration diagram showing another embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Superconducting electromagnet, 5... Transition detector, 8... Heat insulation container, 21... Partial voltage resistance, 22... Partial voltage terminal, 23...
Dividing voltage terminal, 24...Dividing voltage terminal.

Claims (1)

【特許請求の範囲】[Claims] 1 極低温で電気抵抗が零となる超電導線を巻回
してなる超電導電磁石と、この超電導電磁石と周
囲の常温部とを断熱する断熱容器とを備えた超電
導電磁石装置において、前記断熱容器内に前記超
電導電磁石の両端に接続した端子電圧分圧抵抗を
備え、且つその接地側出力電圧端子を常温側に取
出す構成としたことを特徴とする超電導電磁石装
置。
1. In a superconducting electromagnet device comprising a superconducting electromagnet formed by winding a superconducting wire whose electrical resistance becomes zero at extremely low temperatures, and an insulating container that insulates this superconducting electromagnet from a surrounding normal temperature area, the A superconducting electromagnet device comprising a terminal voltage dividing resistor connected to both ends of the superconducting electromagnet, and having a configuration in which the ground side output voltage terminal is taken out to the room temperature side.
JP10154181A 1981-06-30 1981-06-30 Superconductive electromagnet device Granted JPS583207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10154181A JPS583207A (en) 1981-06-30 1981-06-30 Superconductive electromagnet device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10154181A JPS583207A (en) 1981-06-30 1981-06-30 Superconductive electromagnet device

Publications (2)

Publication Number Publication Date
JPS583207A JPS583207A (en) 1983-01-10
JPS632123B2 true JPS632123B2 (en) 1988-01-18

Family

ID=14303290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10154181A Granted JPS583207A (en) 1981-06-30 1981-06-30 Superconductive electromagnet device

Country Status (1)

Country Link
JP (1) JPS583207A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59144862A (en) * 1983-02-07 1984-08-20 Kitamura Valve Kk Method of manufacturing top-shaped valve for faucet
JP4580818B2 (en) * 2005-05-30 2010-11-17 株式会社東芝 Superconducting coil device

Also Published As

Publication number Publication date
JPS583207A (en) 1983-01-10

Similar Documents

Publication Publication Date Title
US5650903A (en) Superconducting-magnet electrical circuit having voltage and quench protection
JPS5812966B2 (en) vacuum switch
JPS6248444B2 (en)
US3684923A (en) Cryogenic fuse
US5597502A (en) Single phase/three phase heater element circuit for a ceramic fiber heater
JPS632123B2 (en)
US3214637A (en) Device for indicating the ceasing of super-conductivity
JP3395361B2 (en) Charging conductor support device
JPS6225405A (en) Temperature detection mechanism for resistor
JPH041485B2 (en)
JPH04120709A (en) Superconducting magnet apparatus
JP2529963B2 (en) Superconducting rotor
JPS5861608A (en) Superconducting device
JPH0724886Y2 (en) Gas insulation switchgear abnormality detection sensor mounting structure
JPH0677542A (en) Superconducting switch
JPS61168819A (en) Gas insulated bushing
JPS63186512A (en) Grounding device for compact switchgear
JPH0127391Y2 (en)
JPS612711U (en) Gas insulated sealed earthing switchgear
JPH0430751Y2 (en)
JPS6286806A (en) Superconducting coil
JPS60249808A (en) Gas insultor
JPS60261325A (en) Temperature detector of gas insulated switching device
JPH01206835A (en) Superconducting current limiter
JPH01117233A (en) Protective method of superconductive transmission circuit