JPS6321039A - Multiple radiation source ct scanner - Google Patents

Multiple radiation source ct scanner

Info

Publication number
JPS6321039A
JPS6321039A JP61164628A JP16462886A JPS6321039A JP S6321039 A JPS6321039 A JP S6321039A JP 61164628 A JP61164628 A JP 61164628A JP 16462886 A JP16462886 A JP 16462886A JP S6321039 A JPS6321039 A JP S6321039A
Authority
JP
Japan
Prior art keywords
scanner
radiation
scanning
radiation source
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61164628A
Other languages
Japanese (ja)
Inventor
金森 隆裕
蒲田 省司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61164628A priority Critical patent/JPS6321039A/en
Publication of JPS6321039A publication Critical patent/JPS6321039A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は放射線等を線源とするコンピユーテッド−トモ
グラフィ(Computed Tomography 
 : CT )法において、複数個の線源と検出器によ
り、CT検査の時間を減少させることができるCTスキ
ャナに関する。
Detailed Description of the Invention [Industrial Field of Application] The present invention relates to computed tomography using radiation or the like as a source.
: In the CT method, the present invention relates to a CT scanner that can reduce the time of CT examination by using multiple radiation sources and detectors.

〔従来の技術〕[Conventional technology]

従来から、例えば、岩井W rCTスキャナ」(コロナ
社)、第15頁から第16頁に記載のように、トランス
レート(並進走査)を行なう第一世代あるいは第二世代
方式のCTスキャナでは、第2図に示す様に、一つの線
源21と一つの検出器22.あるいは、複数の検出器(
図示せず)を、被検体20をはさみ対向させて設置し、
これ等を並進走査239回転走査24することにより放
射線透過データ25(以下透過データと略す)を収集し
ていた。
Conventionally, for example, in a first-generation or second-generation CT scanner that performs translation (translational scanning), as described in "Iwai W rCT Scanner" (Corona Publishing), pages 15 to 16, As shown in Figure 2, one radiation source 21 and one detector 22. Alternatively, multiple detectors (
(not shown) are placed with the subject 20 facing each other,
Radiation transmission data 25 (hereinafter abbreviated as transmission data) was collected by performing translational scanning 239 and rotational scanning 24 of these.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来のCTスキャナの問題点を示すために、以下線源、
検出器を各々−個ずつもった第一世代方式のCTスキャ
ナ(第2図参照)についてのべる。
To illustrate the problems of conventional CT scanners, the following radiation sources:
This article describes a first generation CT scanner (see Fig. 2) that has two detectors each.

第一世代方式のCTスキャナでは、並進走査範囲を2、
並進走査ピンチをΔX、回転ピッチをΔθ(rad )
とすると、透過データ収集のための全サンプリング数P
は。
In the first generation CT scanner, the translational scanning range is 2,
Translational scanning pinch is ΔX, rotation pitch is Δθ (rad)
Then, the total number of samplings P for transmission data collection
teeth.

P=M−N=CQ/Δ0)・(7c/Δ0)=−(1)
ただし、M、Nは各々並進回数9回転回数、と表わせる
。このため、例えば、12=300mm。
P=M-N=CQ/Δ0)・(7c/Δ0)=-(1)
However, M and N can each be expressed as the number of translations and nine rotations. Therefore, for example, 12=300mm.

Δx=1mmt Δfll=1°、1サンプル点当りの
放射線の計数時間を1秒とすると、300X180X1
=15時間の検査時間を要することになる。
If Δx=1mmt Δfll=1° and radiation counting time per sample point is 1 second, then 300X180X1
= 15 hours of inspection time will be required.

このように、検査時間が長いことは、検査効率の悪化及
び検査コストの上昇などの欠点が生じる。
As described above, the long inspection time causes disadvantages such as deterioration of inspection efficiency and increase of inspection cost.

本発明の目的は並進走査を要するCTスキャナの検査時
間を従来より短かくすることのできるCTスキャナを提
供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a CT scanner that can shorten the inspection time of a CT scanner that requires translational scanning compared to conventional CT scanners.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するためには線源強度を上げ。 To achieve the above objectives, the source strength must be increased.

−サンプル点当りの計数時間を短縮すれば良い。- It is sufficient to shorten the counting time per sample point.

しかし、放射線計測法に放射線−個一個を数えるパルス
カウンティング法を用いた場合には、放射線検出器(シ
ンチレータ等)や計測回路の不感時間の影響により計数
率がおさえられるため、むやみに線源強度を上げること
ができなくなる。
However, when pulse counting is used to measure radiation, in which radiation is counted one by one, the counting rate is suppressed by the dead time of radiation detectors (scintillators, etc.) and measurement circuits, so radiation source intensity is unnecessarily measured. become unable to raise it.

−例として検出器にNaI(Tll)シンチレータを、
計測回路にN I M (Nuclear Instr
umenta−tion Module )を用いた場
合の最大の計数率は約10番 (カラ28フ秒)であり
、この計数率が得られている計測体系ではa源強度を上
げると、正確な計数値を得ることができなくなる。
- For example, a NaI (Tll) scintillator is used as a detector,
NIM (Nuclear Instr.
The maximum counting rate when using the Umenta-tion Module) is approximately 10 (28 seconds), and in a measurement system that achieves this counting rate, increasing the intensity of the a source makes it difficult to obtain accurate counts. you won't be able to get it.

従って、本発明は並進走査をもつCTスキャナにおいて
従来−個のuA源を配置していた構造に対・ して複数
個の線源と複数個の検出器を配置し、並進距離を短くす
ることにより、検査時間の短縮を得るものである。
Therefore, the present invention provides a CT scanner with translational scanning, in which a plurality of radiation sources and a plurality of detectors are arranged in place of the conventional structure in which one uA source is arranged, thereby shortening the translational distance. Therefore, the inspection time can be shortened.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。 An embodiment of the present invention will be described below with reference to FIG.

複数の放射線源10と検出器11(図の場合は四個ずつ
)が並進走査方向23に一定の間隔dで。
A plurality of radiation sources 10 and detectors 11 (four each in the case of the figure) are arranged at constant intervals d in the translational scanning direction 23.

互いに一対一となる様に配置される。さらに、放射線@
10と検出器11の前面には鉛、タングステン等放射線
を阻止する材料で構成したスリットをもつコリメータ1
2が設けである。このコリメータは放射線ビームを細く
するためのもので、再構成されるCT像の空間分解能を
決定する。
They are arranged one-on-one with each other. Furthermore, radiation @
10 and a collimator 1 having a slit in front of the detector 11 made of a material that blocks radiation, such as lead or tungsten.
2 is a provision. This collimator narrows the radiation beam and determines the spatial resolution of the reconstructed CT image.

線源強度をどの程度にするかは、コリメータ12のスリ
ット幅、放射線源10と検出器間11の距離検出系の最
大計数率等によって決めれば良いが1例えば、NaI(
TQ)シンチレータとNIMモジュールを用いた時は、
10番 (カラ28フ秒)の計数値が得られる様な線源
強度とする。
The intensity of the radiation source may be determined based on the slit width of the collimator 12, the maximum count rate of the distance detection system between the radiation source 10 and the detector 11, etc.1 For example, NaI (
TQ) When using a scintillator and NIM module,
The source intensity should be set so that a count value of No. 10 (28 seconds) can be obtained.

放射線g10の個数も検査時間から決めることができる
。実施例では、+側の放射線源10と検出器11を備え
たCTスキャナである。線源と線源の間隔dは走査範囲
を300+a+++とじた場合に。
The number of radiation g10 can also be determined from the inspection time. In the embodiment, it is a CT scanner equipped with a radiation source 10 and a detector 11 on the + side. The distance d between the radiation sources is when the scanning range is 300+a+++.

d=300/10=30mmとしており、+側の線源は
同一の並進台の上に設置されている。この実施例におけ
る並進走査範囲は、30mmである。従って並進ピッチ
を前述の例と同様に1m+aとした場合には、並進回数
は三十回となる。
d=300/10=30 mm, and the + side radiation source is installed on the same translation table. The translational scanning range in this example is 30 mm. Therefore, if the translation pitch is 1 m+a as in the above example, the number of translations will be 30 times.

以上のべた線源、検出器配置と、走査手法による検出器
−個がカバーするサンプリング数P′は、式(1)より
ff=30mI11.Δx=1ms+、Δ0=1°の場
合、P=30X180となる。従って一サンプル点当り
の計測時間を1秒とした場合の検査時間は1.5時間で
、従来の線源−個、検出器−個のCTスキャナの検査時
間に比べ1/10に短縮することができる。
The number of samplings P' covered by the above solid radiation source and detector arrangement and the detectors using the scanning method is calculated from equation (1) as ff=30mI11. When Δx=1ms+ and Δ0=1°, P=30×180. Therefore, if the measurement time per sample point is 1 second, the inspection time is 1.5 hours, which is 1/10 shorter than the inspection time of a conventional CT scanner with one radiation source and one detector. Can be done.

本発明によれば、複数の放射線源10を使用しているこ
とから隣接の線源による散乱線の影響が考えられるが、
これは、線源間距離dを大きくする、線源側コリメータ
により放射線ビームを細くする、検出器側のコリメータ
24の長さを長くする、等により散乱線の影響をなくす
ことができる。
According to the present invention, since a plurality of radiation sources 10 are used, the influence of scattered radiation from adjacent radiation sources can be considered;
The influence of scattered radiation can be eliminated by increasing the distance d between the sources, narrowing the radiation beam by using a collimator on the source side, increasing the length of the collimator 24 on the detector side, etc.

これ等の対策は線源10.検出器11が各々独立に配置
されていることから、容易に実現することができる。
Countermeasures for these are described in 10. Since the detectors 11 are arranged independently, this can be easily realized.

また複数の放射線源10と検出器24を使用しているこ
とから各チャネル間の感度のバラツキによるアーチファ
クト(擬似画像)がCT再構成画像に表われやすいこと
も考えられる。これは、多チヤネル検出器を配置して第
二世代以後の感度補正法として公知になっている様に、
あらかじめ均一物質(例えば空気、水)を撮影すること
により、容易にチャンネル間のバラツキを補正すること
ができる。
Furthermore, since a plurality of radiation sources 10 and detectors 24 are used, artifacts (pseudo images) due to variations in sensitivity between channels are likely to appear in the CT reconstructed image. This is known as a sensitivity correction method after the second generation by arranging a multi-channel detector.
By photographing a uniform substance (eg, air, water) in advance, variations between channels can be easily corrected.

以上の実施例の説明は第一世代方式のCTスキヤナであ
るが、検出器を多チャネル化し、並進走査を残した第二
世代方式のCTスキャナについても同様のことが言える
Although the above embodiments have been described with respect to a first generation type CT scanner, the same can be said of a second generation type CT scanner in which the detector is multi-channeled and translational scanning is retained.

検査時間は、n個の線源、検出器を使用した場合、1/
nに短縮することができる。放射線源に、例えば、γ線
を使用するCTスキャナでは、γ線源自体が小型である
ため、複数個の線源を配置することが比較的容易である
The inspection time is 1/1 when using n sources and detectors.
It can be shortened to n. In a CT scanner that uses, for example, gamma rays as a radiation source, the gamma ray source itself is small, so it is relatively easy to arrange a plurality of radiation sources.

〔発明の効果〕〔Effect of the invention〕

本発明によれば検出器の許容計数値を保ったままで検査
時間を短縮することができる。
According to the present invention, the inspection time can be shortened while maintaining the allowable count value of the detector.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の線源、検出器の配置方法及
び走査方法を示す図、第2図は従来の第一世代方式の走
査方法を示す図である。 10・・放射線源、11・・・検出器、12・・・コリ
メータ、20・・・被検体、23・・・並進走査、24
・・・回転走査。
FIG. 1 is a diagram showing a radiation source, a detector arrangement method, and a scanning method according to an embodiment of the present invention, and FIG. 2 is a diagram showing a conventional first generation scanning method. 10... Radiation source, 11... Detector, 12... Collimator, 20... Subject, 23... Translational scanning, 24
... Rotational scanning.

Claims (1)

【特許請求の範囲】 1、放射線を線源とし、並進、回転走査を行なうCTス
キャナにおいて、 複数の前記線源と検出器を同数個、並進走査方向に配置
し、隣接の前記線源までの間を並進走査し、前記並進走
査の距離を短縮することで前記CTの検査時間を短縮す
ることを特徴とする多線源CTスキャナ。
[Claims] 1. In a CT scanner that uses radiation as a source and performs translational and rotational scanning, the same number of the plurality of radiation sources and detectors are arranged in the translational scanning direction, and A multi-ray source CT scanner, characterized in that the CT inspection time is shortened by performing translational scanning between the two and shortening the distance of the translational scanning.
JP61164628A 1986-07-15 1986-07-15 Multiple radiation source ct scanner Pending JPS6321039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61164628A JPS6321039A (en) 1986-07-15 1986-07-15 Multiple radiation source ct scanner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61164628A JPS6321039A (en) 1986-07-15 1986-07-15 Multiple radiation source ct scanner

Publications (1)

Publication Number Publication Date
JPS6321039A true JPS6321039A (en) 1988-01-28

Family

ID=15796814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61164628A Pending JPS6321039A (en) 1986-07-15 1986-07-15 Multiple radiation source ct scanner

Country Status (1)

Country Link
JP (1) JPS6321039A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010150719A1 (en) * 2009-06-25 2010-12-29 株式会社吉田製作所 X-ray photographing device
WO2020004435A1 (en) 2018-06-27 2020-01-02 東レ株式会社 Radiation transmission inspection method and device, and method for manufacturing microporous film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010150719A1 (en) * 2009-06-25 2010-12-29 株式会社吉田製作所 X-ray photographing device
JP5204899B2 (en) * 2009-06-25 2013-06-05 株式会社吉田製作所 X-ray equipment
US8855262B2 (en) 2009-06-25 2014-10-07 The Yoshida Dental Mfg. Co. Ltd. X-ray photographing device
WO2020004435A1 (en) 2018-06-27 2020-01-02 東レ株式会社 Radiation transmission inspection method and device, and method for manufacturing microporous film
KR20210024438A (en) 2018-06-27 2021-03-05 도레이 카부시키가이샤 Radiographic examination method and apparatus, and method of manufacturing microporous membrane

Similar Documents

Publication Publication Date Title
US7039227B2 (en) PET device and image generating method for pet device
US6694172B1 (en) Fault-tolerant detector for gamma ray imaging
US6399951B1 (en) Simultaneous CT and SPECT tomography using CZT detectors
US4095107A (en) Transaxial radionuclide emission camera apparatus and method
US6895080B2 (en) X-ray measuring apparatus
US7869559B2 (en) X-ray detector methods and apparatus
US20140355734A1 (en) Anti-scatter collimators for detector systems of multi-slice x-ray computed tomography systems
JP2010513908A (en) Energy decomposition detection system and imaging system
KR20090073040A (en) Nuclear medical diagnostic device, form tomography diagnostic device, data arithmetic processing method for nuclear medicine, and form tomogram image processing method
US6429434B1 (en) Transmission attenuation correction method for PET and SPECT
JPH0510638B2 (en)
JPH0634712Y2 (en) X-ray detector
WO2015028602A1 (en) A method for calibration of tof-pet detectors using cosmic radiation
US6858849B2 (en) PET apparatus
US6130430A (en) Septal artifact cancellation in positron emission tomography
Saha et al. Performance characteristics of PET scanners
Sánchez-Crespo et al. The influence of photon depth of interaction and non-collinear spread of annihilation photons on PET image spatial resolution
JPS6321039A (en) Multiple radiation source ct scanner
Yamada et al. Development of a small animal PET scanner using DOI detectors
Zoltani et al. Flash x‐ray computed tomography facility for microsecond events
Weber et al. The KFA TierPET: Performance characteristics and measurements
JP3763165B2 (en) SPECT absorption correction method
David et al. Evaluation of powder/granular Gd2O2S: Pr scintillator screens in single photon counting mode under 140 keV excitation
JP3763159B2 (en) SPECT absorption correction method
JPH0551110B2 (en)