JPS63210257A - Heat resisting steel and its production - Google Patents
Heat resisting steel and its productionInfo
- Publication number
- JPS63210257A JPS63210257A JP4014287A JP4014287A JPS63210257A JP S63210257 A JPS63210257 A JP S63210257A JP 4014287 A JP4014287 A JP 4014287A JP 4014287 A JP4014287 A JP 4014287A JP S63210257 A JPS63210257 A JP S63210257A
- Authority
- JP
- Japan
- Prior art keywords
- heat
- resistant steel
- steel
- heat resisting
- tundish
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 65
- 239000010959 steel Substances 0.000 title claims abstract description 65
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 18
- 239000000843 powder Substances 0.000 claims abstract description 11
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 10
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 9
- 239000002184 metal Substances 0.000 claims abstract description 9
- 229910052751 metal Inorganic materials 0.000 claims abstract description 9
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 9
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 7
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 7
- 238000002844 melting Methods 0.000 claims abstract description 6
- 230000008018 melting Effects 0.000 claims abstract description 6
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 6
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 5
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 5
- 238000001816 cooling Methods 0.000 claims abstract description 5
- 229910052742 iron Inorganic materials 0.000 claims abstract 2
- 238000005266 casting Methods 0.000 claims description 11
- 230000001105 regulatory effect Effects 0.000 abstract 2
- 238000007598 dipping method Methods 0.000 abstract 1
- 238000009749 continuous casting Methods 0.000 description 22
- 238000000034 method Methods 0.000 description 13
- 238000007654 immersion Methods 0.000 description 10
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 229910001566 austenite Inorganic materials 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- 150000001247 metal acetylides Chemical class 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 239000000654 additive Substances 0.000 description 2
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- 238000005098 hot rolling Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 238000005482 strain hardening Methods 0.000 description 2
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
Landscapes
- Continuous Casting (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、車両エンジンの排気弁などの素材として使用
されるオーステナイト系耐熱鋼及び連続鋳造法を使用し
て該耐熱鋼を製造する方法に関する。Detailed Description of the Invention (Industrial Application Field) The present invention relates to an austenitic heat-resistant steel used as a material for vehicle engine exhaust valves, etc., and a method for producing the heat-resistant steel using a continuous casting method. .
(従来技術及び発明が解決しようとする問題点)従来、
エンジンの排気弁などの素材としては、例えば、2l−
4N、212Nなどに代表されるオーステナイト系耐熱
鋼が重用されている。かかる耐熱鋼から各種部品を加工
する場合、先ず、当該耐熱鋼のインゴットを鋳造し、し
かるのち、このインゴットに圧延加工を施して所定の外
径の線材とすることが一般的である。(Prior art and problems to be solved by the invention) Conventionally,
For example, the material for engine exhaust valves etc. is 2l-
Austenitic heat-resistant steels such as 4N and 212N are heavily used. When processing various parts from such heat-resistant steel, it is common to first cast an ingot of the heat-resistant steel, and then roll this ingot to form a wire rod with a predetermined outer diameter.
ところが、上記のオーステナイト系耐熱鋼は熱間加工性
例えば絞り値が低く、圧延加工時の加工率を大きくとる
ことが困難であるため、多段の圧延工程を必要とし、製
造歩留まり低下の原因となっていた。However, the above-mentioned austenitic heat-resistant steel has low hot workability, such as a reduction of area, and it is difficult to obtain a large reduction rate during rolling, so a multi-stage rolling process is required, which causes a decrease in manufacturing yield. was.
従って、上記オーステナイト系耐熱鋼を例えば連続鋳造
法により直接小断面ビレットとして製造できれば極めて
好都合である。この連続鋳造法としては、第1図に示す
ような浸漬ノズルと鋳造パウダとを組み合わせた連続鋳
造装置を使用したものが知られている。すなわち、図に
おいて、溶鋼を満たしたタンディツシュlの下面に浸漬
ノズル2が取り付けられており、この浸漬ノズル2から
鋳型3に溶鋼が注入される。鋳型3は冷却水で冷却され
ているため、注入された溶鋼は鋳型3の壁面で冷却され
て一部凝固して凝固層(シェル)5aとなり、この凝固
層5aとその内部の液相5bとからなる鋳片5はガイド
ロール4に保持されながら図示しないピンチロールで連
続的に引き抜かれる。鋳型3から引き抜かれた鋳片5は
スプレ6により冷却水を吹きつけられて冷却し、凝固が
完了する。Therefore, it would be extremely advantageous if the above-mentioned austenitic heat-resistant steel could be directly produced as a small-section billet by, for example, a continuous casting method. As this continuous casting method, one using a continuous casting apparatus that combines a submerged nozzle and casting powder as shown in FIG. 1 is known. That is, in the figure, a immersion nozzle 2 is attached to the lower surface of a tundish l filled with molten steel, and molten steel is injected into a mold 3 from this immersion nozzle 2. Since the mold 3 is cooled with cooling water, the injected molten steel is cooled on the wall of the mold 3 and partially solidifies to form a solidified layer (shell) 5a, and this solidified layer 5a and the liquid phase 5b inside it are separated. The cast slab 5 is continuously pulled out by pinch rolls (not shown) while being held by the guide rolls 4. The slab 5 pulled out from the mold 3 is cooled by being sprayed with cooling water by the spray 6, and solidification is completed.
なお、第1図において、タンディツシュ1の溶鋼5内に
はストッパ7が挿入されていて、当該タンディツシュ1
から浸漬ノズル2を通って、鋳型3内への溶湯の注入速
度を調節する。一方、浸漬ノズル2は、その下部開口を
鋳型3に注入した溶湯の湯面5C下に浸漬されて溶鋼が
タンディツシュ1から鋳型3に注入される際に大気によ
って酸化され、そのために介在物が生成することを防止
している。また、湯面5Cには鋳造パウダ8が投与され
、鋳型3と鋳片5との間の潤滑剤として機能し、鋳片5
表面の微細なひび割れ、ピンホール等の表面欠陥の発生
を抑制する。In addition, in FIG. 1, a stopper 7 is inserted into the molten steel 5 of the tundish 1.
The injection rate of the molten metal from the immersion nozzle 2 into the mold 3 is adjusted. On the other hand, the immersion nozzle 2 has its lower opening immersed below the surface 5C of the molten metal injected into the mold 3, and when the molten steel is injected from the tundish 1 into the mold 3, it is oxidized by the atmosphere, and as a result, inclusions are generated. It prevents you from doing so. In addition, casting powder 8 is administered to the molten metal surface 5C, which functions as a lubricant between the mold 3 and the slab 5.
Suppresses the occurrence of surface defects such as minute cracks and pinholes on the surface.
ところが、上記したオーステナイト系耐熱鋼には、次の
ような問題がある。つまり、この耐熱鋼に上述の連続鋳
造法を適用しようとすると、鋳型3から出た鋳片5の凝
固層5aの強度つまりシェル強度が弱く、内部の液相5
bの静圧に耐えられずブレークアウト(凝固層が破れ、
中の溶鋼が流出すること)が発生する。本発明者らは、
このようなブレークアウトの発生を防止するためには、
タンディツシュ温度、引き抜き速度及び鋳造パウダの粘
度を制御すればよいとの知見を得た。However, the austenitic heat-resistant steel described above has the following problems. In other words, when trying to apply the above-mentioned continuous casting method to this heat-resistant steel, the strength of the solidified layer 5a of the slab 5 released from the mold 3, that is, the shell strength, is weak, and the internal liquid phase 5 is weak.
It cannot withstand the static pressure of b and breaks out (the coagulated layer ruptures,
(The molten steel inside flows out). The inventors
To prevent such breakouts from occurring,
It has been found that the tundish temperature, drawing speed, and viscosity of the casting powder can be controlled.
ところで、従来より、オーステナイト系ステンレス鋼に
おいては、鋼中の不可避不純物であるSが粒界に析出す
るために熱間加工性が低下することが知られており、そ
のため、Sの極微量化、更にはCaを添加してSをCa
Sとして粒内に固定することが一般に行われていた。一
方、本発明者らは、オーステナイト系耐熱鋼における熱
間加工性の悪化の原因は、上述のオーステナイト系ステ
ンレス鋼の場合とは異なり、炭化物の生成によるもので
有ることを見出した。更に、Caを添加することで炭化
物の形態を変化(粒状化)させ、これによりオーステナ
イト系耐熱鋼の熱間加工性を大幅に改善し得るという知
見を得た。又、Caの効果を安定化するためにはAj2
を添加して脱酸を行うことが必要であるとの認識を得た
。By the way, it has been known that in austenitic stainless steel, hot workability deteriorates because S, an unavoidable impurity in the steel, precipitates at grain boundaries. add Ca and change S to Ca
Generally, it was fixed as S in grains. On the other hand, the present inventors have discovered that the cause of deterioration in hot workability in austenitic heat-resistant steel is the formation of carbides, unlike in the case of the austenitic stainless steel described above. Furthermore, we have found that adding Ca changes the morphology of carbides (granulation), thereby significantly improving the hot workability of austenitic heat-resistant steel. Also, in order to stabilize the effect of Ca, Aj2
It was recognized that it was necessary to perform deoxidation by adding .
しかしながら、A7!の添加により次のような新たな問
題が生じる。即ち、Al添加時に生成したクラスター状
のA7!zOa9が、第2図に示すようにタンディツシ
ュ1底部の浸漬ノズル2の開口部1a周縁に次第に堆積
し、ある程度堆積したのちその一部が剥離する。前述し
たように、タンディツシュ1から浸漬ノズル2を通って
鋳型3内に注入される溶鋼の注入速度は、前記開口部1
aとストッパ7との間隙を調整することにより制御され
ているため、上記のようにクラスター状のAh03が堆
積するとこの注入速度を正確に制御することが困難とな
ってしまう。この注入速度は当然のことながら、引き抜
き速度に影響を与えるため、結果として引き抜き速度の
制御が困難となり、ひいては前述したように連続鋳造時
のシェル強度を高めることができないという不具合が生
じる。However, A7! The following new problems arise due to the addition of . That is, the cluster-like A7! generated when Al was added! As shown in FIG. 2, zOa9 gradually accumulates around the opening 1a of the immersion nozzle 2 at the bottom of the tundish 1, and after a certain amount of accumulation, a part of it peels off. As described above, the injection speed of molten steel from the tundish 1 through the immersion nozzle 2 into the mold 3 is determined by
Since it is controlled by adjusting the gap between a and the stopper 7, it becomes difficult to accurately control the injection rate when Ah03 is deposited in clusters as described above. This injection speed naturally affects the drawing speed, and as a result, it becomes difficult to control the drawing speed, resulting in the problem that the shell strength during continuous casting cannot be increased as described above.
更に、例え連続鋳造法によりビレットを製造することが
できたとしても、該オーステナイト系耐熱鋼自体の特性
は依然として解決されてはおらず、熱間加工性が低いた
め、得られたビレットを圧延する際に線材に割れが生し
たりするという不都合がある。Furthermore, even if a billet could be produced by continuous casting, the properties of the austenitic heat-resistant steel itself have not yet been resolved, and its hot workability is low, making it difficult to roll the resulting billet. However, there is the disadvantage that cracks may occur in the wire.
本発明は上記従来の問題点に鑑みてなされたもので、圧
延などの熱間加工性に優れたオーステナイト系耐熱鋼及
びかかる耐熱鋼を連続鋳造法により製造する際に、ブレ
ークアウトなどが生じることが防止され、且つ、溶鋼の
注入速度を正確に制御しろる耐熱鋼の製造方法を提供す
ることを目的とする。The present invention has been made in view of the above-mentioned conventional problems, and is concerned with the occurrence of breakouts when manufacturing an austenitic heat-resistant steel with excellent hot workability such as rolling, and such heat-resistant steel by a continuous casting method. It is an object of the present invention to provide a method for manufacturing heat-resistant steel in which the injection rate of molten steel can be accurately controlled.
(問題点を解決するための手段および作用)本発明は、
先ずCa及びAlの両元素を添加することにより耐熱鋼
の熱間加工性を向上させ、しかも連続鋳造時に、クンデ
ィツシュ温度、引き抜き速度及び鋳造パウダの粘度を所
定の値に制御することにより、シェル強度を高め、且つ
、上記のCa1lを生成するA1203Mから決定して
、クラスター状の/1203が生成しないようにして引
き抜き速度の制御性を向上させたものである。(Means and effects for solving the problems) The present invention has the following features:
First, the hot workability of heat-resistant steel is improved by adding both elements Ca and Al, and the shell strength is improved by controlling the kundish temperature, drawing speed, and viscosity of the casting powder to predetermined values during continuous casting. This was determined from A1203M, which increases the above-mentioned Ca1l, and improves the controllability of the drawing speed by preventing the cluster-like /1203 from being generated.
即ち、第1の本発明である耐熱鋼は、重量%で、C:
0.20〜0.60%、Si:0.50%以下、Mn:
6.70−16.00%、Nr:1.50〜4.50%
、Cr : 16.50〜22.00%、N :
0.30〜0.50%、Ca : 0.001〜0
. 020%、Aj! : 0.005〜o、io
o%、及び残部実質的にFeよりなるものであり、この
耐熱鋼を製造するための第2の本発明は、タンディツシ
ュから冷却鋳型に耐熱鋼の溶湯を注入し、凝固した鋳片
を連続的に引き抜く耐熱鋼ビレットの製造方法において
、前記耐熱鋼として、重置%で、C:0.20〜0.6
0%、3i:0.50%以下、Mn : 6.70〜1
6.00%、N i : 1.50〜4.50%、Cr
: 16.50〜22.00%、N : 0.30〜
0.50%、Ca: 0.001〜0.020%、A1
:0.005〜0.100%、及び残部実質的にFeよ
りなる鋼を用い、前記タンディツシュ内の温度を前記耐
熱鋼の融点より35°C以下の範囲で高い温度とし、引
き抜き速度を1.6m/分以下として引き抜きを行うと
ともに、前記溶湯の湯面に粘度2.0ポアズ以上となる
鋳造パウダを投入することとしたものである。That is, the heat-resistant steel of the first invention has C:
0.20-0.60%, Si: 0.50% or less, Mn:
6.70-16.00%, Nr: 1.50-4.50%
, Cr: 16.50-22.00%, N:
0.30-0.50%, Ca: 0.001-0
.. 020%, Aj! : 0.005~o,io
The second invention for producing this heat-resistant steel is to inject the molten heat-resistant steel from a tundish into a cooling mold, and continuously pour the solidified slab into a cooling mold. In the method for producing a heat-resistant steel billet, the heat-resistant steel is C: 0.20 to 0.6 in weight percentage.
0%, 3i: 0.50% or less, Mn: 6.70-1
6.00%, Ni: 1.50-4.50%, Cr
: 16.50~22.00%, N: 0.30~
0.50%, Ca: 0.001-0.020%, A1
: 0.005 to 0.100%, and the remainder substantially Fe, the temperature in the tundish is set to 35°C or less higher than the melting point of the heat-resistant steel, and the drawing speed is set to 1. Drawing is carried out at a speed of 6 m/min or less, and casting powder having a viscosity of 2.0 poise or more is charged onto the surface of the molten metal.
先ず、第1の本発明である耐熱鋼ビレ7)における各成
分範囲(重量%)の限定理由を述べる。First, the reason for limiting the range of each component (% by weight) in the heat-resistant steel fin 7), which is the first aspect of the present invention, will be described.
c:o、2o〜0.60%
Cは本発明鋼の強度向上に資する成分元素であり、充分
な強度向上効果を発現させるためには少なくとも0.2
0%必要であるが、過度に増量すると粒界腐食の原因と
なるので、上限を0.60%とした。c: o, 2o~0.60% C is a component element that contributes to improving the strength of the steel of the present invention, and in order to exhibit a sufficient strength improving effect, it should be at least 0.2%.
0% is necessary, but excessive increase causes intergranular corrosion, so the upper limit was set at 0.60%.
Si:0.50%以下
Siは脱酸剤として有効な成分元素であるが、過度に添
加すると靭性を劣化させるので、上限を0.50%とし
た。Si: 0.50% or less Si is an effective component element as a deoxidizing agent, but if added excessively, it deteriorates toughness, so the upper limit was set to 0.50%.
Mn:6.70〜16.00%
Mnはオーステナイト組織の安定化に寄与する元素であ
り、高価なNiを補うために添加される。Mn: 6.70 to 16.00% Mn is an element that contributes to stabilizing the austenite structure, and is added to supplement expensive Ni.
Mnの添加量は少なくとも6.70%必要である。The amount of Mn added must be at least 6.70%.
しかし、余り多いと冷間加工時に加工硬化を生じるので
、上限を16.00%とした。However, if it is too large, work hardening will occur during cold working, so the upper limit was set at 16.00%.
Ni:1.50〜4.50%
NrはMnと同様、オーステナイト組織]織の安定化に
資する成分であり、また、耐食性の向上にも有効である
。そのため、少なくとも1.50%必要であるが、Ni
は高価な元素であるため、上限を4.50%とした。Ni: 1.50 to 4.50% Like Mn, Nr is a component that contributes to stabilizing the austenitic structure and is also effective in improving corrosion resistance. Therefore, at least 1.50% is required, but Ni
Since is an expensive element, the upper limit was set at 4.50%.
Cr:16.50〜22.00%
Crは耐食性及び耐酸化性の向上に特に有効な元素であ
る。かかる特性を充分に発揮させるためには、少なくと
も16.50%必要である。しがし、Cr量を徒に多く
すると、オーステナイト組織を維持することが困難にな
り、−上記したオーステナイト生成元素つまりMn、N
iなどの添加量が増大し高価格化を招くので、上限を2
2.00%とした。Cr: 16.50-22.00% Cr is an element particularly effective in improving corrosion resistance and oxidation resistance. In order to fully exhibit such characteristics, at least 16.50% is required. However, if the amount of Cr is increased unnecessarily, it becomes difficult to maintain the austenite structure, and -
Since the amount of additives such as i increases, leading to higher prices, the upper limit is set to 2.
It was set at 2.00%.
N1.30〜0.50%
Nはオーステナイト組織を安定化させる元素であり、そ
のためには少なくとも0.30%必要であるが、含有量
が余り増大すると、熱間加工性が ゛低下するの
で上限を0.50%とした。N1.30-0.50% N is an element that stabilizes the austenite structure, and for this purpose at least 0.30% is required, but if the content increases too much, hot workability will decrease, so the upper limit is set. was set at 0.50%.
Ca:0.001〜0.02%
Caは鋼中の炭化物を粒状、分断化させ、熱間加工性を
改善するための添加元素である。この熱間加工性の向上
という観点からすると少なくとも0.001%以上は必
要である。但し、C,a量が増大すると連続鋳造時に、
析出したCaOがタンディツシュ内の浸漬ノズル開口部
を閉塞する虞れがあるため、上限を0.02%とした。Ca: 0.001 to 0.02% Ca is an additive element for making carbides in steel granular and fragmented to improve hot workability. From the viewpoint of improving hot workability, at least 0.001% or more is necessary. However, when the amount of C and a increases, during continuous casting,
Since there is a possibility that the precipitated CaO may clog the immersion nozzle opening in the tundish, the upper limit was set to 0.02%.
A7!:0.005〜0.100%
Allは脱酸力の強い元素であり、例えば、5inHの
脱酸を行うためには少なくとも0.005%必要である
。しかし、余り多いと前述のCaと同様AI!zO3が
生成して浸漬ノズルを閉塞するという問題が生じるので
、上限を0.100%とした。A7! : 0.005 to 0.100% All is an element with strong deoxidizing power, and for example, in order to deoxidize 5 inH, at least 0.005% is required. However, if there are too many AI! The upper limit was set at 0.100% because there is a problem that zO3 is generated and blocks the immersion nozzle.
また、本発明の耐熱鋼は上記した成分元素の他に、0.
0005〜0.002%のBを含有していてもよい。B
は熱間加工性の向上に寄与する成分であり、充分な効果
を得るためには少なくとも0.0005%必要であるが
、余り多いとボロンナイトライドの生成に起因して、溶
体化処理後のミクロMi織の悪化を招くので、上限を0
.002%とした。In addition to the above-mentioned component elements, the heat-resistant steel of the present invention has 0.
0005 to 0.002% of B may be contained. B
is a component that contributes to improving hot workability, and is required at least 0.0005% to obtain a sufficient effect, but if it is too large, boron nitride will be formed, resulting in poor performance after solution treatment. The upper limit should be set to 0, as this will cause deterioration of the micro-Mi weave.
.. 002%.
更に、本発明の耐熱鋼には、不純物元素として、0.0
4%以下のP、0.01%以下のS、0.70%以下の
Cu、0.60%以下のMo、0.0067%以下の0
.0.001%以下のpb、o、so%以下のW及び0
.50%以下のVなどの各元素が含有されていてもよい
。Furthermore, the heat-resistant steel of the present invention contains 0.0 as an impurity element.
4% or less P, 0.01% or less S, 0.70% or less Cu, 0.60% or less Mo, 0.0067% or less
.. 0.001% or less pb, o, so% or less W and 0
.. Each element such as V may be contained in an amount of 50% or less.
本発明の耐熱鋼においては、Ca含有量を決定するため
に以下に述べる「有効Ca量」という考え方を導入した
。即ち、次式:
有効Ca量−トータルCa量−0,9×トータル01
・・・・・・・・・(1)この有効Ca量
がゼロのときには、Caは12Ca 0−7A120.
となって過不足なく存在する。12Ca□−7Aρ20
3は融点が低く、タンディツシュ内の温度で、充分溶融
するため、Al1203が単独で生成する場合のように
、浸漬ノズルを閉塞することが防止される。したがって
、有効Ca量≧0の場合に炭化物を粒状化させるCaが
存在することとなる。In the heat-resistant steel of the present invention, the concept of "effective Ca content" described below was introduced to determine the Ca content. That is, the following formula: Effective Ca amount - Total Ca amount - 0.9 x Total 01
(1) When this effective Ca amount is zero, Ca is 12Ca 0-7A120.
Therefore, there is no shortage or excess. 12Ca□−7Aρ20
Since Al1203 has a low melting point and melts sufficiently at the temperature inside the tundish, it is prevented from clogging the immersion nozzle as would be the case when Al1203 is produced alone. Therefore, when the effective Ca amount≧0, there is Ca that causes the carbide to become granular.
次いで、第2の本発明である耐熱鋼の製造方法について
説明する。Next, a method for manufacturing heat-resistant steel, which is the second aspect of the present invention, will be explained.
この製造方法は、第1図に示したような連続鋳造装置を
使用した連続鋳造法により耐熱鋼ビレットを製造する方
法であり、この時の条件、即ち、タンディツシュ温度、
引き抜き速度及び鋳造パウダの粘度を規定したものであ
る。This manufacturing method is a method of manufacturing a heat-resistant steel billet by a continuous casting method using a continuous casting apparatus as shown in Fig. 1, and the conditions at this time are: tundish temperature,
This specifies the drawing speed and viscosity of the casting powder.
先ず、タンディツシュ温度は上記耐熱鋼の融点より35
℃以下の範囲で高い温度とする。そして、鋳片の引呑抜
き速度を1.6m/分以下とする。First, the tandice temperature is 35° below the melting point of the heat-resistant steel.
The temperature should be high within the range below ℃. Then, the drawing speed of the slab is set to 1.6 m/min or less.
更に、鋳造パウダとして、粘度が2.0ポアズ以上とな
るものを使用する。これらの各条件は、上記した耐熱鋼
ビレットを連続鋳造法により製造する際のシェル強度を
高めるために必須となるものであり、何れか1つでも上
記範囲を外れると、ブレークアウトが発生する虞れがあ
る。Further, as the casting powder, one having a viscosity of 2.0 poise or more is used. Each of these conditions is essential in order to increase the shell strength when manufacturing the above-mentioned heat-resistant steel billet by the continuous casting method, and if any one of them is out of the above range, there is a risk of breakout occurring. There is.
なお、本発明の耐熱鋼は凝固収縮率が小さいので、連続
鋳造装置における鋳型としては、テーパ付きのもの、所
謂テーパモールドではなく、第1図のようなストレート
のモールドを使用することが好ましい。Since the heat-resistant steel of the present invention has a small solidification shrinkage rate, it is preferable to use a straight mold as shown in FIG. 1 rather than a tapered mold in the continuous casting apparatus.
(実施例)
第1表に示した成分組成及び上記(1)式から算出され
た有効Ca量を有する各耐熱鋼A〜■を用意し、第1図
の連続鋳造装置を使用して、第2表に示した各条件で連
続鋳造を行い1451■×1451重のビレットを製造
した。この連続鋳造工程におけるブレークアウトの発生
の有無を第2表に示した。(Example) Heat-resistant steels A to ■ having the component compositions shown in Table 1 and the effective Ca amount calculated from the above formula (1) were prepared, and the continuous casting equipment shown in Fig. 1 was used to cast them. Continuous casting was carried out under the conditions shown in Table 2 to produce a billet of 1451 cm x 1451 weight. Table 2 shows whether or not breakout occurred during this continuous casting process.
ついで、得られた各ビレットを夫々6パスで95璽■×
95額となるまで熱間圧延し、線材表面のキズを観察す
ることにより、加工性を評価した。具体的には、キズ無
し・・・◎、キズ深さl mm以下・・・○、キズ深さ
1〜2fl・・・Δ、キズ深さ3mm以上・・・Xとし
て、夫々の結果を第2表中に示した。Next, each of the obtained billets was made into 95 seals in 6 passes.
The workability was evaluated by hot rolling the wire to a thickness of 95 mm and observing scratches on the surface of the wire. Specifically, no scratches...◎, scratch depth 1 mm or less...○, scratch depth 1 to 2 fl...Δ, scratch depth 3 mm or more...X, and the results are summarized as follows. 2 Shown in Table 2.
(以下余白)
第2表からも明らかなように、第1の本発明の組成の耐
熱鋼を用いて、第2の本発明の製造方法により耐熱鋼ビ
レットを製造すると、製造時、即ち連続鋳造工程におけ
るブレークアウトの発生が有効に防止され、しかも、得
られたビレットの熱間加工性も大幅に改善されることが
確認された。(The following is a blank space) As is clear from Table 2, when a heat-resistant steel billet is manufactured by the manufacturing method of the second invention using the heat-resistant steel having the composition of the first invention, during manufacturing, that is, continuous casting. It was confirmed that the occurrence of breakout during the process was effectively prevented, and the hot workability of the obtained billet was also significantly improved.
(発明の効果)
以上説明したように第1の本発明の面1熱鋼によれば、
重量%で、c : 0.20〜0.60%、Si二0.
50%以下、Mn : 6.70〜16.00%、Ni
;1.50〜4.50%、Cr : 16.50〜22
.00%、N : 0.30〜0.50%、Ca :
0.001〜0.020%、A7!:0.005〜0.
100%、及び残部実質的にFeよりなることとしたの
で、熱間圧延などの熱間加工性が向上し、しかも、この
ビレットを製造するための連続鋳造時にクラスター状の
AI。03の生成に起因する注入速度の制御性低下が防
止されるので、引き抜き速度を正確に制御することが可
能となりシェル強度が高められ従来オーステナイト系耐
熱鋼には適用することが困難であった連続鋳造法を適用
することが可能となった。(Effect of the invention) As explained above, according to the surface 1 heat steel of the first invention,
In weight%, c: 0.20-0.60%, Si20.
50% or less, Mn: 6.70-16.00%, Ni
;1.50~4.50%, Cr: 16.50~22
.. 00%, N: 0.30-0.50%, Ca:
0.001-0.020%, A7! :0.005~0.
Since 100% and the remainder are substantially made of Fe, hot workability such as hot rolling is improved, and in addition, cluster-like AI is formed during continuous casting to produce this billet. Since deterioration in the controllability of the injection rate due to the formation of 03 is prevented, it is possible to accurately control the withdrawal rate, and the shell strength is increased. It became possible to apply the casting method.
更に、第2の本発明の耐熱鋼の製造方法によれば、タン
ディツシュから冷却鋳型に耐熱鋼の溶湯を注入し、凝固
した鋳片を連続的に引き抜く耐熱鋼ビレットの製造方法
において、前記耐熱鋼として、重量%で、c:o、2o
〜0.60%、Si:0.50%以下、Mn : 6.
70〜16.00%、Ni:1.50〜4.50%、C
r : l 6.50〜22.00%、N : 0.3
0〜0.50%、Ca : 0.001〜0.020%
、AI:0.005〜0.100%、及び残部実質的に
Feよりなる鋼を用い、前記タンディツシュ内の温度を
前記耐熱鋼の融点より35℃以下の範囲で高い温度とし
、引き抜き速度を1.6m/分以下として引き抜きを行
うとともに、前記溶湯の湯面に粘度2.0ポアズ以上と
なる鋳造パウダを投入することとしたので、シェル強度
が高められて連続鋳造時にブレークアウトが発生するこ
とが防止され、連続鋳造法の適用が可能となるとともに
、製造歩留まりが向上するという利点がある。Furthermore, according to the second method of manufacturing heat-resistant steel of the present invention, in the method of manufacturing a heat-resistant steel billet, in which molten heat-resistant steel is injected into a cooling mold from a tundish and a solidified slab is continuously pulled out, the heat-resistant steel as, weight%, c:o, 2o
~0.60%, Si: 0.50% or less, Mn: 6.
70-16.00%, Ni: 1.50-4.50%, C
r: l 6.50-22.00%, N: 0.3
0-0.50%, Ca: 0.001-0.020%
, AI: 0.005 to 0.100%, and the balance substantially made of Fe, the temperature in the tundish is set to a temperature higher than the melting point of the heat-resistant steel by 35°C or less, and the drawing speed is set to 1. .6 m/min or less, and casting powder with a viscosity of 2.0 poise or more was added to the surface of the molten metal, increasing the shell strength and preventing breakouts during continuous casting. This has the advantage that the continuous casting method can be applied, and the manufacturing yield is improved.
第1図は一般的な連続鋳造装置の構成を示す概略構成図
、第2図は第1図の装置における従来の不具合を示す一
部拡大断面図である。
1・・・タンディツシュ、2・・・浸漬ノズル、3・・
・鋳型、5・・・鋳片、5a・・・凝固層(シェル)、
5b・・・液相、5C・・・湯面、7・・・ストッパ、
8・・・鋳造パウダ。FIG. 1 is a schematic configuration diagram showing the configuration of a general continuous casting apparatus, and FIG. 2 is a partially enlarged sectional view showing a conventional problem in the apparatus of FIG. 1. 1... tanditshu, 2... immersion nozzle, 3...
・Mold, 5... Slab, 5a... Solidified layer (shell),
5b...liquid phase, 5C...molten metal surface, 7...stopper,
8...Casting powder.
Claims (3)
.50%以下、Mn:6.70〜16.00%、Ni:
1.50〜4.50%、Cr:16.50〜22.00
%、N:0.30〜0.50%、Ca:0.001〜0
.020%、Al:0.005〜0.100%、及び残
部実質的にFeよりなることを特徴とする耐熱鋼。(1) In weight%, C: 0.20-0.60%, Si: 0
.. 50% or less, Mn: 6.70-16.00%, Ni:
1.50-4.50%, Cr: 16.50-22.00
%, N: 0.30-0.50%, Ca: 0.001-0
.. 020%, Al: 0.005 to 0.100%, and the balance substantially consisting of Fe.
ることを特徴とする特許請求の範囲第1項記載の耐熱鋼
。(2) The heat-resistant steel according to claim 1, further containing 0.0005 to 0.002% of B.
入し、凝固した鋳片を連続的に引き抜く耐熱鋼の製造方
法において、前記耐熱鋼として、重量%で、C:0.2
0〜0.60%、Si:0.50%以下、Mn:6.7
0〜16.00%、Ni:1.50〜4.50%、Cr
:16.50〜22.00%、N:0.30〜0.50
%、Ca:0.001〜0.020%、Al:0.00
5〜0.100%、及び残部実質的にFeよりなる鋼を
用い、前記タンディッシュ内の温度を前記耐熱鋼の融点
より35℃以下の範囲で高い温度とし、引き抜き速度を
1.6m/分以下として引き抜きを行うとともに、前記
溶湯の湯面に粘度2.0ポアズ以上となるの鋳造パウダ
を投入することを特徴とする耐熱鋼の製造方法。(3) In a method for producing heat-resistant steel in which molten heat-resistant steel is poured into a cooling mold from a tundish and solidified slabs are continuously pulled out, the heat-resistant steel has C: 0.2% by weight.
0 to 0.60%, Si: 0.50% or less, Mn: 6.7
0-16.00%, Ni: 1.50-4.50%, Cr
:16.50~22.00%, N:0.30~0.50
%, Ca: 0.001-0.020%, Al: 0.00
5 to 0.100%, and the remainder substantially made of Fe, the temperature in the tundish is set to a temperature higher than the melting point of the heat-resistant steel by 35°C or less, and the drawing speed is 1.6 m/min. A method for producing heat-resistant steel, which comprises performing drawing as follows, and adding casting powder having a viscosity of 2.0 poise or more to the surface of the molten metal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4014287A JPH0745701B2 (en) | 1987-02-25 | 1987-02-25 | Heat resistant steel and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4014287A JPH0745701B2 (en) | 1987-02-25 | 1987-02-25 | Heat resistant steel and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63210257A true JPS63210257A (en) | 1988-08-31 |
JPH0745701B2 JPH0745701B2 (en) | 1995-05-17 |
Family
ID=12572526
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4014287A Expired - Fee Related JPH0745701B2 (en) | 1987-02-25 | 1987-02-25 | Heat resistant steel and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0745701B2 (en) |
-
1987
- 1987-02-25 JP JP4014287A patent/JPH0745701B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0745701B2 (en) | 1995-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6484716B2 (en) | Lean duplex stainless steel and manufacturing method thereof | |
CN108823492B (en) | Method for producing high-alloy high-strength peritectic steel by CSP (cast steel plate) thin plate continuous casting machine | |
US4255187A (en) | Bismuth-containing steel | |
US4247326A (en) | Free machining steel with bismuth | |
JPH02205618A (en) | Method for continuously casting cast strip | |
CN107530769B (en) | Continuous casting method using mold flux, and slab manufactured using the same | |
KR100450611B1 (en) | A Method for Manufacturing Continuously Cast Strands Having Improved Surface Quality from Martensite Stainless Steel | |
CN114643340B (en) | Method for producing high-carbon high-manganese wear-resistant steel continuous casting blank by straight arc slab caster | |
CN114082913B (en) | Control method for improving center carbon segregation of hypereutectoid steel produced by small square billet section | |
CN111375736B (en) | Casting method of martensite precipitation hardening stainless steel | |
CN109913755B (en) | Peritectic steel and preparation method thereof | |
JPS63210257A (en) | Heat resisting steel and its production | |
CN114107840A (en) | HRB400cE chloride ion corrosion resistant steel bar and production process thereof | |
JP3039369B2 (en) | Method for producing Ni-containing steel | |
JP3505389B2 (en) | Steel for strip, Si-killed steel, and production method by continuous casting | |
KR100362659B1 (en) | A method of manufacturing medium carbon steel plate for offshore structure | |
JP3660811B2 (en) | Steel wire rod and manufacturing method thereof | |
CN116179942A (en) | 20MnCrS5 steel and preparation method and application thereof | |
KR20010009878A (en) | A Method for Manufacturing Continuously Cast Strands from High Ni Containing Steel | |
JPH0253143B2 (en) | ||
JP3537657B2 (en) | Wire rod for steel wire and method of manufacturing the same | |
JPH0416257B2 (en) | ||
CN116117086A (en) | 5Ni steel casting method | |
KR100939875B1 (en) | Continuous casting method for preventing fromm break out | |
CN118357424A (en) | Boron-containing hot-formed steel coil and method for preventing continuous casting steel leakage and longitudinal cracking |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |