JPS63209757A - Hydrophilic ion-exchange resin and its production - Google Patents

Hydrophilic ion-exchange resin and its production

Info

Publication number
JPS63209757A
JPS63209757A JP62044771A JP4477187A JPS63209757A JP S63209757 A JPS63209757 A JP S63209757A JP 62044771 A JP62044771 A JP 62044771A JP 4477187 A JP4477187 A JP 4477187A JP S63209757 A JPS63209757 A JP S63209757A
Authority
JP
Japan
Prior art keywords
hydrophilic
ion exchange
exchange resin
group
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62044771A
Other languages
Japanese (ja)
Inventor
Hiroki Kumagai
熊谷 浩樹
Yoshinori Inoue
嘉則 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP62044771A priority Critical patent/JPS63209757A/en
Publication of JPS63209757A publication Critical patent/JPS63209757A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To remarkably increase the precision of qualitative analysis and quantitative analysis by chemically bonding a hydrophilic amine having a hydroxyl group to a cross-linked hydrophilic polymeric resin stable to acid and alkali to introduce a hydrophilic ion-exchange group. CONSTITUTION:When a hydrophilic ion-exchange resin to be packed in a chromatographic tube and used as a chromatographic column, etc., is produced, a hydrophilic amine having a hydroxyl group (e.g., N-ethyldiethanolamine) is chemically bonded to a cross-linked hydrophilic polymeric resin obtained by the copolymerization of a monofunctional monomer consisting of 2- hydroxylethyl methacrylate (50wt.%) and glycidyl methacrylate (10wt.%) and a difunctional monomer consisting of glycerin methacrylate (40wt.%) to introduce a hydrophilic ion-exchange group. When the hydrophilic ion-exchange resin is used, the analyzing time can be remarkably reduced, and the precision in qualitative analysis and quantitative analysis can be significantly improved.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、クロマト管に充填され高速液体クロマトグラ
フ用分離カラム等として使用されるような親水性イオン
交換基を有する親水性イオン交換樹脂およびその製造方
法に関する。
Detailed Description of the Invention <Industrial Application Field> The present invention relates to a hydrophilic ion exchange resin having a hydrophilic ion exchange group, which is packed into a chromatography tube and used as a separation column for high performance liquid chromatography, and the like. It relates to its manufacturing method.

〈従来の技術〉 クロマト管に充填され高速液体クロマトグラフ用分離カ
ラム等として使用される一般的なイオン交換樹脂として
は、例えば、ポリスチレンゲルを化学的に処理(具体的
には、硫酸によるスルホン化や、アルキルアミンとクロ
ロメチル化ポリスブレンゲルとの反応による四級アンモ
ニウム化など)することにより該ゲルの基剤表面にイオ
ン交換基を導入するようにしたものが知られている。
<Prior art> General ion exchange resins packed in chromatography tubes and used as separation columns for high performance liquid chromatography include, for example, polystyrene gel that is chemically treated (specifically, sulfonated with sulfuric acid). It is known that an ion exchange group is introduced into the surface of the gel base by performing quaternary ammonium formation by reacting an alkylamine with a chloromethylated polybrene gel, etc.

〈発明が解決しようとする問題点〉 然しながら、このようなイオン交換樹脂はその骨格が疎
水性であるため、試料との間に疎水性相互作用が起きた
り骨格の芳香環(ベンゼン環)との間にも電子的吸着(
π−π相互作用)が起きたりして試料の溶出が遅れる欠
点があった。また、上記イオン交換樹脂に保持された試
料イオンは、イオン交換作用以外にイオン交換樹脂との
他の相互作用(疎水性相互作用など)を受けるため、イ
オン交換がスムーズにいかず該樹脂からの試料の脱離が
遅れがちとなっていた。このため、上記イオン交換樹脂
から溶出した試料のクロマトグラムピークはテーリング
状のピークとなり、試料成分が充分に分離せず定性分析
において試料成分を誤認したり、定量分析においてピー
ク面積の測定が不正確になって大きな誤差を生じたりす
る欠点があった。
<Problems to be solved by the invention> However, since the skeleton of such an ion exchange resin is hydrophobic, hydrophobic interactions may occur with the sample and interactions with the aromatic ring (benzene ring) of the skeleton may occur. There is also electronic adsorption (
This method has the disadvantage that the elution of the sample is delayed due to the occurrence of π-π interactions. In addition, the sample ions retained in the ion exchange resin undergo other interactions with the ion exchange resin (hydrophobic interactions, etc.) in addition to the ion exchange action, so ion exchange does not proceed smoothly and the sample ions are removed from the resin. Desorption of the sample tended to be delayed. For this reason, the chromatogram peak of the sample eluted from the ion-exchange resin becomes a tailing peak, and the sample components are not separated sufficiently, leading to misidentification of sample components in qualitative analysis and inaccurate measurement of peak area in quantitative analysis. This has the drawback of causing large errors.

本発明は、かかる状況に鑑みてなされたものであり、そ
の目的は、上述のような欠点が一挙に解消するような親
水性イオン交換基を有する親水性イオン交換樹脂および
その製造方法を提供することにある。
The present invention has been made in view of such circumstances, and its purpose is to provide a hydrophilic ion exchange resin having a hydrophilic ion exchange group and a method for producing the same, which eliminates the above-mentioned drawbacks at once. There is a particular thing.

〈問題点を解決プるための手段〉 上述のような問題点を解決する本発明の特徴は、親水性
イオン交換樹脂およびその製造方法において、酸やアル
カリに対して安定な架橋親水性高分子樹脂に、水酸基を
有する親水性アミンを化学的に結合させて親水性イオン
交換基を導入するようにしたことにある。
<Means for solving the problems> The feature of the present invention that solves the above-mentioned problems is that in a hydrophilic ion exchange resin and a method for producing the same, a crosslinked hydrophilic polymer that is stable against acids and alkalis is used. The reason is that a hydrophilic ion exchange group is introduced by chemically bonding a hydrophilic amine having a hydroxyl group to the resin.

〈実施例〉 以下、本発明について適宜図を用いて詳細に説明する。<Example> Hereinafter, the present invention will be explained in detail using appropriate figures.

最初に、本発明に係わる親水性イオン交換樹脂の構造に
ついて説明する。本発明に係わる親水性イオン交換樹脂
は、酸やアルカリに対して安定な架橋親水性高分子樹脂
に、水酸基を有する親水性アミンが化学的に結合された
構成になっている。また、上記架橋親水性高分子樹脂は
、親水性単官能モノマーと二官能モノマーとの共重合で
得られた高分子樹脂で構成されていることが多い。
First, the structure of the hydrophilic ion exchange resin according to the present invention will be explained. The hydrophilic ion exchange resin according to the present invention has a structure in which a hydrophilic amine having a hydroxyl group is chemically bonded to a crosslinked hydrophilic polymer resin that is stable against acids and alkalis. Further, the crosslinked hydrophilic polymer resin is often composed of a polymer resin obtained by copolymerizing a hydrophilic monofunctional monomer and a difunctional monomer.

ここに、上記親水性単官能モノマーはモノマー自体が本
質的に親水性のモノマー若しくは親水性官能基を導入可
能なモノマーでなり、上記二官能モノマーは、二つの官
能基に挟まれた部分の成分が親水性化合物でなっており
、該親水性化合物は、エチレングリコール、ポリ1チレ
ングリコール、グリセリン、ポリグリセリン、若しくは
糖アルコールでなっていることが多い。
Here, the above-mentioned hydrophilic monofunctional monomer is a monomer that is essentially hydrophilic in itself or a monomer into which a hydrophilic functional group can be introduced, and the above-mentioned bifunctional monomer is a component of a portion sandwiched between two functional groups. is a hydrophilic compound, and the hydrophilic compound is often ethylene glycol, poly(1-ethylene glycol), glycerin, polyglycerin, or sugar alcohol.

次に、本発明に係わる親水性イオン交換樹脂を製造する
方法について説明する。本発明に係わる親水性イオン交
換樹脂は、架橋親水性高分子樹脂の表面の反応性基に、
水酸基を有する親水性アミンを直接化学的に結合させて
製造される。この製造方法を実施例(以下、「実施例1
」という)で示すと次のようになる。即ち、例えば2−
ヒドロキシエチルメタクリレート(50wt%)及びグ
リシジルメタクリレート(10wt%)でなる親水性単
官能モノマーと例えばグリセリンメタクリレート(40
wt%)でなる二官能モノマーとの共重合で得られた球
形の架橋共重合樹脂(架橋親水性高分子樹脂)の10g
を、50m1の30%メタノール水溶液中に充分分散さ
せる。該分散溶液を60’ Cの恒温槽中に静置して後
、例えばN−エヂルジエタノールアミンを50添加し6
06Cで6時間反応させる。該反応終了後、純水洗浄を
挾みながら、メタノール、塩酸、苛性ソーダ、炭酸ソー
ダの順で洗浄や対イオン交換を行う。その後、0.1m
ol/I!の炭酸ソーダ中にいれ、40’Cで約5時間
煮込む。その後、室温に戻し再度炭酸ソーダで洗浄する
。このようにして得られた親水性イオン交換樹脂は、約
40μsq/m1のイオン交換容量をもっていた。
Next, a method for producing a hydrophilic ion exchange resin according to the present invention will be explained. The hydrophilic ion exchange resin according to the present invention has reactive groups on the surface of the crosslinked hydrophilic polymer resin.
It is produced by directly chemically bonding a hydrophilic amine with a hydroxyl group. This manufacturing method was described in an example (hereinafter referred to as "Example 1").
), it becomes as follows. That is, for example, 2-
A hydrophilic monofunctional monomer consisting of hydroxyethyl methacrylate (50 wt%) and glycidyl methacrylate (10 wt%) and, for example, glycerin methacrylate (40 wt%)
10 g of a spherical crosslinked copolymer resin (crosslinked hydrophilic polymer resin) obtained by copolymerization with a bifunctional monomer consisting of
are thoroughly dispersed in 50 ml of 30% methanol aqueous solution. After leaving the dispersion solution in a constant temperature bath at 60'C, for example, 50% of N-edyldiethanolamine was added, and the solution was heated to 60°C.
React at 06C for 6 hours. After completion of the reaction, washing and counter ion exchange are performed in the order of methanol, hydrochloric acid, caustic soda, and soda carbonate while intervening washing with pure water. Then 0.1m
ol/I! Pour in carbonated soda and simmer at 40'C for about 5 hours. After that, it is returned to room temperature and washed again with soda carbonate. The hydrophilic ion exchange resin thus obtained had an ion exchange capacity of about 40 μsq/ml.

また、本発明に係わる親水性イオン交換樹脂は、反応性
基の異なる複数のモノマーを混合して架橋親水性高分子
樹脂を合成し、該架橋親水性高分子樹脂の表面の反応性
基に、水酸基を有するIll水性アミンを結合させても
製造できる。更に、本発明に係わる親水性イオン交換樹
脂は、架橋親水性高分子樹脂の表面の反応性基を他の反
応性基と置換してのち、該他の反応性基に水酸基を有す
る親水性アミンを結合させても製造できる。更にまた、
本発明に係わる親水性イオン交換樹脂は、架橋親水性高
分子樹脂の表面の反応性基を特定の反応性基と置換して
のち、該特定反応性基に水酸基を有する親水性アミンを
結合させても製造できる。この製造方法を実施例(以下
、「実施例2」という)で示すと次のようになる。即ら
、例えば2−ヒドロキシエチルメタクリレートでなる親
水性単官能モノマー(50wt%)と例えばエチレング
リコールジメタクリレートでなる二官能モノマー(50
wt%)との共重合で得られた球形の架橋共重合樹脂(
架橋親水性−高分子樹脂)の10gを、4Qmlの1M
定(N)苛性ソーダ溶液中に充分分散させる。該分散溶
液をso’cの恒温槽中に静置して後、例えばエビクロ
ルヒドリンを9.259添加し強く振り混ぜ反応試薬を
充分混合する。
In addition, the hydrophilic ion exchange resin according to the present invention is produced by mixing a plurality of monomers having different reactive groups to synthesize a crosslinked hydrophilic polymer resin, and applying the reactive groups on the surface of the crosslinked hydrophilic polymer resin to It can also be produced by bonding Ill aqueous amine having a hydroxyl group. Further, in the hydrophilic ion exchange resin according to the present invention, the reactive group on the surface of the crosslinked hydrophilic polymer resin is replaced with another reactive group, and then the hydrophilic ion exchange resin is replaced with a hydrophilic amine having a hydroxyl group in the other reactive group. It can also be manufactured by combining them. Furthermore,
The hydrophilic ion exchange resin according to the present invention is obtained by substituting a reactive group on the surface of a crosslinked hydrophilic polymer resin with a specific reactive group, and then bonding a hydrophilic amine having a hydroxyl group to the specific reactive group. It can also be manufactured. This manufacturing method is shown in an example (hereinafter referred to as "Example 2") as follows. That is, a hydrophilic monofunctional monomer (50 wt%) consisting of, for example, 2-hydroxyethyl methacrylate and a bifunctional monomer (50 wt%) consisting of, for example, ethylene glycol dimethacrylate.
spherical crosslinked copolymer resin (wt%) obtained by copolymerization with
10 g of cross-linked hydrophilic polymeric resin) in 4 Q ml of 1 M
Thoroughly disperse in constant (N) caustic soda solution. After the dispersion solution is allowed to stand in a SO'C constant temperature bath, for example, 9.25 g of shrimp chlorohydrin is added and shaken vigorously to thoroughly mix the reaction reagent.

該反応スラリー液を509Cのインキュベータ中で3時
間反応させる。該反応終了後、充分に洗浄し余剰の苛性
ソーダを洗い出し、その後、メタノール洗浄を行う。次
いで、50m1のメタノールを加えてのら、例えばN、
N−ビス(2−ヒドロプロピル)メチルアミンを5.5
0添加し40’Cで10時間反応させる。該反応終了後
、十分な洗浄を行い、その慢、0.05規定の硫酸中で
50@Cで6時間反応させる。このようにして得られた
イオン交換樹脂を水洗後0.2mo l/!の塩化ナト
リウムと炭酸ナトリウムで洗浄しつつ対イオン交換を行
う。このようにして得られた親水性イオン交換樹脂は、
約30μeq/mlのイオン交換容量をもっていた。
The reaction slurry is reacted in a 509C incubator for 3 hours. After the reaction is completed, the reactor is thoroughly washed to remove excess caustic soda, and then washed with methanol. Then add 50 ml of methanol and add, for example, N,
5.5 N-bis(2-hydropropyl)methylamine
0 and reacted at 40'C for 10 hours. After completion of the reaction, sufficient washing is carried out and the reaction is continued for 6 hours at 50@C in 0.05N sulfuric acid. After washing the ion exchange resin obtained in this way with water, the concentration was 0.2 mol/! Perform counterion exchange while washing with sodium chloride and sodium carbonate. The hydrophilic ion exchange resin thus obtained is
It had an ion exchange capacity of about 30 μeq/ml.

一方、第1図は一般的な高速液体クロマトグラフ装置の
構成説明図である。この図において、移動相ポンプ2が
駆動すると、移動相タンク1内の移動相(例えば溶離液
)が、移動相ポンプ2→試料注入器3→予熱器5→分離
カラム6→サプレッサ7の内室7b→導電率検出器8を
経由し、廃液槽12へと流れるようになっている。また
、除去液ポンプ10が駆動すると、除去液タンク9内の
除去液が、除去液ポンプ10→サプレツサ7の外室7C
→除去液廃液槽11へと流れる。尚、予熱器5、分離カ
ラム6、サプレッサ7、および検出器(例えば導電率検
出器)8は、恒温槽13内に収納されて一定温度(例え
ば40’ C)に保たれると共に、検出器8の出力信号
が表示装置51(例えば記録計)14に導かれている。
On the other hand, FIG. 1 is an explanatory diagram of the configuration of a general high-performance liquid chromatography apparatus. In this figure, when the mobile phase pump 2 is driven, the mobile phase (e.g. eluent) in the mobile phase tank 1 is transferred from the mobile phase pump 2 to the sample injector 3 to the preheater 5 to the separation column 6 to the inner chamber of the suppressor 7. 7b→via the conductivity detector 8, and flows to the waste liquid tank 12. Further, when the removal liquid pump 10 is driven, the removal liquid in the removal liquid tank 9 is transferred from the removal liquid pump 10 to the outer chamber 7C of the suppressor 7.
→The removed liquid flows into the waste liquid tank 11. The preheater 5, separation column 6, suppressor 7, and detector (e.g., conductivity detector) 8 are housed in a constant temperature bath 13 and kept at a constant temperature (e.g., 40'C). 8 is led to a display device 51 (for example, a recorder) 14.

第2図(イ)は、前記実施例1で詳述したような方法で
製造した本発明に係わる親水性イオン交換樹脂を上記分
離カラム6に充填した高速液体クロマトグラフを使用し
、1000mのC1−イオン、301)l)mのNO3
−イオン、40 p pmの1−イオン、40Dpmの
5203−イオン、および60ppmの5CN−イオン
を含む被測定液(以下、「第1標準液」という)の一定
ff1(50μりを、試料注入器3に注入し、16.5
mMのNa2Co3と4゜5mMのNaHCO3の混合
液でなる移動相を用いて分析した結果を示すクロマトグ
ラムである。
FIG. 2(a) shows a high performance liquid chromatograph in which the separation column 6 is filled with the hydrophilic ion exchange resin according to the present invention manufactured by the method detailed in Example 1. -ion, 301) l) m NO3
- ions, 1- ions at 40 ppm, 5203- ions at 40 Dpm, and 5CN- ions at 60 ppm (hereinafter referred to as "first standard solution"), a constant ff1 (50 µm) was measured using a sample injector. Injected into 3, 16.5
This is a chromatogram showing the results of analysis using a mobile phase consisting of a mixture of mM Na2Co3 and 4.5 mM NaHCO3.

第2図〈口)は、前記実施例1で詳述したような方法で
イオン交換基としてトリメチルアミンを反応させて製造
したイオン交換樹脂を上記分離カラム6に充填した高速
液体クロマトグラフを使用し、上記第1標準液の一定量
(50μl)を、試料注入器3に注入し、30mMのN
a2 CO3でなる移動相を用いて分析した結果を示す
クロマトグラムである。第2図(ハ)は、ポリスチレン
系のラテックスタイプのイオン交換樹脂を上記分離カラ
ム6に充填した高速液体クロマトグラフを使用し、上記
第1標準液の一定間(50μl)を、試料注入器3に注
入し、30mMのN82 CO3でなる移動相を用いて
分析した結果を示すクロマトグラムである。第2図(イ
)のクロマトグラムと第2図(ロ)および第2図(ハ)
のクロマトグラムを比較すれば明らかなように、本発明
に係わる親水性イオン交換樹脂を用いて作成したクロマ
トグラムのピーク形状は良好であり、定性分析や定量分
析を行うのに極めて良好な状態になっている。第3図(
イ)は、前記実施例1で詳述したような方法で製造した
本発明に係わる親水性イオン交換樹脂を上記分離カラム
6に充填した高速液体クロマトグラフを使用し、5pp
mの「−イオン、10ppmのCI−イオン、ispp
mのNO2−イオン、1oppmの13r−イオン、3
0ppmのN 03−イオン、4oppmの5Oa2−
イオン、3oppmのPO42−イオン、40ppmの
I−イオン、4oppmの82032−イオン、および
60pDmの5CN−イオンを含む被測定液(以下、「
第2標準液」という)の一定m (50μl)を、試料
注入器3に注入し、5.5mMのN82CO3と1.5
mMのN a HG O3の混合液でなる移動相を用い
て分析した結果を示すクロマトグラムである。第3図(
ロ)は、ポリスチレン系のラテックスタイプのイオン交
換樹脂を上記分離カラム6に充填した高速液体クロマト
グラフを使用し、上記第2標準液の一定間(50μりを
、試料注入器3に注入し、16.5mMのNa2CO3
と4.5mMのNaHCO3の混合液でなる移動相を用
いて・分析した結果を示すクロマトグラムである。第3
図(イ)のクロマトグラムと第3図(ロ)のクロマトグ
ラムを比較すれば明らかなように、本発明に係わる親水
性イオン交換樹脂を用いて作成したクロマトグラムのピ
ーク形状。
FIG. 2 (opening) uses a high performance liquid chromatograph in which the separation column 6 is filled with an ion exchange resin produced by reacting trimethylamine as an ion exchange group by the method detailed in Example 1. A certain amount (50 μl) of the first standard solution was injected into the sample injector 3, and 30 mM N
This is a chromatogram showing the results of analysis using a mobile phase consisting of a2 CO3. In FIG. 2(C), a high performance liquid chromatograph is used in which the separation column 6 is filled with a polystyrene latex type ion exchange resin, and a certain amount (50 μl) of the first standard solution is injected into the sample injector 3. This is a chromatogram showing the results of analysis using a mobile phase of 30mM N82CO3. Chromatogram of Figure 2 (A), Figure 2 (B) and Figure 2 (C)
As is clear from the comparison of the chromatograms, the peak shape of the chromatogram created using the hydrophilic ion exchange resin according to the present invention is good, and it is in an extremely good condition for qualitative and quantitative analysis. It has become. Figure 3 (
A) is carried out using a high performance liquid chromatograph in which the separation column 6 is filled with the hydrophilic ion exchange resin according to the present invention manufactured by the method described in detail in Example 1.
m'-ion, 10ppm CI-ion, ispp
m NO2- ions, 1 oppm 13r- ions, 3
0 ppm N03- ion, 4 oppm 5Oa2-
A liquid to be measured (hereinafter referred to as "
A certain amount (50 μl) of the second standard solution (referred to as “second standard solution”) was injected into the sample injector 3, and 5.5 mM N82CO3 and 1.5
This is a chromatogram showing the results of analysis using a mobile phase consisting of a mixture of mM Na HG O3. Figure 3 (
(b) uses a high performance liquid chromatograph in which the separation column 6 is filled with a polystyrene-based latex type ion exchange resin, injects a certain amount (50μ) of the second standard solution into the sample injector 3; 16.5mM Na2CO3
This is a chromatogram showing the results of analysis using a mobile phase consisting of a mixture of NaHCO3 and 4.5mM NaHCO3. Third
As is clear from comparing the chromatogram in Figure (a) and the chromatogram in Figure 3 (b), the peak shape of the chromatogram created using the hydrophilic ion exchange resin according to the present invention.

分離程度、および分析時間は全て良好であり、定性分析
や定量分析を行うのに極めて良好な状態になっている。
The degree of separation and analysis time were all good, making it extremely suitable for qualitative and quantitative analysis.

また、本発明に係わる親水性イオン交換樹脂を用いて作
成したクロマトグラムでは、試料成分に対する選択性が
変化するため、ピーク形状と溶出時間による改善以外に
も選択性の改善効果が加わるため、大幅な分離の改善が
期待できる等前記従来例にない特徴もみられ、従来と責
なる新しいアプリケーションが期待できる。
In addition, in the chromatogram created using the hydrophilic ion exchange resin according to the present invention, the selectivity for sample components changes, so the selectivity improvement effect is added in addition to the improvement by peak shape and elution time, so it can be significantly improved. It also has features that are not found in the conventional examples, such as improved separation, and new applications that are different from conventional ones can be expected.

第4図(イ)は、前記実施例1で詳述したような方法で
製造した本発明に係わる親水性イオン交換樹脂を上記分
離カラム6に充填した高速液体クロマトグラフを使用し
、5ppmのF−イオン、20ppmのCH3C00−
−1’オン、20 p pmノHC00−イオン、10
ppmのCI−イオン、15ppmのN 02−イオン
、10DpmのBr−イオン、および3oppmのN 
03−イオンを含む被測定液(以下、「第3標準液」と
いう)の一定量(50μl)を、試料注入器3に注入し
、5mMのNal−1cO3でなる移動相を用いて分析
した結果を示すクロマトグラムである。第4図(0)は
、は、ポリスチレン系のラテックスタイプのイオン交換
樹脂を上記分離カラム6に充填した高速液体クロマトグ
ラフを使用し、上記第3標準液の一定間(50μl)を
、試料注入器3に注入し、10mMのN a HCO3
の移動相を用いて分析した結果を示すりOマドグラムで
ある。第4図(イ)のクロマトグラムと第4図(ロ)の
りOマドグラムを比較すれば明らかなように、本発明に
係わる親水性イオン交換樹脂を用いて作成したりOマド
グラムのピーク形状1分離程度、および分析時間は全て
良好であり、定性分析や定量分析を行うのに極めて良好
な状態になっている。
FIG. 4(a) shows a high performance liquid chromatograph in which the separation column 6 is filled with a hydrophilic ion exchange resin according to the present invention manufactured by the method detailed in Example 1, and 5 ppm of F. -ion, 20 ppm CH3C00-
-1'on, 20 ppm HC00-ion, 10
ppm CI- ions, 15 ppm N 02- ions, 10 Dpm Br- ions, and 3 oppm N
A certain amount (50 μl) of the liquid to be measured containing 03-ions (hereinafter referred to as the "third standard solution") was injected into the sample injector 3, and the results were analyzed using a mobile phase consisting of 5mM Nal-1cO3. This is a chromatogram showing. In Figure 4 (0), a high performance liquid chromatograph is used in which the separation column 6 is filled with a polystyrene-based latex type ion exchange resin, and a certain period (50 μl) of the third standard solution is injected into the sample. Inject into vessel 3 and add 10mM NaHCO3.
This is an O madogram showing the results of analysis using a mobile phase of . As is clear from the comparison of the chromatogram in Figure 4 (a) and the adhesive O madogram in Figure 4 (b), the peak shape of the O madogram prepared using the hydrophilic ion exchange resin according to the present invention The quality and analysis time are all good, and the condition is extremely good for qualitative and quantitative analysis.

〈発明の効果〉 以上詳しく説明したような本発明に係わる親水性イオン
交換樹脂は、架橋親水性高分子樹脂に水H基を有する親
水性アミンが化学的に結合されているような構成である
ため、該イオン交換樹脂が本質的に親水性となり、前記
従来例の場合に比して前記試料中の疎水、性イオンの溶
出が早くなる利点がある。また、上記架橋親水性高分子
樹脂だけでなくイオン交換基も親水性であるため、上記
親水性イオン交換樹脂からの溶出が遅い成分のりOマド
グラムピーク形状も大きく改善され鋭敏なピーク形状と
なる利点がある。このため、本発明に係わる親水性イオ
ン交換樹脂を用いると前記試料等の分析時間は大幅に短
縮され且つ定性分析や定m分析の精度も大きく向上する
ようになり、試料成分が充分に分離せず定性分析におい
て試料成分を誤認したり定量分析においてピーク面積の
測定が不正確になって大きなWA差を生じたりしていた
前記従来例の欠点が一挙に解消されるようになる。
<Effects of the Invention> The hydrophilic ion exchange resin according to the present invention as described in detail above has a structure in which a hydrophilic amine having a water H group is chemically bonded to a crosslinked hydrophilic polymer resin. Therefore, the ion exchange resin becomes essentially hydrophilic, and there is an advantage that hydrophobic and polar ions in the sample are eluted more quickly than in the conventional example. In addition, since not only the cross-linked hydrophilic polymer resin but also the ion exchange group is hydrophilic, the shape of the O madogram peak of components that are slow to elute from the hydrophilic ion exchange resin is greatly improved, resulting in a sharp peak shape. There are advantages. Therefore, when the hydrophilic ion exchange resin according to the present invention is used, the analysis time for the above-mentioned samples, etc. can be significantly shortened, and the accuracy of qualitative analysis and constant m analysis can also be greatly improved, allowing the sample components to be sufficiently separated. The disadvantages of the conventional methods, such as misidentification of sample components in qualitative analysis and inaccurate measurement of peak areas in quantitative analysis, resulting in large WA differences, can be solved at once.

また、上記親水性イオン交換樹脂の基剤である上記架橋
親水性高分子樹脂だ番プでなくイオン交換基bil!水
性となったことから、試料イオンに対する選択性が変化
し、前記従来例のイオン交j!に樹脂では同時分析が困
難とされていた成分をも同時に分析できるようになる等
従来と異なる新たなアプリケーションが可能になる利点
もある。
Moreover, the base material of the hydrophilic ion exchange resin is not the crosslinked hydrophilic polymer resin but the ion exchange group bil! Since it is water-based, the selectivity for sample ions changes, and the ion exchange j! Another advantage is that it enables new applications that are different from conventional methods, such as the ability to simultaneously analyze components that were difficult to analyze simultaneously with resins.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一般的な高速液体クロマトグラフ装置の構成説
明図、第2図乃至第4図は本発明に係わる親水性イオン
交換樹脂等を分離カラムに充填した高速液体りOマドグ
ラフを使用して試料を分析した結果を示すクロマトグラ
ムである。 1・・・・・・移動相タンク、2・・・・・・移動相ポ
ンプ、3・・・・・・試料注入器、5・・・・・・予熱
器、6・・・・・・分離カラム 7・・・・・・サプレッサ、8・・・・・・検出器、9
・・・・・・除去液タンク、10・・・・・・除去液ポ
ンプ、11.12・・・・・・廃液槽、13・・・・・
・恒温槽、14・・・・・・表示装置、
Fig. 1 is an explanatory diagram of the configuration of a general high-performance liquid chromatography device, and Figs. 2 to 4 show a high-performance liquid chromatograph using a separation column filled with a hydrophilic ion exchange resin, etc. according to the present invention. This is a chromatogram showing the results of analyzing a sample. 1... Mobile phase tank, 2... Mobile phase pump, 3... Sample injector, 5... Preheater, 6... Separation column 7... Suppressor, 8... Detector, 9
... Removal liquid tank, 10 ... Removal liquid pump, 11.12 ... Waste liquid tank, 13 ...
・Thermostatic chamber, 14...Display device,

Claims (9)

【特許請求の範囲】[Claims] (1)クロマト管に充填され高速液体クロマトグラフ用
分離カラム等として使用される親水性イオンイオン交換
樹脂において、酸やアルカリに対して安定な架橋親水性
高分子樹脂に、水酸基を有する親水性アミンが化学的に
結合して親水性イオン交換基が導入されていることを特
徴とする親水性イオン交換樹脂。
(1) In hydrophilic ion exchange resins that are packed into chromatographic tubes and used as separation columns for high performance liquid chromatography, hydrophilic amines with hydroxyl groups are added to crosslinked hydrophilic polymer resins that are stable against acids and alkalis. A hydrophilic ion exchange resin characterized in that a hydrophilic ion exchange group is introduced by chemically bonding the two.
(2)前記架橋親水性高分子樹脂は、親水性単官能モノ
マーと二官能モノマーとの共重合で得られた高分子樹脂
でなる特許請求範囲第(1)項記載の親水性イオン交換
樹脂。
(2) The hydrophilic ion exchange resin according to claim (1), wherein the crosslinked hydrophilic polymer resin is a polymer resin obtained by copolymerizing a hydrophilic monofunctional monomer and a difunctional monomer.
(3)前記親水性単官能モノマーはモノマー自体が本質
的に親水性のモノマー若しくは親水性官能基を導入可能
なモノマーでなる特許請求範囲第(2)項記載の親水性
イオン交換樹脂。
(3) The hydrophilic ion exchange resin according to claim (2), wherein the hydrophilic monofunctional monomer is an essentially hydrophilic monomer itself or a monomer into which a hydrophilic functional group can be introduced.
(4)前記二官能モノマーは、二つの官能基に挟まれた
部分の成分が親水性化合物でなる特許請求範囲の第(2
)項に記載の親水性イオン交換樹脂。
(4) In the bifunctional monomer, the component of the portion sandwiched between two functional groups is a hydrophilic compound.
) The hydrophilic ion exchange resin described in item 1.
(5)前記親水性化合物は、エチレングリコール、ポリ
エチレングリコール、グリセリン、ポリグリセリン、若
しくは糖アルコールでなる特許請求範囲の第(4)項記
載の親水性イオン交換樹脂。
(5) The hydrophilic ion exchange resin according to claim (4), wherein the hydrophilic compound is ethylene glycol, polyethylene glycol, glycerin, polyglycerin, or a sugar alcohol.
(6)クロマト管に充填され高速液体クロマトグラフ用
分離カラム等として使用される親水性イオン交換樹脂を
製造する方法において、架橋親水性高分子樹脂の表面の
反応性基に水酸基を有する親水性アミンが直接化学的に
結合させて親水性イオン交換基を導入することを特徴と
する親水性イオン交換樹脂の製造方法。
(6) In a method for producing a hydrophilic ion exchange resin that is packed into a chromatography tube and used as a separation column for high performance liquid chromatography, a hydrophilic amine having a hydroxyl group as a reactive group on the surface of a crosslinked hydrophilic polymer resin. 1. A method for producing a hydrophilic ion exchange resin, which comprises introducing a hydrophilic ion exchange group by directly chemically bonding the resin.
(7)クロマト管に充填され高速液体クロマトグラフ用
分離カラム等として使用される親水性イオン交換樹脂を
製造する方法において、反応性基の異なる複数のモノマ
ーを混合して架橋親水性高分子樹脂を合成し、該架橋親
水性高分子樹脂の表面の反応性基に、水酸基を有する親
水性アミンを結合させて親水性イオン交換基を導入する
ことを特徴とする親水性イオン交換樹脂の製造方法。
(7) In a method for producing a hydrophilic ion exchange resin that is packed into a chromatography tube and used as a separation column for high performance liquid chromatography, a crosslinked hydrophilic polymer resin is produced by mixing multiple monomers with different reactive groups. A method for producing a hydrophilic ion exchange resin, which comprises synthesizing the crosslinked hydrophilic polymer resin and bonding a hydrophilic amine having a hydroxyl group to a reactive group on the surface of the crosslinked hydrophilic polymer resin to introduce a hydrophilic ion exchange group.
(8)クロマト管に充填され高速液体クロマトグラフ用
分離カラム等として使用される親水性イオン交換樹脂を
製造する方法において、架橋親水性高分子樹脂の表面の
反応性基を他の反応性基と置換してのち、該他の反応性
基に水酸基を有する親水性アミンを結合させて親水性イ
オン交換基を導入することを特徴とする親水性イオン交
換樹脂の製造方法。
(8) In a method for producing a hydrophilic ion exchange resin that is packed into a chromatography tube and used as a separation column for high performance liquid chromatography, reactive groups on the surface of a crosslinked hydrophilic polymer resin are combined with other reactive groups. A method for producing a hydrophilic ion exchange resin, which comprises, after substitution, bonding a hydrophilic amine having a hydroxyl group to the other reactive group to introduce a hydrophilic ion exchange group.
(9)クロマト管に充填され高速液体クロマトグラフ用
分離カラム等として使用される親水性イオン交換樹脂を
製造する方法において、架橋親水性高分子樹脂の表面の
反応性基を特定の反応性基と置換してのち、該特定反応
性基に水酸基を有する親水性アミンを結合させて親水性
イオン交換基を導入することを特徴とする親水性イオン
交換樹脂の製造方法。
(9) In a method for producing a hydrophilic ion exchange resin that is packed into a chromatography tube and used as a separation column for high performance liquid chromatography, reactive groups on the surface of a crosslinked hydrophilic polymer resin are combined with specific reactive groups. A method for producing a hydrophilic ion exchange resin, which comprises, after substitution, bonding a hydrophilic amine having a hydroxyl group to the specific reactive group to introduce a hydrophilic ion exchange group.
JP62044771A 1987-02-27 1987-02-27 Hydrophilic ion-exchange resin and its production Pending JPS63209757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62044771A JPS63209757A (en) 1987-02-27 1987-02-27 Hydrophilic ion-exchange resin and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62044771A JPS63209757A (en) 1987-02-27 1987-02-27 Hydrophilic ion-exchange resin and its production

Publications (1)

Publication Number Publication Date
JPS63209757A true JPS63209757A (en) 1988-08-31

Family

ID=12700678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62044771A Pending JPS63209757A (en) 1987-02-27 1987-02-27 Hydrophilic ion-exchange resin and its production

Country Status (1)

Country Link
JP (1) JPS63209757A (en)

Similar Documents

Publication Publication Date Title
Novotny et al. Chiral separation through capillary electromigration methods
Liu et al. Fabrication of monodisperse poly (allyl glycidyl ether-co-divinyl benzene) microspheres and their application in anion-exchange stationary phase
Amalia et al. Immobilization of trypsin onto porous methacrylate-based monolith for flow-through protein digestion and its potential application to chiral separation using liquid chromatography
JPH0315483B2 (en)
Huang et al. Gradient nanopump based suppressed ion chromatography using PEEK open tubular columns
JP6392318B2 (en) Liquid chromatography packing and liquid chromatography column
JPS63209757A (en) Hydrophilic ion-exchange resin and its production
JPS62287154A (en) Nitro modified chromatography carrier material
CN102389645A (en) Ion exchange type solid-phase extraction stirring rod and preparation method thereof
JPS63267447A (en) Cation exchange resin and its manufacture
JPS63267448A (en) Anion exchange resin and its manufacture
Gao et al. A mixed‐bed, multi‐derivatization approach using polymeric reagents for derivatizations of amines in high performance liquid chromatographic detection
JPS633006A (en) Production of anion exchange resin
JPH05271440A (en) Anion exchange resin and its production
JPH01113654A (en) Preparation of cation exchange resin
CN106540670B (en) The preparation method of fluorine functional porous integral material adsorbent
JPH01113653A (en) Preparation of anion exchange resin
JPS6354948A (en) Production of cation exchange resin
JPH0645006B2 (en) Method for producing anion exchange resin
JPH0580923B2 (en)
JPH02261552A (en) Production of anion-exchange resin
JPH01231949A (en) Production of cation-exchange resin
CN104815631A (en) Hydrophilic ion pair chromatography packing synthesis method
Hale Recent advances in the preparation and uses of ion-exchange resins. A review
JPH01228559A (en) Manufacture of anion exchange resin