JPS6320878B2 - - Google Patents

Info

Publication number
JPS6320878B2
JPS6320878B2 JP11352079A JP11352079A JPS6320878B2 JP S6320878 B2 JPS6320878 B2 JP S6320878B2 JP 11352079 A JP11352079 A JP 11352079A JP 11352079 A JP11352079 A JP 11352079A JP S6320878 B2 JPS6320878 B2 JP S6320878B2
Authority
JP
Japan
Prior art keywords
oil
polybutene
lubricating oil
weight
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11352079A
Other languages
Japanese (ja)
Other versions
JPS5638393A (en
Inventor
Shoji Kimura
Masakuni Hirata
Takashi Mogi
Noboru Ishida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Petrochemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Petrochemicals Co Ltd filed Critical Nippon Petrochemicals Co Ltd
Priority to JP11352079A priority Critical patent/JPS5638393A/en
Publication of JPS5638393A publication Critical patent/JPS5638393A/en
Publication of JPS6320878B2 publication Critical patent/JPS6320878B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/26Refrigerants with particular properties, e.g. HFC-134a

Landscapes

  • Lubricants (AREA)

Description

【発明の詳細な説明】 本発明は高圧ガス圧縮機用潤滑油組成物に関す
るもので、特にポリエチレン製造用往復動高圧ガ
ス圧縮機に使用するのに好適な潤滑油組成物に関
する。 高圧法ポリエチレンの製造は通常400気圧〜
3500気圧の反応圧で行なわれるが、その際、エチ
レンは一次圧縮により約300〜500気圧に圧縮さ
れ、二次圧縮により約3000〜3500気圧に圧縮され
る。これに用いられる往復動高圧ガス圧縮機にお
ける技術上の問題としてプランジヤーを囲むメタ
ルパツキングの摩耗によるガスの漏洩がある。一
般にメタルパツキングには鉛青銅などの軸受合金
が、またプランジヤーにはタングステンカーバイ
トを用いられ、その表面は超精密仕上が施されて
おり、両者の間隙に潤滑油を供給してその油膜を
もつて摩擦面の潤滑とガスシールを保つている。 上記潤滑油には一般にポリブデン単体またはこ
れとホワイトオイルの混合油が使用される。これ
ら無極性炭化水素油を用いる理由は、もし極性物
質が含まれていると、これがエチレン循環系に混
入してエチレンの重合反応を阻害し、かつ製品ポ
リエチレンの品質を低下させる恐れがあるためで
ある。ポリブデンは予め精製したブテンガスの重
合物であつて実質的に純粋な脂肪族炭化水素油で
ある。またホワイトオイルは石油系潤滑油留分を
硫酸を用いて極度に精製して留分中のイオウ分、
塩素分、窒素分のほかに芳香族炭化水素までも除
いたものであるから、これらを使用すれば前記の
懸念は解消する。しかし実際の運転状態では比較
的短時日のうちにメタルパツキングの摩耗が進む
ために、ガス漏洩が著しくなつて運転停止のやむ
なきにいたり、ここに点検整備が必要となる。前
記潤滑油はすべて無極性炭化水素分子の集合体で
あるから金属表面への吸着力が弱く、メタルパツ
キングとプランジヤー間の摺動に伴なう油膜切れ
が起こつていわゆる乾燥摩擦状態となる。 発明者はこの欠陥を改善するためにポリブデン
に可溶の極性物質から成る極圧添加剤を添加する
ことを検討した。この種の極性物質はまづエチレ
ンの重合反応を阻害せず、かつポリエチレンの品
質を低下しないことと共に、高温高圧下で分子が
分解しないことなどの性質をそなえていなければ
ならないから、通常の石油系潤滑油に用いられる
窒素、りん、いおう、塩素系の化合物は不適当で
ある。発明者は炭素、水素、酸素の3元素から成
る化合物を検討した結果、カルボキシル基と水酸
基の有効性を認め、特定の化学構造を有するアル
ケニルこはく酸とその半エステルを開発し、これ
らの化合物が実機に使用した場合極圧添加剤とし
て効果のあることが判明した。 すなわち、本発明は、ポリブデン、ホワイトオ
イルおよびα―オレフインオリゴマーからなる群
より選ばれる少なくとも一種の炭化水素油を基油
とし、 下記一般式(1) (式中、nは12〜30の整数を示す。) で表わされる直鎖アルケニルこはく酸、 下記一般式(2)または(3) (式中、nは12〜30の整数を示し、R3は―
(CH22―、―(CH23―または―(CH22―O―
(CH22―で表わされる基を示す。) で表わされる少なくとも一種の水酸基含有半エス
テル、もしくは前記こはく酸と前記半エステルと
の混合物を0.05〜5重量%含有することを特徴と
する高圧ガス圧縮機用潤滑油組成物に関するもの
である。 極圧添加剤であるアルケニル基の炭素数12―30
の直鎖アルケニルこはく酸は下記の構造式を有
し、直鎖α―オレフインと無水マレイン酸との反
応によつて常法に従い容易に製造できる。 また、当該こはく酸の水酸基含有半エステル
は、下記一般式(2)または(3)で表わされる。 (式中、nは12〜30の整数を示し、R3は―
(CH22―、―(CH23―または―(CH22―O―
(CH22―で表わされる基を示す。) この半エステルは、前記アルケニルこはく酸
と、エチレングリコール、プロピレングリコール
およびジエチレングリコールからなる群より選ば
れる少なくとも一種のグリコールとの反応によつ
て、あるいは前記アルケニルこはく酸の無水物と
アルキンレンオキサイドまたはポリアルキンレン
オキサイドとの反応によつて常法で得ることがで
きる。 この極圧添加剤は、式(1)における2個のカルボ
キシル基、式(2),(3)におけるカルボカシル基と水
酸基が、分子内で近接した位置にあるため金属表
面へ強力に吸着する。その吸着力は1価カルボン
酸または1価アルコールのごとき極性基1個の化
合物より強いため、すぐれた極圧性を示す。ま
た、こはく酸の2個のカルボキシル基がエステル
化した化合物または2個の水酸基のみを有する化
合物はいずれも金属表面への吸着力が乏しく、極
圧添加剤として不適当である。 2個のカルボキシル基を有している化合物であ
つても、それらが隣接していないもの、たとえば
ダイマー酸、では金属表面への吸着力に乏しく極
圧添加剤として不適当である。なお、半エステル
は極圧添加剤の酸価を低下させ、かつ金属表面へ
の吸着力を維持する利点がある。 アルケニル基は分子内に不飽和結合を有するの
でポリブテンのごとき炭化水素基油との親和性に
すぐれ、安定な油膜を形成する点でアルキル基よ
りすぐれている。 アルケニル基の炭素数は12―30、好ましくは12
―18である。炭素数12末満では極圧性が劣り、30
を越えると油溶性に乏しい。炭素数18以下では油
溶性が特にすぐれている。 アルケニル基が直鎖でありかつ極性基が末端に
存在するため、極圧添加剤が金属表面に林立し、
上記したアルケニル基の炭素数限定に起因するポ
リブテンなどの炭化水素油との親和性と相俟つて
安定な油膜を形成する。分枝鎖アルケニル基で
は、炭化水素油との相溶性が乏しく、また分枝鎖
の立体障害で金属表面における極圧添加剤の密度
が低下し、効果が低下する。 極圧添加剤と炭化水素油とから形成される油膜
はメタルパツキングとプランジヤー間の潤滑とガ
スシールの役目をする。この際に直鎖状炭素原子
連鎖は、プロピレンテトラマーやポリブテニル基
のごとき分枝状炭素原子連鎖と異なり、潤滑性に
すぐれ、また機械作用にも強くて分子鎖切断がき
わめて少ないため高圧下における長期間の連続運
転に耐える。また、直鎖状炭素原子連鎖は熱およ
び酸素による劣化を受けにくい。 本発明に使用する極圧添加剤は上記のごとくき
わめて限定された構造特性を有することによつて
はじめて、往復動高圧ガス圧縮機用潤滑油のごと
き苛酷な条件で使用される潤滑油における極圧性
を発揮することができ、従来サビ止め剤あるいは
清浄分散剤として公知のポリブテニルこはく酸誘
導体などとは明らかに異なる作用効果を有する。 潤滑油基油としての炭化水素油は、ポリブテ
ン、ホワイトオイルおよびα―オレフインオリゴ
マーからなる群より選ばれる少なくとも一種の炭
化水素油である。これらは基油としてすぐれた潤
滑油特性を有しエチレンの重合を阻害せず、かつ
製品ポリエチレン中に混入することがあつても衛
生上無害である。 ポリブデンはナフサ分解等によつて得られるイ
ソブチレン、およびブテン―1、ブテン―2など
を含むC4炭化水素留分を塩化アルミニウムなど
のフリーデルクラフツ型触媒存在下で重合するこ
とによつて得られる液状重合体であり、平均分子
量(スタウデインガー法)が470―2350、さらに
好ましくは470−1260の範囲のものである。ポリ
ブデン中の二重結合を実質的に水素添加したもの
も使用できる。 ホワイトオイルは、石油系潤滑油留分を硫酸を
用いて極度に精製してイオウ分、塩素分、窒素
分、芳香族炭化水素を除去したものであり、イソ
パラフインとシクロパラフインを主成分とするも
ので、100〓(37.8℃)における動粘度が好まし
くは12〜120センチストークス、さらに好ましく
は30〜90センチストークスである。ホワイトオイ
ルの精製度はJISK2231の流動パラフイン級以上
を必要とし、日本薬局方合格品であるものが特に
好ましい。 ポリブデンとホワイトオイルを混合使用すると
きは、混合油の粘度が250―300センチストークス
(37.8℃)を標準とし、ポリブデン100重量%に対
し、ホワイトオイル200―350重量%が好ましい。 炭化水素油に対する本発明の極圧添加剤の添加
量は0.05〜5重量%、好ましくは0.05〜1重量%
である。 前記極圧添加剤と炭化水素油との併用によつて
はじめて往復動高圧ガス圧縮機、特にポリエチレ
ン製造用における潤滑油としてのすぐれた諸特性
が発揮される。すなわち、メタリツクパツキング
の摩耗が著るしく低減して長期間の連続運転が可
能となり、熱安定性がよくて高圧下でも分解せ
ず、エチレン重合反応を阻害せず、また製品ポリ
エチレン中に混入しても衛生上無害である。 なお、本発明の潤滑油組成物には任意添加成分
としてBHTのごとき酸化防止剤、その他の公知
の添加剤と適宜共用し得る。 以下、本発明の極圧添加剤を使用した潤滑油の
試験方法を述べる。 〔試験方法〕 実機運転において挙げた効果は実験室内摩耗試
験においても認められる。実験室評価方法として
四球試験ほか各種の方法が用いられているが、発
明者はASTM D 2670のフアレツクス試験方法
が実機運転の効果を再現するには適切であること
を認めた。この試験方法の概略を述べると、円柱
状ピンを、V字型断面をもつ2個のブロツクをも
つてはさみ試験用潤滑油を供給した後、ブロツク
に圧力をかけながら回転させピンの重量減を測つ
て摩耗量とする。発明者は実機の成績をフアレツ
クス試験において再現するために、試験方法につ
ぎの工夫を加えた。 (1) ピンはメタルパツキングと同質の鉛青銅合金
(pb12.6%,Ni0.33%,Zn1.14%,Fe0.03%,
Cu残部)を、ブロツクはプランジヤーと同質
のタングステンカーバイドを用い、それぞれダ
イヤモンド研磨した。 (2) 実機におけるパツキングとプランジヤーの間
隙はエチレンガス雰囲気すなわち無酸素である
ことを考慮してピンとブロツクを窒素ガス雰囲
気でシールした。 (3) ブロツクに加える圧力は350 Ib(24.6Kg/cm2
とし、油温は70℃、回転時間は20分、回転数
290回/分とした。 〔製造例〕 つぎにアルケニルこはく酸およびこのエステル
の合成方法を製造例として示し、得られた合成物
質を添加した潤滑油の評価成績を実施例に示す。 製造例 1 温度計、かきまぜ器、窒素ガス吹込毛細管およ
び逆流コンデンサをとりつけた四つ口フラスコを
マントルヒータにセツトする。これにαオレフイ
ン(三菱化成ダイヤレン168,n―ヘキサデセン
57%,n―オクタデセン43%の混合物)0.1モル
無水マレイン酸(市販試薬特級)0.1モルを投入
し、180℃に加熱、15時間かきまぜて反応を停止
する。つぎに反応物を200℃,5mmHgの下に3
時間減圧蒸留して未反応のαオレフインと無水マ
レイン酸を留出分離する。残留物に1/5重量比
の水を加えて80℃で1時間かきまぜて水和し、さ
らに水を蒸発させると式(1)のアルケニルこはく酸
が得られた。反応の途中随時にサンプリングして
そのIR分析およびGPC分析により反応の進行度
を確認した。 製造例 2 α―オレフイン(三菱化成ダイヤレン168)の
代りにダイヤレン124(C12αオレフインとC14αオ
レフインの混合物)を用いて、実施例1と全く同
じ操作を経てアルケニル(C12′,C14′)こはく酸
を得た。 製造例 3 αオレフインにダイヤレン308(C28αオレフイ
ンとC30αオレフインの混合物)を用いて、製造
例と全く同じ操作によつてアルケニル(C28′,
C30′)こはく酸を得た。 製造例 4 製造例1における中間生成物のアルケニルこは
く酸無水物の0.1モルとプロピレングリコール0.1
モルを同じ反応容器に投入し、これに0.1モルの
ポリブデンを加えて、120℃で15時間撹拌してエ
ステル化反応を終えた。得られるものは下記の式
(4)および(5)のヘキサデセニルこはく酸のおよびオ
クタデセニルこはく酸のハーフエステル混合物で
あつた。 〔実施例および比較例〕 日石ポリブテンLV―100(日本石油化学製品,
平均分子量570,37.8℃における動粘度240センチ
ストークス,流動点−25℃)を空白試験1、この
ポリブテン100重量%とホワイトオイル(松村石
油製ハイホワイト350)270重量%とからなる混合
油を空白試験2、100〓(37.8℃)における動粘
度が33.04センチストークスであるα―オレフイ
ン(BRAY OIL CO製PAOL 60)を空白試験3
とし、これらの基油に製造例1〜4において得ら
れた極圧添加剤を添加した潤滑油組成物を実施例
1〜12とする。実施例5および12では酸化防止剤
としてBHT(2.6―di,tert.ブチル―p―クレゾ
ール)を加えた。実施例1〜12は空白試験1の基
油を、実施例13〜16は空白試験2の基油を、実施
例17〜18は空白試験3の基油をそれぞれ用いた。 比較例1〜7は、従来の添加剤および本発明に
おける極圧添加剤と化学構造上の特徴に相違があ
る類似の化合物を上記基油に添加したものであ
る。各比較例では空白試験1の基油を用いた。な
お、比較例4のダイマー酸は、米国エミリー社の
商品名Empol 1010,Dimer Acid,酸価191〜
197のものである。各添加剤の添加量は第1表中
に基油100重量%に対する重量%で示した。 空白試験、実施例1〜12、比較例1〜7の各試
料油を前記フアレツクス試験法により評価した結
果を、摩耗量および摩耗痕について、第1表に示
した。 摩耗痕はフアレツクス試験終了後のピンの表面
状態を示すものであり、表中に◎,〇および×の
記号で示した。◎は細いかすり傷が整列し、乱れ
がないもの、〇は細いかすり傷が整列しているが
乱れが認められるもの、×はかすり傷が消失し斑
痕が多く認められるものを示す。表面状態は◎が
最もすぐれ、×が最も劣る。第1表からつぎのこ
とが明らかである。 本発明の潤滑油組成物はメタルパツキングの摩
耗が少なく、かつ摩耗痕の状態が改良されてい
る。 これに対して、比較例1〜3のモノカルボン
酸、比較例4のジカルボン酸であつて2個のカル
ボキシル基が離れているダイマー酸、比較例5の
水酸基1個のアルコール、比較例6および7の分
枝アルケニル基を有するこはく酸のいずれも、摩
耗量、摩耗痕のいずれも実施例1〜12より劣つて
いる。 すなわち、本発明の極圧添加剤が特定の構造を
有することに起因して潤滑油の極圧性能がきわめ
て向上している。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a lubricating oil composition for high-pressure gas compressors, and particularly to a lubricating oil composition suitable for use in reciprocating high-pressure gas compressors for producing polyethylene. The production of high-pressure polyethylene usually starts at 400 atmospheres.
The reaction is carried out at a reaction pressure of 3,500 atmospheres, during which ethylene is compressed to approximately 300 to 500 atmospheres by primary compression and to approximately 3,000 to 3,500 atmospheres by secondary compression. A technical problem with the reciprocating high-pressure gas compressor used for this is gas leakage due to wear of the metal packing surrounding the plunger. Generally, a bearing alloy such as lead bronze is used for the metal packing, and tungsten carbide is used for the plunger, and the surface is given an ultra-precision finish, and lubricating oil is supplied to the gap between the two to remove the oil film. It also maintains lubrication and gas sealing of friction surfaces. As the above-mentioned lubricating oil, polybuten alone or a mixture of it and white oil is generally used. The reason for using these non-polar hydrocarbon oils is that if they contain polar substances, they may get mixed into the ethylene circulation system, inhibiting the ethylene polymerization reaction, and reducing the quality of the polyethylene product. be. Polybutene is a polymer of previously purified butene gas and is a substantially pure aliphatic hydrocarbon oil. In addition, white oil is produced by extremely refining petroleum lubricating oil fractions using sulfuric acid to remove the sulfur content in the distillate.
Since aromatic hydrocarbons as well as chlorine and nitrogen are removed, if these are used, the above concerns will be resolved. However, under actual operating conditions, the metal packing wears out in a relatively short period of time, and gas leakage becomes significant, forcing the operation to be shut down or requiring inspection and maintenance. Since all of the lubricating oils are aggregates of nonpolar hydrocarbon molecules, their adsorption power to metal surfaces is weak, and the oil film breaks down as the metal packing and plunger slide, resulting in a so-called dry friction condition. In order to improve this defect, the inventor considered adding an extreme pressure additive consisting of a soluble polar substance to polybutene. This kind of polar substance must have properties such as not inhibiting the polymerization reaction of ethylene, not degrading the quality of polyethylene, and not decomposing its molecules under high temperature and high pressure. Nitrogen, phosphorus, sulfur, and chlorine compounds used in lubricating oils are unsuitable. As a result of examining compounds consisting of the three elements carbon, hydrogen, and oxygen, the inventor recognized the effectiveness of carboxyl and hydroxyl groups, and developed alkenylsuccinic acid and its half ester with a specific chemical structure. It was found to be effective as an extreme pressure additive when used in actual equipment. That is, the present invention uses at least one hydrocarbon oil selected from the group consisting of polybutene, white oil, and α-olefin oligomer as a base oil, and has the following general formula (1). (In the formula, n represents an integer of 12 to 30.) Straight chain alkenyl succinic acid represented by the following general formula (2) or (3) (In the formula, n represents an integer from 12 to 30, and R 3 is -
(CH 2 ) 2 -, - (CH 2 ) 3 - or - (CH 2 ) 2 -O-
Indicates a group represented by (CH 2 ) 2 --. The present invention relates to a lubricating oil composition for a high-pressure gas compressor, characterized in that it contains 0.05 to 5% by weight of at least one hydroxyl group-containing half ester represented by the following formula, or a mixture of the succinic acid and the half ester. Carbon number of alkenyl group, which is an extreme pressure additive, is 12-30
The linear alkenylsuccinic acid has the following structural formula and can be easily produced by a conventional method by reacting a linear α-olefin with maleic anhydride. Further, the hydroxyl group-containing half ester of succinic acid is represented by the following general formula (2) or (3). (In the formula, n represents an integer from 12 to 30, and R 3 is -
(CH 2 ) 2 -, - (CH 2 ) 3 - or - (CH 2 ) 2 -O-
Indicates a group represented by (CH 2 ) 2 --. ) This half ester is produced by reacting the alkenylsuccinic acid with at least one glycol selected from the group consisting of ethylene glycol, propylene glycol and diethylene glycol, or by reacting the alkenylsuccinic anhydride with alkylene oxide or polyethylene glycol. It can be obtained in a conventional manner by reaction with alkylene oxide. This extreme pressure additive strongly adsorbs to metal surfaces because the two carboxyl groups in formula (1) and the carbocasyl group and hydroxyl group in formulas (2) and (3) are located close to each other in the molecule. Its adsorption power is stronger than that of compounds with one polar group such as monohydric carboxylic acids or monohydric alcohols, so it exhibits excellent extreme pressure properties. Further, compounds in which two carboxyl groups of succinic acid are esterified or compounds having only two hydroxyl groups have poor adsorption power to metal surfaces and are unsuitable as extreme pressure additives. Even if a compound has two carboxyl groups, those in which they are not adjacent, such as dimer acid, have poor adsorption power to metal surfaces and are unsuitable as extreme pressure additives. Note that the half ester has the advantage of lowering the acid value of the extreme pressure additive and maintaining adsorption power to the metal surface. Since alkenyl groups have unsaturated bonds in their molecules, they have excellent affinity with hydrocarbon base oils such as polybutene, and are superior to alkyl groups in forming stable oil films. The number of carbon atoms in the alkenyl group is 12-30, preferably 12
-18. Extreme pressure properties are poor when the carbon number is less than 12, and 30
If it exceeds , it has poor oil solubility. When the number of carbon atoms is 18 or less, the oil solubility is particularly good. Because the alkenyl group is linear and the polar group is present at the end, extreme pressure additives stand on the metal surface.
Coupled with the above-mentioned affinity with hydrocarbon oils such as polybutene due to the limited number of carbon atoms in the alkenyl group, a stable oil film is formed. Branched alkenyl groups have poor compatibility with hydrocarbon oils, and the steric hindrance of the branched chains reduces the density of the extreme pressure additive on the metal surface, reducing its effectiveness. The oil film formed from the extreme pressure additive and hydrocarbon oil serves as a lubrication and gas seal between the metal packing and the plunger. In this case, unlike branched carbon atom chains such as propylene tetramer and polybutenyl groups, linear carbon atom chains have excellent lubricity, are resistant to mechanical action, and have extremely low molecular chain scission, so they can be used for long periods under high pressure. Can withstand continuous operation for a period of time. Also, linear carbon atom chains are less susceptible to degradation by heat and oxygen. The extreme pressure additive used in the present invention has extremely limited structural characteristics as described above, which makes it possible to achieve extreme pressure properties in lubricating oils used under harsh conditions, such as lubricating oils for reciprocating high-pressure gas compressors. It has clearly different effects from polybutenyl succinic acid derivatives, which are conventionally known as rust inhibitors or detergents and dispersants. The hydrocarbon oil used as the lubricating oil base oil is at least one type of hydrocarbon oil selected from the group consisting of polybutene, white oil, and α-olefin oligomer. These base oils have excellent lubricating oil properties, do not inhibit ethylene polymerization, and are harmless from a sanitary standpoint even if they are mixed into polyethylene products. Polybutene is obtained by polymerizing isobutylene obtained by naphtha decomposition etc. and a C 4 hydrocarbon fraction containing 1-butene, 2-butene, etc. in the presence of a Friedel-Crafts type catalyst such as aluminum chloride. It is a liquid polymer and has an average molecular weight (Staudinger method) in the range of 470-2350, more preferably 470-1260. Polybutene in which the double bonds are substantially hydrogenated can also be used. White oil is a petroleum lubricating oil fraction that is extremely refined using sulfuric acid to remove sulfur, chlorine, nitrogen, and aromatic hydrocarbons, and its main components are isoparaffin and cycloparaffin. The kinematic viscosity at 100° C. (37.8° C.) is preferably 12 to 120 centistokes, more preferably 30 to 90 centistokes. The purity level of the white oil must be JISK2231 liquid paraffin grade or higher, and it is particularly preferable that the white oil meets the requirements of the Japanese Pharmacopoeia. When using a mixture of polybdenum and white oil, the standard viscosity of the mixed oil is 250-300 centistokes (37.8°C), and it is preferable that the white oil be 200-350% by weight relative to 100% by weight of polybdenum. The amount of the extreme pressure additive of the present invention added to hydrocarbon oil is 0.05 to 5% by weight, preferably 0.05 to 1% by weight.
It is. Excellent properties as a lubricating oil for reciprocating high-pressure gas compressors, particularly for the production of polyethylene, are exhibited only when the extreme pressure additive and hydrocarbon oil are used in combination. In other words, the wear of the metallic packing is significantly reduced, allowing long-term continuous operation, and it has good thermal stability, does not decompose even under high pressure, does not inhibit the ethylene polymerization reaction, and is not mixed into the polyethylene product. However, it is harmless from a sanitary standpoint. The lubricating oil composition of the present invention may optionally contain an antioxidant such as BHT and other known additives. Below, a method for testing lubricating oil using the extreme pressure additive of the present invention will be described. [Test method] The effects observed in actual machine operation were also observed in laboratory wear tests. Although various methods such as the four-ball test are used as laboratory evaluation methods, the inventor has recognized that the ASTM D 2670 Farex test method is appropriate for reproducing the effects of actual machine operation. To give an overview of this test method, a cylindrical pin is held between two blocks with a V-shaped cross section, lubricant for the test is supplied, and the blocks are rotated while applying pressure to reduce the weight of the pin. Measure it to determine the amount of wear. The inventor added the following innovations to the test method in order to reproduce the results of the actual machine in the Farex test. (1) The pin is made of lead bronze alloy (PB12.6%, Ni0.33%, Zn1.14%, Fe0.03%,
The block was diamond-polished using the same tungsten carbide as the plunger. (2) Considering that the gap between the packing and plunger in the actual machine is an ethylene gas atmosphere, which means no oxygen, the pin and block were sealed in a nitrogen gas atmosphere. (3) The pressure applied to the block is 350 Ib (24.6Kg/cm 2 )
The oil temperature is 70℃, the rotation time is 20 minutes, and the rotation speed is
The rate was set at 290 times/min. [Manufacturing Example] Next, a method for synthesizing alkenyl succinic acid and its ester will be shown as a manufacturing example, and evaluation results of lubricating oils to which the obtained synthetic substances have been added will be shown in Examples. Production Example 1 A four-necked flask equipped with a thermometer, stirrer, nitrogen gas blowing capillary tube, and backflow condenser is placed on a mantle heater. This was added to α-olefin (Mitsubishi Kasei Dialene 168, n-hexadecene).
Add 0.1 mol of maleic anhydride (a mixture of 57% n-octadecene and 43% n-octadecene), heat it to 180°C, and stir for 15 hours to stop the reaction. Next, the reactants were heated to 200℃ and 5mmHg for 3
Unreacted α-olefin and maleic anhydride are distilled and separated by distillation under reduced pressure for a period of time. 1/5 weight ratio of water was added to the residue and the mixture was stirred at 80° C. for 1 hour for hydration, and the water was further evaporated to obtain alkenylsuccinic acid of formula (1). Samples were taken at any time during the reaction, and the progress of the reaction was confirmed by IR analysis and GPC analysis. Production Example 2 Alkenyl ( C 12 , C 14 ′) Succinic acid was obtained. Production Example 3 Alkenyl ( C 28 ,
C 30 ′) Succinic acid was obtained. Production Example 4 0.1 mol of alkenylsuccinic anhydride and 0.1 propylene glycol, which are intermediate products in Production Example 1.
mol was put into the same reaction vessel, 0.1 mol of polybutene was added thereto, and the mixture was stirred at 120°C for 15 hours to complete the esterification reaction. What you get is the following formula
(4) and (5) were half ester mixtures of hexadecenylsuccinic acid and octadecenylsuccinic acid. [Examples and Comparative Examples] Nisseki Polybutene LV-100 (Nippon Petrochemicals,
Average molecular weight 570, kinematic viscosity 240 centistokes at 37.8°C, pour point -25°C) in blank test 1, a mixed oil consisting of 100% by weight of this polybutene and 270% by weight white oil (High White 350 manufactured by Matsumura Oil Co., Ltd.) was tested in blank test 1. Test 2: Blank test 3 using α-olefin (PAOL 60 manufactured by BRAY OIL CO), which has a kinematic viscosity of 33.04 centistokes at 100°C (37.8°C).
Examples 1 to 12 are lubricating oil compositions obtained by adding the extreme pressure additives obtained in Production Examples 1 to 4 to these base oils. In Examples 5 and 12, BHT (2.6-di, tert. butyl-p-cresol) was added as an antioxidant. Examples 1 to 12 used the base oil of Blank Test 1, Examples 13 to 16 used the base oil of Blank Test 2, and Examples 17 to 18 used the base oil of Blank Test 3. In Comparative Examples 1 to 7, similar compounds having chemical structural characteristics different from conventional additives and the extreme pressure additive of the present invention were added to the above base oil. In each comparative example, the base oil of Blank Test 1 was used. In addition, the dimer acid of Comparative Example 4 was Empol 1010, Dimer Acid, manufactured by Emily Co., Ltd., USA, and had an acid value of 191~.
197. The amount of each additive added is shown in Table 1 in weight % based on 100 weight % of the base oil. The blank test, the sample oils of Examples 1 to 12, and Comparative Examples 1 to 7 were evaluated by the Farex test method, and the results are shown in Table 1 in terms of wear amount and wear marks. The wear marks indicate the surface condition of the pin after the completion of the Farex test, and are indicated by ◎, 〇, and × symbols in the table. ◎ indicates that fine scratches are aligned and there is no disorder; ○ indicates that thin scratches are aligned but disorder is observed; × indicates that the scratches have disappeared and many spots are observed. Regarding the surface condition, ◎ is the best, and × is the worst. The following is clear from Table 1. The lubricating oil composition of the present invention causes less wear on metal packing and improves the condition of wear marks. On the other hand, the monocarboxylic acids of Comparative Examples 1 to 3, the dicarboxylic acid of Comparative Example 4 and a dimer acid in which two carboxyl groups are separated, the alcohol of Comparative Example 5 with one hydroxyl group, the comparative example 6 and All of the succinic acids having a branched alkenyl group of No. 7 were inferior to Examples 1 to 12 in both the amount of wear and the wear marks. That is, the extreme pressure performance of the lubricating oil is significantly improved due to the specific structure of the extreme pressure additive of the present invention. 【table】

Claims (1)

【特許請求の範囲】 1 ポリブテン、ホワイトオイルおよびα―オレ
フインオリゴマーからなる群より選ばれる少なく
とも一種の炭化水素油を基油とし、 下記一般式(1) (式中、nは12〜30の整数を示す。) で表わされる直鎖アルケニルこはく酸、 下記一般式(2)または(3) (式中、nは12〜30の整数を示し、R3は―
(CH22―、―(CH23―または―(CH22―O―
(CH22―で表わされる基を示す。) で表わされる少なくとも一種の水酸基含有半エス
テル、もしくは前記こはく酸と前記半エステルと
の混合物を0.05〜5重量%含有することを特徴と
する高圧ガス圧縮機用潤滑油組成物。 2 前記アルケニル基の炭素数が12〜18である特
許請求の範囲第1項記載の潤滑油組成物。 3 前記ポリブテンの平均分子量が470〜2350で
ある特許請求の範囲第1項記載の潤滑油組成物。 4 前記ホワイトオイルの動粘度が12〜120セン
チストークス(37.8℃)である特許請求の範囲第
1項記載の潤滑油組成物。 5 前記基油が、ポリブテン100重量%に対しホ
ワイトオイル200〜350重量%の、ポリブテンとホ
ワイトオイルとの混合物である特許請求の範囲第
1項記載の潤滑油組成物。
[Claims] 1. At least one hydrocarbon oil selected from the group consisting of polybutene, white oil, and α-olefin oligomer is used as a base oil, and the following general formula (1) is used. (In the formula, n represents an integer of 12 to 30.) Straight chain alkenyl succinic acid represented by the following general formula (2) or (3) (In the formula, n represents an integer from 12 to 30, and R 3 is -
(CH 2 ) 2 -, - (CH 2 ) 3 - or - (CH 2 ) 2 -O-
Indicates a group represented by (CH 2 ) 2 --. 1. A lubricating oil composition for a high-pressure gas compressor, characterized in that it contains 0.05 to 5% by weight of at least one hydroxyl group-containing half ester represented by the following formula, or a mixture of the succinic acid and the half ester. 2. The lubricating oil composition according to claim 1, wherein the alkenyl group has 12 to 18 carbon atoms. 3. The lubricating oil composition according to claim 1, wherein the polybutene has an average molecular weight of 470 to 2350. 4. The lubricating oil composition according to claim 1, wherein the white oil has a kinematic viscosity of 12 to 120 centistokes (37.8°C). 5. The lubricating oil composition according to claim 1, wherein the base oil is a mixture of polybutene and white oil in an amount of 200 to 350% by weight of white oil based on 100% by weight of polybutene.
JP11352079A 1979-09-06 1979-09-06 Lubricant composition for high-pressure gas compressor Granted JPS5638393A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11352079A JPS5638393A (en) 1979-09-06 1979-09-06 Lubricant composition for high-pressure gas compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11352079A JPS5638393A (en) 1979-09-06 1979-09-06 Lubricant composition for high-pressure gas compressor

Publications (2)

Publication Number Publication Date
JPS5638393A JPS5638393A (en) 1981-04-13
JPS6320878B2 true JPS6320878B2 (en) 1988-04-30

Family

ID=14614418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11352079A Granted JPS5638393A (en) 1979-09-06 1979-09-06 Lubricant composition for high-pressure gas compressor

Country Status (1)

Country Link
JP (1) JPS5638393A (en)

Also Published As

Publication number Publication date
JPS5638393A (en) 1981-04-13

Similar Documents

Publication Publication Date Title
US3036971A (en) Lubricating oils containing carbonated basic sulfurized calcium phenates
EP0496486B1 (en) Lubricant compositions
CA2843781C (en) Synthetic ester-based lubricant compositions that exhibit improved oxidation stability and service life
US4362635A (en) Lactone-modified ester oils
KR20010029484A (en) Blends of lubricant basestocks with high viscosity complex alcohol esters
CN1229426A (en) High viscosity complex alcohol esters
EA001335B1 (en) High stability and low metals esters based on 3,5,5-trimethyl-1-hexanol
JP2001501989A (en) Blends of complex alcohol esters with other basestocks and two-cycle engine oils produced therefrom
JP3288381B2 (en) Hydrocarbon ethers of sulfur-containing hydroxyl-derived aromatic hydrocarbons as synthetic lubricant base materials
US20140228263A1 (en) Turbine Oil Comprising An Ester Component
KR20110053433A (en) Lubricating grease compositions
JP4094953B2 (en) Synthetic ester blend based on biodegradable polyneopentyl polyol and its lubricant
EP0898558A1 (en) Process for the carbonylation of ethylenically unsaturated compounds
JPH08239467A (en) Oil-soluble polyether
JP7101779B2 (en) Modified oil-soluble polyalkylene glycol
JPS6320878B2 (en)
JPH11501681A (en) Antioxidant synergistic combinations for lubricating oils
JP2018090828A (en) Lubricating oil composition for protection of silver bearings in medium speed diesel engine
JPH03166293A (en) Sulfur-bonded hydrocarbyl- derived mercaptobenzothiazole adduct as multi-functional abrasion-resistant additive and compound containing said adduct
JPS6330960B2 (en)
JP7090085B2 (en) Ether-based lubricant composition, formula and use
US2147647A (en) Lubricant
JP3670749B2 (en) Lubricant
KR0169565B1 (en) Polyol ester based hydraulic oil composition by high-temperature non-catalytic reduction
JPH09500679A (en) Lubricant base liquid