JPS6320869A - Manufacture of solid-state image sensing device - Google Patents

Manufacture of solid-state image sensing device

Info

Publication number
JPS6320869A
JPS6320869A JP61166019A JP16601986A JPS6320869A JP S6320869 A JPS6320869 A JP S6320869A JP 61166019 A JP61166019 A JP 61166019A JP 16601986 A JP16601986 A JP 16601986A JP S6320869 A JPS6320869 A JP S6320869A
Authority
JP
Japan
Prior art keywords
film
solid
type
sensing device
imaging device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61166019A
Other languages
Japanese (ja)
Inventor
Hidetoshi Nozaki
野崎 秀俊
Takaaki Kamimura
孝明 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61166019A priority Critical patent/JPS6320869A/en
Priority to US07/051,590 priority patent/US4772565A/en
Publication of JPS6320869A publication Critical patent/JPS6320869A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To improve the after-image characteristics and sensitivity characteristics of a laminating type solid-state image sensing device by executing hydrogen radical treatment by a photochemical reaction before a photoconductor film forming process. CONSTITUTION:An image sensing device substrate 21 is held at 100-300 deg.C first, hydrogen gas containing a trace quantity of mercury is introduced by 1-100 SCCM, the inside of a film forming chamber 20 is kept at gas pressure of 0.1-10 Torr, and the surface of the substrate is irradiated by a low-pressure mercury lamp 23 for the proper time such as 5-100 min, and treated by hydrogen radicals. Consequently, hydrogen radical treatment is executed, a raw material gas is changed over without breaking a vacuum, and an n-type (or i-type) a-SiC:H film 11, an i-type a-Si:H film 12 and a p-type a-SiC:H film 13 are laminated and formed in succession through an optical-pumping film forming method by a mercury sensitizing method. Accordingly, a picture element electrode and a photoconductor film can be brought into contact without through a thin insulating film, thus improving the spectral sensitivity characteristics and after-image characteristics of a laminating type solid-state image sensing device.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、固体搬像素子基板に光導電体膜を積層して構
成される積層型固体Il@装置の製造方法に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing a stacked solid-state Il@ device configured by stacking a photoconductor film on a solid-state image carrier substrate. .

(従来の技術) 囚体昂像素子基板に光導電体膜を積層した2階建て構造
の固体撮像装置は、高感度且つ低スミアという優れた特
性を有する。このためこの固体撮像装置は、各種監視用
TVや高品位−「Vなどのカメラとして有望視されてい
る。この種の固体ml像装置用の光導電体膜としては、
非晶質シリコン膜が多く用いられ、またその模形成法と
してはシランのグロー放電分解法が一般に用いられてい
る。
(Prior Art) A solid-state imaging device having a two-story structure in which a photoconductor film is laminated on a prisoner imaging element substrate has excellent characteristics of high sensitivity and low smear. For this reason, this solid-state imaging device is seen as promising as a camera for various surveillance TVs and high-definition V cameras.As a photoconductor film for this type of solid-state ML imaging device,
Amorphous silicon films are often used, and a glow discharge decomposition method of silane is generally used as a method for forming the model.

一方、a−8i膜からなる光導電体膜を積層する場合、
その下地素子基板表面には各ダイオードの端子につなが
る画素gfIfiが形成されている。画素t4iは例え
ば次のように2段階に形成される。
On the other hand, when laminating photoconductor films made of a-8i films,
A pixel gfIfi connected to the terminal of each diode is formed on the surface of the base element substrate. For example, the pixel t4i is formed in two stages as follows.

先ず素子形成された基板に肋間絶縁膜を形成し、これに
コンタクト孔をあけて例えば、Ag−5iからなる第1
の画素電極を形成し、この後表面をポリイミド膜等によ
り平坦化し、これにコンタクト孔を開けて第1の画素電
極に接続される第2の画素′R極を形成する。第2の画
素重囲は例えば、Aff−8i、Ti、Mo、Crある
いはn+型多結晶シリコン膜等が用いられる。
First, an intercostal insulating film is formed on a substrate on which elements are formed, and a contact hole is formed in this to form a first film made of Ag-5i, for example.
After forming a pixel electrode, the surface is planarized with a polyimide film or the like, and a contact hole is formed in this to form a second pixel 'R pole connected to the first pixel electrode. For example, Aff-8i, Ti, Mo, Cr, or n+ type polycrystalline silicon film is used for the second pixel surround.

ところで通常のプロセスで形成した第2の画素電極の表
面には自然酸化膜等の薄い絶縁膜が形成されていること
が多い。従ってこの上に直接a −8i膜を形成した場
合には、上記の薄い絶縁膜がa−3ill内で生成され
たキャリアの第2の画素電極への到達を妨げる障壁とな
る。この結果、固体1111m素子の感度低下や残像特
性の劣化が生じる。
By the way, a thin insulating film such as a natural oxide film is often formed on the surface of the second pixel electrode formed by a normal process. Therefore, when an a-8i film is formed directly on this, the thin insulating film becomes a barrier that prevents carriers generated within the a-3ill from reaching the second pixel electrode. As a result, the sensitivity of the solid-state 1111m element decreases and the afterimage characteristics deteriorate.

一般に電極表面の絶縁膜を除去するには、還元性の強い
水素ラジカルにより前処理を行なうことが有効であるこ
とは従来より知られている。水素ラジカル処理の方法は
種々あるが、代表的には高周波あるいは直流グロー放電
法が広く用いられている。これは、真空容器内で基板を
一方の電極上に設置し、水素ガスを導入して所定ガス圧
に保った後、対向電橋間に高周波または直流電圧を印加
してグロー放電を発生させる方法である。
In general, it has been known that pretreatment with strongly reducing hydrogen radicals is effective in removing the insulating film on the surface of the electrode. Although there are various methods for hydrogen radical treatment, high frequency or direct current glow discharge methods are typically widely used. This is a method in which a substrate is placed on one electrode in a vacuum container, hydrogen gas is introduced and maintained at a specified gas pressure, and then a high frequency or DC voltage is applied between opposing electrical bridges to generate a glow discharge. be.

しかしながら、積層型固体撮像素子でa−8i膜形成前
の処理としてこの様な水素ラジカル処理を行なっても搬
像素子特性の改善は認められない。
However, even if such hydrogen radical treatment is performed as a treatment before forming the a-8i film in a stacked solid-state image sensor, no improvement in the image carrying element characteristics is observed.

その理由は次のように考えられる。高周波あるいは直流
グロー放電においては高エネルギーの電子が存在するた
めに、水素ガスは一部イオン化され、これにより固体l
111m素子基板表面がプラズマポテンシャルのエネル
ギー分だけ衝撃を受ける。このため、薄い絶縁膜は除去
されるが、平滑化用の絶縁膜がイオン衝撃によりスパッ
タリングされ、第2の画素電極表面がスパッタされた絶
縁体により汚染される。特に平坦化絶縁膜としてポリイ
ミドなどの有機絶縁膜を用いた場合、イオンによるスパ
ッタ速度が大ぎいためその影響が大きい。またこのスパ
ッタリングにより真空容器自体も汚染されるため、同一
真空容器内で引続きa−3i膜形成を行なう場合、a−
8i膜内にも絶縁体が不純物として取込まれる。これは
a−3i膜の光電変換特性の低下や絶縁性低下原因とな
る。
The reason may be as follows. Due to the presence of high-energy electrons in high-frequency or DC glow discharges, hydrogen gas is partially ionized, which causes the solid l
The surface of the 111m element substrate receives an impact equal to the energy of the plasma potential. Therefore, although the thin insulating film is removed, the smoothing insulating film is sputtered by ion bombardment, and the surface of the second pixel electrode is contaminated by the sputtered insulator. In particular, when an organic insulating film such as polyimide is used as the planarizing insulating film, the sputtering speed of ions is high, so the influence is large. In addition, since the vacuum chamber itself is contaminated by this sputtering, if the a-3i film is subsequently formed in the same vacuum chamber, the a-
The insulator is also introduced into the 8i film as an impurity. This causes deterioration in the photoelectric conversion characteristics and insulation properties of the a-3i film.

(発明が解決しようとする問題点) 以上のように従来の積層型固体搬像装置の製造において
は、光導電体膜形成前に水素ラジカル処理を行なったと
しても、感度や残像特性、光導電体膜の絶縁性等が改善
されない、という問題があった。
(Problems to be Solved by the Invention) As described above, in the production of conventional stacked solid-state image carriers, even if hydrogen radical treatment is performed before forming a photoconductor film, the sensitivity, afterimage characteristics, and photoconductivity There was a problem in that the insulation properties of the body membrane were not improved.

本発明は、上記のような問題を解決した積層型固体搬像
装置の製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a stacked solid image carrier that solves the above-mentioned problems.

[発明の構成] (問題点を解決するための手段) 本発明は、a−8illを光導電体膜として積層する固
体@像装置の製造方法において、a−8i躾を形成する
工程前の基板前処理を、水素ガスの光化学反応により生
成された水素ラジカルにより行なうようにしたことを特
徴とする特に光化学反応は、微聞の水銀を含んだ水素ガ
スを用い、低圧水銀ランプなどの光源からの光により水
素ガスをイオン化しない程度に活性化させるものである
ことが望ましい。
[Structure of the Invention] (Means for Solving the Problems) The present invention provides a method for manufacturing a solid-state image device in which A-8ill is laminated as a photoconductor film. In particular, the photochemical reaction is characterized in that the pretreatment is carried out using hydrogen radicals generated by a photochemical reaction of hydrogen gas. It is desirable that the light activates hydrogen gas to the extent that it does not become ionized.

(作用) 本発明における光化学反応の光源として例えば低圧水銀
ランプを用いた水銀増感光励起法を利用すると、光源の
輝線が185 naと254 n11の2本であるため
、水素ガスをイオン化する程励起エネルギーは高くない
。従って高周波あるいは直流グロー放電の場合のように
、H”、H2+等による基板スパッタが生じない。この
結果、固体撮像素子基板表面の平滑化用絶縁膜がスパッ
タされてこれが画素電極表面に付着したり、あるいはそ
の後形成される光導電体膜内に汚染物として取り込まれ
たりすることはなく、水素ラジカルにより還元された清
浄な画素電極表面が得られる。
(Function) When using a mercury-sensitized photoexcitation method using, for example, a low-pressure mercury lamp as a light source for the photochemical reaction in the present invention, since the light source has two emission lines of 185 na and 254 n11, it is excited enough to ionize hydrogen gas. Energy is not high. Therefore, substrate sputtering due to H", H2+, etc. does not occur as in the case of high frequency or DC glow discharge. As a result, the smoothing insulating film on the solid-state image sensor substrate surface is sputtered and does not adhere to the pixel electrode surface. Alternatively, the pixel electrode surface is not taken as a contaminant into the subsequently formed photoconductor film, and a clean pixel electrode surface that has been reduced by hydrogen radicals can be obtained.

こうして本発明の方法によれば、画素電(へと光導電体
膜との間を薄い絶縁膜を介さず接触させることができ、
光導電体膜内で光電変換の結果生成されたキャリアを効
率よく画素電極に収電することができる。従って積層型
固体′@像素子の分光感度特性や残像特性が改善される
。また絶縁体がスパッタされて真空容器が汚染されるこ
とがないので、光導電体膜に汚染物質が取込まれること
がなく、絶縁性等の優れた良質の光導電体膜が得られる
Thus, according to the method of the present invention, contact can be made between the pixel electrode and the photoconductor film without using a thin insulating film,
Carriers generated as a result of photoelectric conversion within the photoconductor film can be efficiently charged to the pixel electrode. Therefore, the spectral sensitivity characteristics and afterimage characteristics of the stacked solid-state image element are improved. Furthermore, since the vacuum container is not contaminated by sputtering of the insulator, no contaminants are introduced into the photoconductor film, and a high-quality photoconductor film with excellent insulation properties can be obtained.

(実施例) 以下、本発明の実施例を図面を参照して詳細に説明する
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図(a)(b>は一実施例による積層型固体!fl
像装置の製造工程を説明する断面図である。
Figure 1 (a) (b> is a layered solid according to one embodiment! fl
FIG. 3 is a cross-sectional view illustrating the manufacturing process of the image device.

第1図(a)に示すように、pゝ型Si基板1!に活性
層であるp型エピタキシャル層12が形成された3iウ
エーハ1に、n+型層からなる信号電荷を蓄積する蓄積
ダイオード2がマトリクス状に形成され、蓄積ダイオー
ド2の列に隣接して埋め込みチャネルとなるn+型層3
が形成され、この上にゲート絶1!ll141.42を
介して転送電極5z 、52が形成されて垂直CODが
構成されている。8はチャネル・ストッパとしてのp+
型層であり、これにより分離されて同様の構成の蓄積ダ
イオード列と垂直CODの組が操返し配う:j層形成れ
る。転送ゲート電極51の一部は蓄積ダイオード2から
CODチャネルへの電荷転送ゲート雪掻を兼ねている。
As shown in FIG. 1(a), a p-type Si substrate 1! On a 3i wafer 1 on which a p-type epitaxial layer 12, which is an active layer, is formed, storage diodes 2 made of an n+ type layer and storing signal charges are formed in a matrix, and buried channels are formed adjacent to the rows of storage diodes 2. n+ type layer 3
is formed, and on this gate Zetsu 1! Transfer electrodes 5z and 52 are formed via ll141.42 to constitute a vertical COD. 8 is p+ as a channel stopper
A type layer is separated by this and a set of storage diode arrays and vertical CODs of a similar configuration are repeatedly distributed: a j layer is formed. A part of the transfer gate electrode 51 also serves as a charge transfer gate shovel from the storage diode 2 to the COD channel.

転送ゲート電tM5x 、52が形成された基板上は第
1の層間絶縁106に覆われ、この第1の層間絶縁膜6
に蓄積ダイオード2に対するコンタクト孔が開けられて
画素毎に独立の第1の画素電極7が形成されている。第
1の画素毎1ルアは例えば、Affi−8igl又はn
+型多結晶シリコン模等により形成される。そして第1
の画素毎極7が形成された基板上を平滑化するため、ポ
リイミドからなる第2の層間絶縁膜9が形成され、この
上に第1の画素電極7とコンタクトする9画素毎に独立
の第2の画素Ntrii○が形成されている。第2の画
素毎極10には、AQ、−8i、Ti。
The substrate on which the transfer gate voltage tM5x, 52 is formed is covered with a first interlayer insulating film 6.
A contact hole for the storage diode 2 is formed in the pixel, and an independent first pixel electrode 7 is formed for each pixel. The first Lua per pixel is, for example, Affi-8igl or n
It is formed from a + type polycrystalline silicon model or the like. and the first
A second interlayer insulating film 9 made of polyimide is formed to smooth the substrate on which the electrodes 7 for each pixel are formed. Two pixels Ntrii○ are formed. AQ, -8i, Ti for each second pixel pole 10.

MO,Or或いはn+型多結晶シリコン膜等を用い得る
が、この実施例ではn1型多結晶シリコン膜である。こ
のようにして、COD踊激素子基板が構成されている。
MO, Or, or an n+ type polycrystalline silicon film can be used, but in this embodiment, an n1 type polycrystalline silicon film is used. In this way, the COD element substrate is constructed.

このccom像素子基板を次に光励起膜形成装置に導入
し、前処理として水素ラジカル処理を行い、引続いてa
−8i膜形成を行なう。この一連の工程を次に詳しく説
明する。
This ccom image element substrate is then introduced into a photo-excited film forming apparatus, subjected to hydrogen radical treatment as a pretreatment, and then a
-8i film formation is performed. This series of steps will be explained in detail below.

第2図はその方法に用いた光励起膜形成装置の霞略構成
であり、まずこの構成を説明する。図中、20は膜形成
室であり、この膜形成室20内に試料であるCCD撮像
素子基板21を載置した試料台が収容されている。試料
台の内部には、試料を加熱するためのヒーター22が設
けられている。
FIG. 2 shows a schematic configuration of a photoexcited film forming apparatus used in this method, and this configuration will be explained first. In the figure, 20 is a film forming chamber, and a sample stage on which a CCD image sensor substrate 21, which is a sample, is mounted is accommodated in this film forming chamber 20. A heater 22 for heating the sample is provided inside the sample stage.

膜形成室20の上部にはランプハウス24があり、この
ランプハウス24内に例えば低圧水銀ランプ23および
このランプ23からの光を反射する反側板25が設けら
れている。不活性ガスライン26は、ランプハウス24
内を不活性ガスでパージするためのものである。低圧水
銀ランプ23からの光は光透過窓29を介して試料基数
21に照射されるようになっている。また膜形成室20
内にはガス供給部27から原料ガスが供給され、膜形成
室20内のガスは排気ポンプ28により排気されるよう
になっている。
A lamp house 24 is provided in the upper part of the film forming chamber 20, and within this lamp house 24, for example, a low pressure mercury lamp 23 and a reverse plate 25 for reflecting light from the lamp 23 are provided. The inert gas line 26 connects to the lamp house 24
This is to purge the inside with inert gas. Light from the low-pressure mercury lamp 23 is irradiated onto the sample base 21 through a light transmission window 29. Also, the film forming chamber 20
Raw material gas is supplied into the film forming chamber 20 from a gas supply section 27, and the gas inside the film forming chamber 20 is exhausted by an exhaust pump 28.

このような膜形成装置を用いて、先ず暗像素子基板を1
00℃〜300℃に保ち、水銀を微最に含んだ水素ガス
を1〜100S1005CC人して膜形成室20内を0
.1〜10torrのガス圧に保った後に低圧水銀ラン
プ23により適当な時間例えば5〜100分間基板面を
照射して水素ラジカル処理を行なう。
Using such a film forming apparatus, first, a dark image element substrate is
The inside of the film forming chamber 20 is kept at 00°C to 300°C, and the inside of the film forming chamber 20 is heated to 0.
.. After maintaining the gas pressure at 1 to 10 torr, the substrate surface is irradiated with a low pressure mercury lamp 23 for an appropriate period of time, for example, 5 to 100 minutes, to perform hydrogen radical treatment.

こうして水素ラジカル処理を行なった後、真空を破るこ
となく原料ガスを切替えて水銀増感法による光励起膜形
成法によりa−8i光導電体膜を形成する。具体的のこ
の実施例では第1図(b)に示すように、n型(または
i型)a−8iC:H膜11、i型a−8i:H膜12
およびp型a−8iC:HMW13を順次積層形成して
いる。a−8iC:H膜11および13はキャリア注入
阻止層である。こうして形成された光導電膜上にITO
などの透明電極14を形成して完成する。
After carrying out the hydrogen radical treatment in this manner, an a-8i photoconductor film is formed by a photoexcitation film forming method using a mercury sensitization method by switching the raw material gas without breaking the vacuum. In this specific example, as shown in FIG. 1(b), an n-type (or i-type) a-8iC:H film 11, an i-type a-8i:H film 12
and p-type a-8iC:HMW13 are sequentially stacked. The a-8iC:H films 11 and 13 are carrier injection blocking layers. ITO is placed on the photoconductive film thus formed.
The transparent electrode 14 is formed to complete the process.

この実施例による積層型CCD喝象索子の残置特性を従
来法によるものと比較して測定した。残像特性は、光1
9電体、役に5X103〜5×101V / cmの電
界を印加し、透明電極側から白色光を照射して、光しゃ
断接の3フイールド(約50m sec )での立下り
残像値として測定したが、この実施例の素子では約3.
0%であった。これに対し、水素ラジカル処理を施さな
い素子、および13.56MHzの高周波グロー放電に
よる水素ラジカル処理を11なった素子ではそれぞれ、
残像値が5.5%および5.0%であった。
The residual characteristics of the stacked CCD resonance probe according to this example were measured in comparison with those produced by the conventional method. The afterimage characteristics are light 1
An electric field of 5 x 10 to 5 x 10 V/cm was applied to 9 electric bodies, white light was irradiated from the transparent electrode side, and the falling afterimage value was measured in 3 fields (approximately 50 m sec) with light cutoff and connection. However, in the device of this example, it is about 3.
It was 0%. On the other hand, in the element not subjected to hydrogen radical treatment and the element subjected to hydrogen radical treatment by 13.56 MHz high-frequency glow discharge to 11, respectively,
The afterimage values were 5.5% and 5.0%.

こうしてこの実施例によれば、積層型CCD搬象素子の
残像特性が明らかに改善される。また分光感度特性の改
善も認められた。
Thus, according to this embodiment, the afterimage characteristics of the stacked CCD imaging element are clearly improved. Improvement in spectral sensitivity characteristics was also observed.

本発明は上記実施例に限られるものではない。The present invention is not limited to the above embodiments.

例えば実施例では、光化学反応による水素ラジカル処理
用の光源として低圧水銀ランプを用いたが、水銀増感法
を用いれば光源としてはこれに限る必要はない。例えば
、重水素ランプ、希ガス(Xe。
For example, in the examples, a low-pressure mercury lamp was used as a light source for hydrogen radical treatment by photochemical reaction, but the light source need not be limited to this as long as a mercury sensitization method is used. For example, deuterium lamp, noble gas (Xe.

)(r、Arなど)や水素のマイクロ波放電等による光
あるいはエキシマレーザなどを用いることができる。ま
た水銀を含まない直接光励起膜形成法を利用してもよい
が、この場合は水素ガスを解離するために845Å以下
の波長成分を有する光源を用いる。また実施例では光励
起による水素ラジカル処理に引続いて同じ光励起による
膜形成を行なったが、膜形成法は他の方法の場合にも本
発明は有効である。更に実施例では、COD@e素子基
板を用いたが、M6S型やBBD型禿像素子基板を用い
てこれに光導電体層を積層形成する場合にも、本発明を
同様に適用することができる。またa−3i光導電体層
の構造も、実施例のものに限らず、例えばi型a−3i
/p型a−8i C積層構造あるいはi/p界面にC組
成が変化するグレーテツド層を設けた積層構造を用いる
ことができる。
) (r, Ar, etc.), hydrogen microwave discharge, or excimer laser can be used. Alternatively, a direct photoexcitation film formation method that does not contain mercury may be used, but in this case, a light source having a wavelength component of 845 Å or less is used to dissociate hydrogen gas. Further, in the examples, hydrogen radical treatment by photoexcitation was followed by film formation by the same photoexcitation, but the present invention is also effective in the case of other film formation methods. Further, in the examples, a COD@e element substrate was used, but the present invention can be similarly applied to the case where a photoconductor layer is laminated on an M6S type or BBD type bald image element substrate. can. Further, the structure of the a-3i photoconductor layer is not limited to that of the embodiment, and for example, the structure of the a-3i photoconductor layer is
/p type a-8i C laminated structure or a laminated structure in which a graded layer with varying C composition is provided at the i/p interface can be used.

その他、本発明はその趣旨を逸脱しない範囲で種々変形
して実施することができる。
In addition, the present invention can be implemented with various modifications without departing from the spirit thereof.

[発明の効果コ 以上述べたように本発明によれば、光8!3電体膜形成
工程の前に光化学反応による水素ラジカル処理を施すこ
とによって、積層型固体Fi@素子の残像特性や感度特
性の向上を図ることができる。
[Effects of the Invention] As described above, according to the present invention, by performing hydrogen radical treatment by a photochemical reaction before the optical 8!3 electrolyte film forming process, the afterimage characteristics and sensitivity of the stacked solid-state Fi@ element can be improved. It is possible to improve the characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)(b)は本発明の一実施例によるCCD撮
像装置の製造工程を説明する断面図、第2図は同実施例
に用いた光励起模形成装置を示す図である。 1・・・p+/p型S1ウェーハ、2・・・信号電荷蓄
積ダイオード、3・・・n+型4螢(埋め込みチャネル
)、41.42・・・ゲート絶縁膜、5t 、52・・
・転送ゲート電極、6・・・第1の層間絶縁膜、7・・
・第1の画i電極、8・・・p+型層、9・・・第2の
層間絶縁膜、10・・・第2の画素雪掻、11・・・i
またはn型a−8iC:旧1j!、12−i型a−8i
:[3,13・D型a−8iC:H,l]Q、20−1
0形成室、21・・・試料M板、22・・・ヒーター、
23・・・低圧水銀ランプ、24・・・ランプハウス、
25・・・反II IN、26・・・不活性ガスライン
、27・・・原料ガス供給部、28・・・排気ポンプ、
29・・・光透過窓。 出願人代理人 弁理士 鈴江武彦 第2図
FIGS. 1(a) and 1(b) are cross-sectional views illustrating the manufacturing process of a CCD imaging device according to an embodiment of the present invention, and FIG. 2 is a diagram showing a photoexcitation modeling apparatus used in the same embodiment. 1...p+/p type S1 wafer, 2...signal charge storage diode, 3...n+ type 4 fireflies (buried channel), 41.42...gate insulating film, 5t, 52...
-Transfer gate electrode, 6...first interlayer insulating film, 7...
・First picture i-electrode, 8...p+ type layer, 9...second interlayer insulating film, 10...second pixel snow scraper, 11...i
Or n type a-8iC: old 1j! , 12-i type a-8i
:[3,13・D type a-8iC:H,l]Q, 20-1
0 formation chamber, 21... Sample M plate, 22... Heater,
23...Low pressure mercury lamp, 24...Lamp house,
25... Anti-II IN, 26... Inert gas line, 27... Raw material gas supply section, 28... Exhaust pump,
29...Light transmission window. Applicant's agent Patent attorney Takehiko Suzue Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)信号電荷蓄積ダイオードと信号電荷読出し部が形
成された固体撮像素子基板上に光電変換部として非晶質
シリコン膜からなる光導電体膜が積層された固体撮像装
置を製造するに際し、前記非晶質シリコン膜の積層形成
工程に先だつて、固体撮像素子基板を真空容器内に収容
し光化学反応により活性化された水素ガス雰囲気中で水
素ラジカルによる前処理を行なうことを特徴とする固体
撮像装置の製造方法。
(1) When manufacturing a solid-state imaging device in which a photoconductor film made of an amorphous silicon film is laminated as a photoelectric conversion section on a solid-state imaging device substrate on which a signal charge storage diode and a signal charge readout section are formed, A solid-state imaging device characterized in that, prior to the step of forming a layered layer of an amorphous silicon film, a solid-state imaging device substrate is housed in a vacuum container and pre-treated with hydrogen radicals in a hydrogen gas atmosphere activated by a photochemical reaction. Method of manufacturing the device.
(2)前記光化学反応は、水銀増感光励起法による特許
請求の範囲第1項記載の固体撮像装置の製造方法。
(2) The method for manufacturing a solid-state imaging device according to claim 1, wherein the photochemical reaction is performed by a mercury-sensitized photoexcitation method.
(3)前記非晶質シリコン膜は、前記水素ラジカルによ
る前処理と連続的に光励起膜形成法により形成する特許
請求の範囲第1項記載の積層型固体撮像装置の製造方法
(3) The method for manufacturing a stacked solid-state imaging device according to claim 1, wherein the amorphous silicon film is formed by a photo-excited film forming method, which is performed continuously with the pretreatment with the hydrogen radicals.
JP61166019A 1986-05-21 1986-07-15 Manufacture of solid-state image sensing device Pending JPS6320869A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP61166019A JPS6320869A (en) 1986-07-15 1986-07-15 Manufacture of solid-state image sensing device
US07/051,590 US4772565A (en) 1986-05-21 1987-05-20 Method of manufacturing solid-state image sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61166019A JPS6320869A (en) 1986-07-15 1986-07-15 Manufacture of solid-state image sensing device

Publications (1)

Publication Number Publication Date
JPS6320869A true JPS6320869A (en) 1988-01-28

Family

ID=15823409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61166019A Pending JPS6320869A (en) 1986-05-21 1986-07-15 Manufacture of solid-state image sensing device

Country Status (1)

Country Link
JP (1) JPS6320869A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0414873A (en) * 1990-05-08 1992-01-20 Mitsubishi Electric Corp Layer-type solid-state tomographic equipment
JP2016178302A (en) * 2015-03-19 2016-10-06 オムニヴィジョン テクノロジーズ インコーポレイテッド Photosensitive capacitor pixel for image sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0414873A (en) * 1990-05-08 1992-01-20 Mitsubishi Electric Corp Layer-type solid-state tomographic equipment
JP2016178302A (en) * 2015-03-19 2016-10-06 オムニヴィジョン テクノロジーズ インコーポレイテッド Photosensitive capacitor pixel for image sensor
US9735196B2 (en) 2015-03-19 2017-08-15 Omnivision Technologies, Inc. Photosensitive capacitor pixel for image sensor

Similar Documents

Publication Publication Date Title
JP3073327B2 (en) Deposition film formation method
US5288658A (en) Process for the formation of an amorphous silicon deposited film with intermittent irradiation of inert gas plasma
JPH07123112B2 (en) Method for depositing p-type amorphous semiconductor and method for manufacturing photoreceptor for electrophotography
US5387542A (en) Polycrystalline silicon thin film and low temperature fabrication method thereof
JPS58155774A (en) Semiconductor device
US4799968A (en) Photovoltaic device
JPS6320869A (en) Manufacture of solid-state image sensing device
JPS58155773A (en) Manufacture of semiconductor device
US4772565A (en) Method of manufacturing solid-state image sensor
US4034127A (en) Method of forming and treating cadmium selenide photoconductive bodies
JPH05166733A (en) Method and apparatus for forming non-single crystal silicon film
JPS5860747A (en) Electrophotographic receptor
US7129521B2 (en) Semiconductor device and manufacture method thereof
JP4094324B2 (en) Semiconductor device and manufacturing method thereof
JPH0697078A (en) Manufacture of amorphous silicon thin film
US4677249A (en) Photovoltaic device
JP3272681B2 (en) Solar cell manufacturing method
JPS6410066B2 (en)
JPS586164A (en) Solid-state image pickup device
JPH01138752A (en) Laminated solid-state image sensing device
JPH0888341A (en) Solid-state image sensing device
JPH02260666A (en) Manufacture of amorphous solar cell
JP3123816B2 (en) Method for producing amorphous silicon carbide layer and photovoltaic device using the same
JPH02210883A (en) Manufacture of photoelectric converting element
Mehra et al. Physics of Device Grade Amorphous Silicon