JPS63208563A - Production of urea - Google Patents

Production of urea

Info

Publication number
JPS63208563A
JPS63208563A JP62041054A JP4105487A JPS63208563A JP S63208563 A JPS63208563 A JP S63208563A JP 62041054 A JP62041054 A JP 62041054A JP 4105487 A JP4105487 A JP 4105487A JP S63208563 A JPS63208563 A JP S63208563A
Authority
JP
Japan
Prior art keywords
synthesis
urea
stripping
carbon dioxide
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62041054A
Other languages
Japanese (ja)
Other versions
JPH082859B2 (en
Inventor
Hidetsugu Fujii
藤井 英嗣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Engineering Corp
Original Assignee
Toyo Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Engineering Corp filed Critical Toyo Engineering Corp
Priority to JP62041054A priority Critical patent/JPH082859B2/en
Priority to IN135/CAL/88A priority patent/IN169023B/en
Priority to IDP283688A priority patent/ID800B/en
Priority to DE3805403A priority patent/DE3805403A1/en
Priority to PL1988270814A priority patent/PL152735B1/en
Priority to BR8800751A priority patent/BR8800751A/en
Publication of JPS63208563A publication Critical patent/JPS63208563A/en
Publication of JPH082859B2 publication Critical patent/JPH082859B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C273/00Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups
    • C07C273/02Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups of urea, its salts, complexes or addition compounds
    • C07C273/04Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups of urea, its salts, complexes or addition compounds from carbon dioxide and ammonia
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To enable size-reduction of a stripping-type synthesis pipe in the conversion of a urea synthesis process from a nonstripping-type solution circulation process to a stripping-type process, by using a synthesis pipe of the solution circulation process as it is. CONSTITUTION:Recovered liquid 42 of unreacted material obtained from the step after the stripping step is pressurized to a synthetic pressure with a pump 3. A part of the pressurized liquid is supplied to a gas scrubber 15 and the remainder (30-50%) is supplied to the former-stage synthesis pipe 11 which is a synthesis pipe of a solution circulation process and is reacted with freshly supplied CO234 and freshly supplied NH333 under synthetic condition. The obtained former-stage synthesis liquid is transferred to a carbamate condenser 14' and made to contact with mixed gas supplied from a stripper 13 to effect the condensation of at least a part of the mixed gas. The mixed flow of gas and solid discharged from the condenser 14' is sent to the latter-stage synthesis pipe 12 which is a stripping-type synthesis pipe and is made to react with freshly supplied NH3 under a synthesis condition of conventional stripping-type reaction.

Description

【発明の詳細な説明】 [発明が属する技術分野] この発明は尿素製造プロセス中の合成工程に関する。詳
しくはa、(非ストリッピング式)溶液循環法からす、
ストリッピング式への転換の際の合成工程の改良に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] This invention relates to a synthetic step in a urea manufacturing process. For details, see a. (Non-stripping type) solution circulation method glass.
This invention relates to improvements in the synthesis process when converting to a stripping method.

[従来技術の問題点] 尿素製造プロセスは大別して上述の二つがある。[Problems with conventional technology] The urea production process can be roughly divided into the two types mentioned above.

以前は両者には合成条件に大きな違いがあった。Previously, there was a big difference in the synthesis conditions between the two.

即ち、合成でのNH3/ co2(not比)が、溶液
循環法では約4であり、一方、ストリッピング式では3
以下であって、このようにnot比を大きくするのは困
難とされていた。しかしその俊技術の進歩とエネルギー
の高騰により大きいmol比でもストリッピング式が技
術的に、経済的にも可能になつて来た。そこで溶液循環
法をストリッピング式に転換する場合が発生するように
なった。この場合の問題点の一つに両者では合成管の1
mとその配置法に大きな違いがあることである。すなわ
ち、b、の場合成管は同一生産量ならばa、の場合より
大きくかつ中にバッフルプレートが装着されている。ま
た、流体の出入口および合成管の設置法もa、の場合と
大いに異なる。このため転換の際に、溶液循環法で使用
していた合成管をす、に転用するには種々の工夫が要る
。合成管はプラント全体の中では高価なユニットに属す
るのでプロセスをaからbに転換する場合、殊に増産を
兼る場合、aの合成管を利用しようとする。現にaのプ
ロセスでプラントが稼動している場合には転換の際の停
止による損失を最小限に止めねばならず、この考慮も必
要である。この発明はこれらを解決し最適な、合成工程
の転換法を提供したものである。
That is, the NH3/co2 (not ratio) in synthesis is about 4 in the solution circulation method, while it is 3 in the stripping method.
It has been considered difficult to increase the not ratio in this way. However, due to advances in technology and the rise in energy prices, the stripping method has become technically and economically possible even with a large molar ratio. Therefore, there are cases where the solution circulation method is converted to a stripping method. One of the problems in this case is that in both cases, one of the synthetic tubes
There is a big difference in m and how it is arranged. That is, in case b, the tube is larger than in case a for the same production volume, and a baffle plate is installed inside. Furthermore, the method of installing the fluid inlet/outlet and the synthesis pipe is also very different from that in case a. Therefore, during conversion, various measures are required to repurpose the synthesis tube used in the solution circulation method. Since the synthetic tube belongs to an expensive unit in the entire plant, when converting the process from a to b, especially when increasing production, the synthetic tube from a is used. If a plant is currently operating in process a, losses due to stoppage during conversion must be minimized, and this consideration must also be taken. This invention solves these problems and provides an optimal method for converting the synthetic process.

[発明とその構成] この発明はアンモニアと二酸化炭素から尿素合成に適し
た圧力、温度の合成工程で1qられた該尿素、未反応ア
ンモニア、二酸化炭素を含む尿素合成液を、先ず同圧力
下での二酸化炭素ガスによるストリッピング工程に付し
て該未反応物の一部をガス状にて分離し、次いで残った
尿素合成液を減圧し少なくとも一段の未反応物分離工程
に付して該尿素合成液中の未反応物の実質全部をガス状
に分離し尿素水溶液を得、一方、かくして、ストリッピ
ング工程より後の分離工程から、回収された未反応物の
溶液を該合成工程の圧力に昇圧し凝縮工程に付しストリ
ッピング工程からの未反応物およびストリッピングに用
いた二酸化炭素との混合ガスをこれに凝縮せしめ得られ
る凝縮液および未凝縮ガスを該合成工程に循環せしめる
尿素製造プロセスにおいて、該合成工程の圧力に昇圧さ
れた先の未反応物溶液を該;疑縮工程に付すに先だち、
少なくともその一部を新規供給二酸化炭素ガスおよびア
ンモニアの各一部と共に、尿素合成条件に保ち尿素を合
成せしめて後、該凝縮工程に付すことを特徴とした尿素
製造方法である。 a用の合成管とb用の合成管の組み
合せ方法は直列、並列、そして直列でもその順序に応じ
ているいろな配置法が考えられる。それらについて技術
的、経済的および改造時の休業損失などを検討の結果、
直列でa用の合成管を前に設置するこの発明の方法に至
ったのである。 この前段の合成(以後前段合成または
前段合成管と称する)のうち、圧力は後段の合成のそれ
と実質同じであるが、温度は許容される限り低い方が好
ましい。その理由は、ここに送入される新規供給二酸化
炭素ガスはなるべく少なくしストリッピングに使用した
方が良いからである。ここに送入される未反応物溶液が
一部であるのは同じ理由による。このためここに送入さ
れる新規供給二酸化炭素ガスは全新規供給二酸化炭素ガ
スの5〜15− %(重量)とされる。このように少な
いので前段合成におけるH 20 /CO2(mO1比
)は通常より大きくなり合成率低下を来たす。
[Invention and its structure] This invention first converts a urea synthesis solution containing 1q of urea, unreacted ammonia, and carbon dioxide, which has been produced in a synthesis process at a pressure and temperature suitable for urea synthesis from ammonia and carbon dioxide, under the same pressure. A part of the unreacted substances is separated in gaseous form by a stripping process using carbon dioxide gas, and then the remaining urea synthesis solution is depressurized and subjected to at least one unreacted substance separation process to remove the urea. Substantially all of the unreacted substances in the synthesis solution are separated into a gaseous state to obtain an aqueous urea solution, and on the other hand, the solution of unreacted substances recovered from the separation step after the stripping step is brought to the pressure of the synthesis step. A urea production process in which the pressure is increased and the mixture gas is subjected to a condensation step, unreacted substances from the stripping step and carbon dioxide used in the stripping are condensed, and the resulting condensate and uncondensed gas are circulated to the synthesis step. , before subjecting the unreacted product solution, which has been pressurized to the pressure of the synthesis step, to the pseudo-condensation step,
This urea production method is characterized in that at least a part of the gas is kept under urea synthesis conditions together with a part of newly supplied carbon dioxide gas and ammonia, and then subjected to the condensation step after urea is synthesized. The synthetic tubes for a and b can be combined in series, in parallel, or in series depending on their order. As a result of considering the technical, economical, and loss of business during remodeling,
This led to the method of this invention in which the synthetic tube for A is installed in front of the tubes in series. In this first stage synthesis (hereinafter referred to as first stage synthesis or first stage synthesis tube), the pressure is substantially the same as that in the second stage synthesis, but the temperature is preferably as low as possible. The reason for this is that it is better to minimize the amount of newly supplied carbon dioxide gas introduced here and use it for stripping. The reason why a portion of the unreacted material solution is sent here is for the same reason. For this reason, the newly supplied carbon dioxide gas fed here is 5 to 15% (by weight) of the total newly supplied carbon dioxide gas. Because of this small amount, H 20 /CO2 (mO1 ratio) in the first-stage synthesis becomes larger than usual, resulting in a decrease in the synthesis rate.

そのために、ここに送入される新規供給アンモニアは、
この合成率低下を補償する程度に多くすることが好まし
いので全新規供給アンモニアの30〜50%(重量)と
する。これらの結果、この前段合成でのNH3/Co 
2 (mol比) = 3.5〜5.0.温度は、新規
供給アンモニアの予熱によっても調節され、175〜1
85℃となる。このような合成条件によって得られた前
段の尿素合成液は尿素 25〜35%(重量)を含む。
For this purpose, the newly supplied ammonia sent here will be
It is preferable to increase the amount to an extent that compensates for this decrease in the synthesis rate, so the amount is set at 30 to 50% (by weight) of the total newly supplied ammonia. As a result, NH3/Co in this first-stage synthesis
2 (mol ratio) = 3.5 to 5.0. The temperature is also regulated by preheating the freshly fed ammonia and is 175-1
It becomes 85℃. The first-stage urea synthesis solution obtained under such synthesis conditions contains 25 to 35% (by weight) of urea.

この合成液は次いで前記のカバメート凝縮工程に付しス
トリッピング工程からの混合ガスを凝縮せしめる。この
後は通常のストリッピング式プロセスでの合成工程への
循環と全く同じである。ただしこの発明でのb用合成管
は後一段になっている。
This synthetic liquid is then subjected to the kabamate condensation step described above to condense the mixed gas from the stripping step. After this, the process is exactly the same as the circulation to the synthesis step in a normal stripping process. However, in this invention, the synthetic tube for b is in one stage at the rear.

次にこの発明を図に従って説明する。11は前段合成管
、12は後段合成管、13はストリッパー、14.14
°はカーバメート凝縮器である。圧力160〜180k
g/ cdG 、温度185〜195℃の後段合成管1
2で、平衡値近くまで合成された尿素を含む合成液は下
降管39を通って同圧のストリッパー13の頂部に入り
、ライン35より底部に吹き込まれる新規供給二酸化炭
素ガス(の80〜95%(重量))と加熱下、向流的に
接触して、その合成液に含まれる未反応アンモニア、二
酸化炭素の一部が吹き込まれた二酸化炭素ガスとともに
塔頂より分離される。
Next, this invention will be explained with reference to the drawings. 11 is the front synthesis tube, 12 is the rear synthesis tube, 13 is the stripper, 14.14
° is the carbamate condenser. Pressure 160-180k
g/cdG, temperature 185-195°C post-synthesis tube 1
2, the synthetic liquid containing urea synthesized to near the equilibrium value passes through the downcomer 39 and enters the top of the stripper 13 at the same pressure, and the newly supplied carbon dioxide gas (80 to 95% of it) is blown into the bottom from the line 35. (weight)) under heating in a countercurrent manner, and unreacted ammonia and a portion of carbon dioxide contained in the synthesis liquid are separated from the top of the column together with the blown carbon dioxide gas.

残留未反応物が20〜30%(重量)となった温度17
5〜185℃の合成液は減圧弁21により14〜20k
g/CdGに減圧されてカーバメート凝縮器14゛のシ
ェル側に入ってチューブ側で発生する凝縮熱を受け、さ
らに残留未反応物の少なくとも一部を気化する。
Temperature 17 at which the residual unreacted material became 20 to 30% (weight)
Synthetic liquid at 5 to 185℃ is heated to 14 to 20k by pressure reducing valve 21.
g/CdG, enters the shell side of the carbamate condenser 14, receives heat of condensation generated on the tube side, and further vaporizes at least a portion of the remaining unreacted substances.

この後は、気液分離するか、必要に応じざらにスチーム
で加熱され合成液中の残留未反応物を減らす。この工程
で分離される未反応物ガスは対応する(高圧)吸収工程
にて吸収される。この圧力段階以降の合成液および未反
応物の処理は周知の方法に従う。
After this, the mixture is subjected to gas-liquid separation or, if necessary, heated roughly with steam to reduce residual unreacted substances in the synthesis liquid. The unreacted gases separated in this step are absorbed in a corresponding (high pressure) absorption step. Treatment of the synthesis liquid and unreacted substances after this pressure stage follows well-known methods.

ストリッピング工程より後の工程から得られた未反応物
の回収液(力・−バメート水溶液)−ライン42−はポ
ンプ3により先の合成圧力まで昇圧されて、その一部(
50〜70%)はライン43を経てガス洗滌器15に供
給され、残り(30〜50%)はうイン44を経て前段
合成管11に送入される。同時に新規供給二酸化炭素ガ
スの一部(5〜15%(重量))および120〜160
℃に予熱された新規供給アンモニアの一部(30〜50
%(重量))も送入される。
The recovered unreacted liquid (aqueous bamate solution) obtained from the process after the stripping process - line 42 - is pressurized to the previous synthesis pressure by the pump 3, and a part of it (
50 to 70%) is supplied to the gas scrubber 15 via the line 43, and the remaining (30 to 50%) is sent to the pre-stage synthesis tube 11 via the feed-in 44. At the same time, part of the newly supplied carbon dioxide gas (5-15% (weight)) and 120-160%
A portion of freshly fed ammonia preheated to 30-50 °C
% (weight)) is also fed.

ここで先に述べた合成条件下、尿素が平衡値の90〜9
6%まで合成される。こうして得られた前段合成液はう
イン37を経てカーバメート凝縮器14°のチューブ側
に入りライン48を経て入って来るストリッパーからの
混合ガスと接触しこの混合ガスの少くとも一部が凝縮す
る。その際、発生する凝縮熱は、先述のごとく未反応物
の分離に回収利用される。一方、ガス洗滌器15に挿入
された一部の未反応物回収液は、後段合成管12の頂部
から分離されるイナートガスに同伴するアンモニア、二
酸化炭素ガスを吸収してライン46を経てカーバメート
凝縮器14のシェル側に入り、14゛に於けると同様に
、これにストリッパーからの混合ガスの少くとも一部が
凝縮する。カーバメート凝縮器14.14゜からの気液
混合流はライン38を経て後段合成管12の底部に入る
。同時に残りの新規供給アンモニア−ライン32−も挿
入される。後段合成管12は通常のストリッピング式プ
ロセスの合成条件に保たれる。
Here, under the synthesis conditions described earlier, urea is at an equilibrium value of 90 to 9
Synthesized up to 6%. The pre-synthesis liquid thus obtained enters the tube side of the carbamate condenser 14° through the inlet 37 and comes into contact with the mixed gas from the stripper coming in through the line 48, so that at least a portion of this mixed gas is condensed. At this time, the heat of condensation generated is recovered and used for separating unreacted substances as described above. On the other hand, a part of the unreacted product recovery liquid inserted into the gas scrubber 15 absorbs ammonia and carbon dioxide gas accompanying the inert gas separated from the top of the second-stage synthesis tube 12, and passes through the line 46 to the carbamate condenser. 14, on which at least a portion of the mixed gas from the stripper condenses, as in 14'. The gas/liquid mixture stream from the carbamate condenser 14.14° enters the bottom of the post-synthesis tube 12 via line 38. At the same time, the remaining new supply ammonia line 32- is also inserted. The post-synthesis tube 12 is maintained under the synthesis conditions of a normal stripping process.

以上の事から次の効果が生ずる。The following effects arise from the above.

[発明の効果] 1、改造に際しa用の合成管がそのまま使える。[Effect of the invention] 1. When remodeling, the synthetic pipe for A can be used as is.

2、vT規にb用の合成工程を設備するよりは簡単な設
備で済む。
2. Simpler equipment is required than installing a synthesis process for b according to the vT standard.

3、b用の新設合成管は、全くの新規の場合よりも小ざ
く出来る。  例えば20%位。
A new synthetic pipe for 3.b can be made smaller than a completely new pipe. For example, around 20%.

4、前段合成管で尿素と水が生成しているので、カーバ
メート凝縮器での凝縮温度が従来よりも高温に保てる。
4. Since urea and water are generated in the front synthesis tube, the condensation temperature in the carbamate condenser can be kept higher than before.

[実施例] 8式プロセスによる8産1000トンの尿素があって、
これを増産をも兼ねて8産1500トンの5式プロセス
のプラントに改造した。従来250kg/ cifG2
00℃で使用されていたa用の合成管はその位置、その
ままで使用された。ただし、合成管出口の配管は、改造
により新設されるカーバメート凝縮器の一つに接続され
た。昇圧された新規供給アンモニアはa用合成管は勿論
、b用の合成管にも送入出来るように、また昇圧された
新規供給二酸化炭素ガスも同様に、fr設されるストリ
ッパーにも送入出来るように配管がなされた。一方、従
来の高圧吸収器からの(カーバメート)回収液は合成圧
に昇圧後、その一部を新設されるガス洗滌器にも送入出
来るように配管がなされた。なお、新設の合成管、カー
バメート凝縮器およびストリッパーの配置の相互関係は
通常と同様である。従来の(図示されていないが、)高
圧吸収器からの、N11320.0. CO220,8
およびII 2012.Ot/hrよりなる103℃の
回収液が回収液ポンプ3により190kg/cnfGに
昇圧され、そのうち65.5%(重量)がガス洗滌器へ
、残りの34,5%(重量)が前段合成管11の底部に
送入された。一方、圧縮機2により昇圧された140℃
の新規供給二酸化炭素ガス45.8t/hrの一部10
%(重量)がこの前段合成管に、残りの90%(重量)
はストリッパー13の底部に送入された。またポンプ1
により昇圧された液体の新規供給アンモニア35.4t
/hrは第1予熱器でスチームコンデイセイトにより7
0℃に予熱され、このうちの65%(重量)が後段合成
管12に送入され、残りの35%(重量)はざらにスチ
ームで予熱され前段合成管の底部に送入された。その結
果、この合成管ではNH3/CO2=  4.25mo
l比)、温度177℃となり、出口では尿素10.5、
NH313,5、CO24,1およびH207,5i/
hrよりなる合成液が得られ、次いでカーバメート凝縮
器14−のチューブ側に入った。ここで、ストリッパー
からの混合ガスの一部がこの合成液に凝縮して温度が1
86℃に達した。この際の発生熱は後述のように回収利
用された。一方、ガス洗滌器15に送入された回収液は
、後段合成管12の頂部にて分離されたイナー1−ガス
に同伴するアンモニア、二酸化炭素ガスを吸収してカー
バメート凝縮器14のチューブ側に入りストリッパーか
らの混合ガスの他の一部がこれに凝縮して同様の温度に
達し、その際の発生熱は低圧のスチームとして回収され
た。かくして、カーバメート凝縮器14.14−で生成
した気液混合流は後段合成管12の底部に入り先述の送
入アンモニアと共にここに滞望する間にざらに尿素が合
成された。温度は190℃に達し頂部でイナートガスを
分離した後は尿素67.4、NI+374.3、CO2
23,3およびtl 203B、4j/hrなる組成の
合成液が得られた。この合成液は下降管39よりストリ
ッパー13の頂部に入り高圧スチームによる加熱と、底
部に送入された先述の二酸化炭素ガスのストリッピング
作用により、Nh 59.3、CO27,8およびI+
 20 5.5t/hrが送入二酸化炭素ガスとの混合
かガスとして分離された。この結果、ストリッパー底部
からは176°Cの尿素64.2、N11316.8、
co217.8および112031.9t/hrからな
る合成液が得られこれは直ちに17kg/ cnfGに
減圧されてカーバメート凝縮器14−のシェル側に入り
チューブ側で発生する熱により、残留アンモニアおよび
二酸化炭素の一部が気化した。かくして生成した気液混
合流はこの後、従来の処理に付されて尿素は製品となり
、未反応アンモニアおよび二酸化炭素は先述の如き回収
液として回収された。
[Example] There is 1,000 tons of urea produced by Type 8 process.
This was remodeled into a 5-type process plant with an eight production capacity of 1,500 tons to increase production. Conventional 250kg/cifG2
The synthetic tube for a used at 00°C was used in its original position. However, the synthesis tube outlet pipe was connected to one of the carbamate condensers that would be newly installed as a result of the remodeling. Pressurized newly supplied ammonia can be fed not only to the synthesis tube for A but also to the synthesis tube for B, and the pressurized newly supplied carbon dioxide gas can also be fed to the stripper installed in fr. The piping was done as follows. On the other hand, the (carbamate) recovered liquid from the conventional high-pressure absorber was pressurized to the synthetic pressure and then piped so that a portion of it could be sent to the newly installed gas scrubber. Note that the mutual relationship among the newly installed synthesis pipe, carbamate condenser, and stripper is the same as usual. N11320.0. from a conventional (not shown) high pressure absorber. CO220,8
and II 2012. The recovered liquid at 103°C consisting of Ot/hr is pressurized to 190 kg/cnfG by the recovered liquid pump 3, of which 65.5% (weight) goes to the gas scrubber, and the remaining 34.5% (weight) goes to the front stage synthesis pipe. It was sent to the bottom of 11. On the other hand, the pressure was increased to 140°C by compressor 2.
A portion of the newly supplied carbon dioxide gas 45.8t/hr10
% (weight) goes to this front-stage synthetic tube, and the remaining 90% (weight)
was fed into the bottom of the stripper 13. Also pump 1
35.4 tons of newly supplied liquid ammonia pressurized by
/hr is 7 hr by steam condensate in the first preheater.
It was preheated to 0° C., and 65% (by weight) of it was sent to the second stage synthesis tube 12, and the remaining 35% (weight) was roughly preheated with steam and sent to the bottom of the first stage synthesis tube. As a result, in this synthesis tube, NH3/CO2 = 4.25mo
l ratio), the temperature is 177°C, and urea is 10.5 at the outlet.
NH313,5, CO24,1 and H207,5i/
A synthetic liquid consisting of hr was obtained and then entered the tube side of the carbamate condenser 14-. Here, some of the mixed gas from the stripper condenses into this synthetic liquid and the temperature rises to 1.
The temperature reached 86°C. The heat generated at this time was recovered and used as described below. On the other hand, the recovered liquid sent to the gas scrubber 15 absorbs ammonia and carbon dioxide gas accompanying the inner 1 gas separated at the top of the latter synthesis tube 12 and flows to the tube side of the carbamate condenser 14. Another portion of the gas mixture from the input stripper condensed thereto and reached a similar temperature, the heat generated being recovered as low pressure steam. Thus, the gas-liquid mixed stream generated in the carbamate condenser 14, 14- entered the bottom of the latter stage synthesis tube 12 and remained there together with the previously mentioned ammonia, during which urea was roughly synthesized. The temperature reached 190℃ and after separating the inert gas at the top, urea 67.4, NI + 374.3, CO2
A synthetic solution having a composition of 23,3 and tl 203B, 4j/hr was obtained. This synthetic liquid enters the top of the stripper 13 from the downcomer pipe 39 and is heated by high-pressure steam and the stripping action of the carbon dioxide gas sent to the bottom, resulting in Nh 59.3, CO27,8 and I+.
20 5.5 t/hr was mixed with the incoming carbon dioxide gas or separated as a gas. As a result, from the bottom of the stripper, urea of 176°C 64.2, N11316.8,
A synthetic liquid consisting of CO217.8 and 112031.9 t/hr was obtained, which was immediately reduced in pressure to 17 kg/cnfG and entered the shell side of the carbamate condenser 14-, where residual ammonia and carbon dioxide were removed by the heat generated on the tube side. Some of it vaporized. The gas-liquid mixture thus produced was then subjected to conventional processing to produce urea and the unreacted ammonia and carbon dioxide were recovered as a recovery liquid as described above.

この発明の実施により後段合成管は、全くの新設の場合
より20%小さく出来、また凝縮温度が従来より高く出
来るためカーバメート凝縮器の伝熱面積も24%小ざく
出来た。
By implementing this invention, the downstream synthesis tube can be made 20% smaller than if it were completely newly installed, and since the condensation temperature can be made higher than before, the heat transfer area of the carbamate condenser can also be made smaller by 24%.

【図面の簡単な説明】[Brief explanation of the drawing]

1:アンモニアポンプ、2:圧縮機、3:回収液ポンプ
、 11: 前段合成管、12:後段合成管、13ニス
トリッパ−1 14,14−:カーバメート凝縮器、15:ガス洗滌器
、 16.17:アンモニア予熱器
1: Ammonia pump, 2: Compressor, 3: Recovery liquid pump, 11: First-stage synthesis tube, 12: Second-stage synthesis tube, 13 Ni stripper-1 14, 14-: Carbamate condenser, 15: Gas scrubber, 16.17 : Ammonia preheater

Claims (1)

【特許請求の範囲】[Claims] アンモニアと二酸化炭素から尿素合成に適した圧力、温
度の合成工程で得られた該尿素、未反応アンモニア、二
酸化炭素を含む尿素合成液を、先ず同圧力下での二酸化
炭素ガスによるストリッピング工程に付して該未反応物
の一部をガス状にて分離し、次いで残った尿素合成液を
減圧し少なくとも一段の未反応物分離工程に付して該尿
素合成液中の未反応物の実質全部をガス状に分離し尿素
水溶液を得、一方、かくして、ストリッピング工程より
後の分離工程から、回収された未反応物の溶液を該合成
工程の圧力に昇圧し凝縮工程に付しストリッピング工程
からの未反応物およびストリッピングに用いた二酸化炭
素との混合ガスをこれに凝縮せしめ得られる凝縮液およ
び未凝縮ガスを該合成工程に循環せしめる尿素製造プロ
セスにおいて、該合成工程の圧力に昇圧された先の未反
応物溶液を該凝縮工程に付すに先だち、少なくともその
一部を新規供給二酸化炭素ガスおよびアンモニアの各一
部と共に、尿素合成条件に保ち尿素を合成せしめて後、
該凝縮工程に付すことを特徴とする尿素製造方法。
The urea synthesis solution containing urea, unreacted ammonia, and carbon dioxide obtained in a synthesis process at a pressure and temperature suitable for urea synthesis from ammonia and carbon dioxide is first subjected to a stripping process using carbon dioxide gas under the same pressure. Then, the remaining urea synthesis liquid is depressurized and subjected to at least one unreacted substance separation step to remove a portion of the unreacted substances in the urea synthesis liquid. The whole is separated into a gaseous state to obtain a urea aqueous solution, and on the other hand, the solution of unreacted substances recovered from the separation step after the stripping step is pressurized to the pressure of the synthesis step and subjected to a condensation step for stripping. In a urea production process in which unreacted substances from the process and a gas mixture with carbon dioxide used for stripping are condensed and the resulting condensate and uncondensed gas are circulated to the synthesis process, the pressure in the synthesis process is increased. Prior to subjecting the unreacted product solution to the condensation step, at least a part of it is maintained at urea synthesis conditions together with a part of each of the newly supplied carbon dioxide gas and ammonia, and then urea is synthesized.
A method for producing urea, which comprises subjecting it to the condensation step.
JP62041054A 1987-02-24 1987-02-24 Urea production method Expired - Lifetime JPH082859B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP62041054A JPH082859B2 (en) 1987-02-24 1987-02-24 Urea production method
IN135/CAL/88A IN169023B (en) 1987-02-24 1988-02-15
IDP283688A ID800B (en) 1987-02-24 1988-02-16 UREA PRODUCTION PROCESS
DE3805403A DE3805403A1 (en) 1987-02-24 1988-02-21 Process for the preparation of urea
PL1988270814A PL152735B1 (en) 1987-02-24 1988-02-23 Method for manufacturing urea
BR8800751A BR8800751A (en) 1987-02-24 1988-02-23 IMPROVEMENT IN UREA PRODUCTION PROCESS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62041054A JPH082859B2 (en) 1987-02-24 1987-02-24 Urea production method

Publications (2)

Publication Number Publication Date
JPS63208563A true JPS63208563A (en) 1988-08-30
JPH082859B2 JPH082859B2 (en) 1996-01-17

Family

ID=12597692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62041054A Expired - Lifetime JPH082859B2 (en) 1987-02-24 1987-02-24 Urea production method

Country Status (6)

Country Link
JP (1) JPH082859B2 (en)
BR (1) BR8800751A (en)
DE (1) DE3805403A1 (en)
ID (1) ID800B (en)
IN (1) IN169023B (en)
PL (1) PL152735B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58501373A (en) * 1981-09-01 1983-08-18 ユニ− バン クンストメストフアブリ−ケン ビ−.ベ−. Urea manufacturing method
JPS6041654A (en) * 1983-07-14 1985-03-05 モンテデイソン・エツセ・ピ・ア Manufacture of urea with low vapor consumption quantity

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE446978B (en) * 1977-05-05 1986-10-20 Montedison Spa ISOBARIC DOUBLE CIRCULATOR PROCEDURE FOR SYNTHETIZATION OF UREA DURING INTERMEDIATE PRODUCTION OF AMMONIUM CARBAMATE
DE3100388A1 (en) * 1981-01-09 1982-09-02 Mitsui Toatsu Chemicals, Inc. Process for urea synthesis
IT1211125B (en) * 1981-10-16 1989-09-29 Ortu Francesco NITROGEN COMPOUNDS. PROCESS FOR THE PREPARATION OF

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58501373A (en) * 1981-09-01 1983-08-18 ユニ− バン クンストメストフアブリ−ケン ビ−.ベ−. Urea manufacturing method
JPS6041654A (en) * 1983-07-14 1985-03-05 モンテデイソン・エツセ・ピ・ア Manufacture of urea with low vapor consumption quantity

Also Published As

Publication number Publication date
ID800B (en) 1996-07-10
DE3805403A1 (en) 1988-09-01
PL270814A1 (en) 1988-12-08
JPH082859B2 (en) 1996-01-17
PL152735B1 (en) 1991-01-31
DE3805403C2 (en) 1990-05-17
IN169023B (en) 1991-08-17
BR8800751A (en) 1988-10-04

Similar Documents

Publication Publication Date Title
EP3436430B1 (en) Urea production with bi-pressurized synthesis
RU2446152C2 (en) Method of producing urea and apparatus for realising said method
US6231827B1 (en) Process for combined production of ammonia and urea
US10501407B2 (en) Urea manufacturing method and urea manufacturing apparatus
JP6833698B2 (en) Urea production method and urea production equipment
RU2017727C1 (en) Method of producing derivatives of urea, carbamide and components of fertilizers
CN113195449B (en) Process and plant for urea production with heat integration in the low-pressure recovery section
US3615200A (en) Process for concentrating inert components in pressurized synthesis loop
SU1494864A3 (en) Method of producing urea
RU2043336C1 (en) Method of synthesis of urea from ammonia and carbon dioxide
US3155722A (en) Recovery of residual ammonia and carbon dioxide in the synthesis of urea
EP2521710B1 (en) A urea stripping process for the production of urea
US3258486A (en) Process for urea synthesis
SU1450735A3 (en) Method of producing carbamide
CN107531618B (en) Process and system for the integrated production of urea and melamine
JPS63208563A (en) Production of urea
CN110041230B (en) Process for producing urea by stripping method for recovering tail gas of melamine device
EP3939963B1 (en) Urea production method
JPS63112552A (en) Separation method for unconverted substance
RU2788006C1 (en) Method and apparatus for producing urea
WO2020095221A1 (en) Urea production method and device
JPS58501374A (en) Urea manufacturing method
JPS5849537B2 (en) Urea production method
MXPA98007629A (en) Process for the combined production of ammonia and u
JPS6110546A (en) Production of urea