JPS6320840Y2 - - Google Patents

Info

Publication number
JPS6320840Y2
JPS6320840Y2 JP1982112002U JP11200282U JPS6320840Y2 JP S6320840 Y2 JPS6320840 Y2 JP S6320840Y2 JP 1982112002 U JP1982112002 U JP 1982112002U JP 11200282 U JP11200282 U JP 11200282U JP S6320840 Y2 JPS6320840 Y2 JP S6320840Y2
Authority
JP
Japan
Prior art keywords
cylinder
port
fuel
nozzle
reduced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982112002U
Other languages
Japanese (ja)
Other versions
JPS5917242U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP11200282U priority Critical patent/JPS5917242U/en
Publication of JPS5917242U publication Critical patent/JPS5917242U/en
Application granted granted Critical
Publication of JPS6320840Y2 publication Critical patent/JPS6320840Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • High-Pressure Fuel Injection Pump Control (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

【考案の詳細な説明】 本考案はデイーゼル機関の燃料噴射装置に関す
るものである。
[Detailed Description of the Invention] The present invention relates to a fuel injection device for a diesel engine.

従来、デイーゼル機関において冷始動時に白煙
が多く排出される現象があり、その対策として減
筒運転が一般的に行なわれている。
BACKGROUND ART Conventionally, there has been a phenomenon in diesel engines in which a large amount of white smoke is emitted during a cold start, and as a countermeasure to this phenomenon, reduced-cylinder operation is generally performed.

本考案の目的は上記白煙対策としての減筒運転
を行なう為の一手段を提供することにある。
The purpose of the present invention is to provide a means for reducing cylinder operation as a measure against the white smoke mentioned above.

以下、本考案を詳細に説明する。 The present invention will be explained in detail below.

本考案に係るデイーゼル機関の燃料噴射装置
は、デイーゼル機関を構成するn(n≧2)個の
シリンダ中の一部のシリンダについて減筒運転を
行なうことのできるデイーゼル機関の燃料噴射装
置において、 n個のシリンダにおける噴射ノズルの燃料入口
ポートに高圧燃料を供給する噴射ポンプを接続
し、非減筒ノズルのリークオフポートは直接燃料
タンクに連通させ、減筒ノズルのリークオフポー
トは油圧ピストンを介して燃料タンクに連通さ
せ、該油圧ピストンに空圧ピストンを連結させ、
該空圧ピストンのエアシリンダに3方電磁弁を介
してエアタンクを連通させた。
A fuel injection device for a diesel engine according to the present invention is a fuel injection device for a diesel engine that can perform cylinder reduction operation for some of the n (n≧2) cylinders that make up the diesel engine. An injection pump that supplies high-pressure fuel is connected to the fuel inlet port of the injection nozzle in each cylinder, and the leak-off port of the non-reduced cylinder nozzle is connected directly to the fuel tank, and the leak-off port of the reduced-cylinder nozzle is connected through a hydraulic piston. a pneumatic piston connected to the hydraulic piston;
The air cylinder of the pneumatic piston was connected to an air tank via a three-way solenoid valve.

以下、実施例により説明する。 Examples will be explained below.

第1図は6気筒エンジンに対する本考案の適用
例を示す。
FIG. 1 shows an example of application of the present invention to a six-cylinder engine.

図において符号N1,N2…N6は周知の自動開閉
型噴射ノズルを示し、例えばその内部構造は第2
図に示す如きものである。これらの各噴射ノズル
の中、噴射ノズルN1〜N3を非減筒ノズル、ノズ
ルN4〜N6を減筒ノズルとすると、これら各噴射
ノズルの燃料入口ポートJ1〜J6は各々噴射ポンプ
Pを介して燃料タンク2の出口ポート3と配管5
0で接続されており、非減筒ノズルの各リークオ
フポートK1〜K3は燃料タンク2の入口ポート4
と配管60で接続されている。又、減筒ノズルの
各リークオフポートK4〜K6は加圧切換手段の一
例としての切換バルブ5を介して燃料タンク2の
入口ポート4と配管70で接続されている。詳細
にみてみると、切換バルブ5はエアポート5aよ
り流入する加圧エアとスプリング5bとの力の強
弱関係で作動する空圧ピストン5cと、この空圧
ピストン5cと一体的な油圧ピストン5dを有し
ている。そして油圧ピストン5dを収容している
油圧シリンダ5eの圧縮側行程端に形成された第
1ポート5fと前記リークオフポートK4〜K6
配管接続され、油圧シリンダ5eの側部に設けら
れた第2ポート5gと前記入口ポート4とが配管
接続されている。又、エアシリンダ5hに形成さ
れたエアポート5aは3方電磁弁6の中間ポート
6aに、該3方電磁弁6の右ポート6bは高圧エ
アを収容しているエアタンク7或はエアコンプレ
ツサに各々配管接続され、該3方電磁弁6の左ポ
ート6cは大気開放の状態になつている。上記3
方電磁弁6の切換えはソレノイド8における磁気
的な力とスプリング9との力の強弱関係により行
なわれ、具体的にはソレノイド8への通電のオ
ン・オフにより行なわれる。
In the figure, the symbols N 1 , N 2 ...N 6 indicate well-known automatic opening/closing injection nozzles, and for example, the internal structure is
It is as shown in the figure. Among these injection nozzles, assuming that injection nozzles N 1 to N 3 are non-reduced cylinder nozzles and nozzles N 4 to N 6 are reduced cylinder nozzles, the fuel inlet ports J 1 to J 6 of these injection nozzles are for injection, respectively. Outlet port 3 of fuel tank 2 and piping 5 via pump P
0, and each leak-off port K 1 to K 3 of the non-reduced cylinder nozzle is connected to the inlet port 4 of the fuel tank 2.
and is connected by piping 60. Further, each of the leak-off ports K 4 to K 6 of the reduced-cylinder nozzle is connected to the inlet port 4 of the fuel tank 2 by a pipe 70 via a switching valve 5 as an example of pressurization switching means. Looking in detail, the switching valve 5 has a pneumatic piston 5c that operates depending on the strength of the force between the pressurized air flowing in from the air port 5a and the spring 5b, and a hydraulic piston 5d that is integrated with the pneumatic piston 5c. are doing. The first port 5f formed at the compression side stroke end of the hydraulic cylinder 5e housing the hydraulic piston 5d and the leak-off ports K4 to K6 are connected by piping, and are provided on the side of the hydraulic cylinder 5e. The second port 5g and the inlet port 4 are connected by piping. Further, the air port 5a formed in the air cylinder 5h is connected to the intermediate port 6a of the three-way solenoid valve 6, and the right port 6b of the three-way solenoid valve 6 is connected to the air tank 7 or air compressor containing high-pressure air. Piping is connected, and the left port 6c of the three-way solenoid valve 6 is open to the atmosphere. Above 3
Switching of the solenoid valve 6 is performed by the strength relationship between the magnetic force in the solenoid 8 and the force of the spring 9, and specifically, by turning on/off the energization of the solenoid 8.

上記構成において、減筒運転を行なう減筒モー
ドの実行の際には、ソレノイド8への通電をオン
にする。すると磁気的反発力によりスプリング9
の伸張力に抗してピストン6dが左行し、ポート
6eが開いて右ポート6bと中間ポート6aとが
連通状態となる。従つて、エアタンク7の高圧エ
アがエアシリンダ5hに流入し、伸張性のスプリ
ング5bの力に抗して空圧ピストン5cが押し上
げられる。そして同時にこの空圧ピストン5cと
一体の油圧ピストン5dも押し上げられる結果、
油圧シリンダ5e内の燃料がリークオフポート
K4,K5,K6を伝つて各ノズルN4,N5,N6のホ
ルダ内スプリング室10(第2図参照)に圧送さ
れてノズルニードル11の背圧を高め、そのリフ
トを制限する。噴射ノズルの燃料噴射開始圧力は
一般にはノズルスプリングのばね力で決まるが、
本例の如く油圧シリンダ5e内の燃料がスプリン
グ室10に圧送されると、この圧力が上記ノズル
スプリングのばね力を補強する如く作用し、以て
ノズルニードル11のリフトが抑えられるのであ
る。このようにノズルニードル11のリフトが抑
えられると、各ノズルN4,N5,N6の燃料噴射は
行なわれず、こうして減筒運転が実行される。
In the above configuration, the solenoid 8 is energized when executing the cylinder reduction mode in which the cylinder reduction operation is performed. Then, due to the magnetic repulsion force, the spring 9
The piston 6d moves to the left against the stretching force of , the port 6e opens, and the right port 6b and the intermediate port 6a are brought into communication. Therefore, high pressure air in the air tank 7 flows into the air cylinder 5h, and the pneumatic piston 5c is pushed up against the force of the extensible spring 5b. At the same time, the hydraulic piston 5d integrated with the pneumatic piston 5c is also pushed up.
Fuel in hydraulic cylinder 5e leaks off port
The pressure is transmitted through K 4 , K 5 , K 6 to the spring chamber 10 in the holder of each nozzle N 4 , N 5 , N 6 (see Figure 2), increasing the back pressure of the nozzle needle 11 and limiting its lift. do. The fuel injection start pressure of the injection nozzle is generally determined by the spring force of the nozzle spring, but
When the fuel in the hydraulic cylinder 5e is forced into the spring chamber 10 as in this example, this pressure acts to reinforce the spring force of the nozzle spring, thereby suppressing the lift of the nozzle needle 11. When the lift of the nozzle needle 11 is suppressed in this way, fuel injection from each nozzle N 4 , N 5 , and N 6 is not performed, and thus a reduced-cylinder operation is performed.

冷始動時にこうした減筒運転を実行すると、作
動シリンダ数が減じられた分だけエンジンの総合
出力が減り、これに伴なつてガバナーが作動して
非減筒ノズルへの燃料供給量が増し、当該各ノズ
ルに対応するシリンダでの燃焼が促進されて白煙
現象が早期に解消される。又、減筒シリンダに関
しては非減筒シリンダの上記運転に伴ない減筒シ
リンダに係る機関周辺及び冷却水温等も暖められ
て運転準備が早期に整えられる。
When such reduced-cylinder operation is performed during a cold start, the total output of the engine is reduced by the number of operating cylinders, and the governor operates accordingly to increase the amount of fuel supplied to the non-reduced-cylinder nozzles. Combustion in the cylinder corresponding to each nozzle is promoted, and the white smoke phenomenon is quickly eliminated. Further, as for cylinders with reduced cylinders, the surroundings of the engine, cooling water temperature, etc. related to cylinders with reduced cylinders are also warmed up as a result of the above-mentioned operation of cylinders without cylinders with reduced cylinders, so that preparations for operation can be made at an early stage.

上記減筒シリンダ等に対する運転条件が整つた
時点でソレノイド8への通電をオフにして3方電
磁弁6をポート6eが閉じる様に切換え、リーク
オフモードにすればエアシリンダ5hは大気開放
状態となり、スプリング5bの力により油圧ピス
トン5dが下降して第1ポート5fと第2ポート
5gとを連通状態にして通常のリークオフ経路を
復活させて減筒運転が解除される。
When the operating conditions for the cylinders with reduced cylinders, etc. are established, turn off the power to the solenoid 8, switch the three-way solenoid valve 6 so that the port 6e is closed, and set it to leak-off mode, which will open the air cylinder 5h to the atmosphere. , the hydraulic piston 5d is lowered by the force of the spring 5b, the first port 5f and the second port 5g are brought into communication, the normal leak-off path is restored, and the cylinder reduction operation is canceled.

このように本考案によれば三方電磁弁6の切換
えにより容易に減筒運転と非減筒運転を切換える
ことができ、冷始動時における白煙に有効に対処
することができる。
As described above, according to the present invention, it is possible to easily switch between cylinder reduction operation and non-cylinder reduction operation by switching the three-way solenoid valve 6, and it is possible to effectively deal with white smoke during a cold start.

さらに、本例では油圧ピストン5dの油圧シリ
ンダ5eを低圧系たるリークオフポートK4〜K6
に接続しているためこれら切換制御手段にシール
性の問題も生じ難いと共にキヤビテーシヨン、エ
ロージヨンも生じ難く、さらに3方電磁弁6も容
量の小さいものでよく、発熱量も小となり耐久性
も向上させることができる。
Furthermore, in this example, the hydraulic cylinder 5e of the hydraulic piston 5d is connected to the leak-off ports K4 to K6 , which are low pressure systems.
Since it is connected to the switching control means, problems with sealing properties are less likely to occur, and cavitation and erosion are also less likely to occur.Furthermore, the three-way solenoid valve 6 only needs to have a small capacity, and the amount of heat generated is small, improving durability. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は6気筒エンジンに対して3気筒減筒す
る場合の実施例を説明した図、第2図は噴射ノズ
ルの断面図である。 N4,N5,N6……(減筒機関の)噴射ノズル、
5……(加圧切換手段としての)切換バルブ、6
……(加圧切換手段としての)3方電磁弁、10
……ノズルホルダ内スプリング室。
FIG. 1 is a diagram illustrating an embodiment in which three cylinders are reduced from a six-cylinder engine, and FIG. 2 is a sectional view of an injection nozzle. N 4 , N 5 , N 6 ... Injection nozzle (of reduced cylinder engine),
5...Switching valve (as pressurization switching means), 6
...3-way solenoid valve (as pressurization switching means), 10
...Spring chamber inside the nozzle holder.

Claims (1)

【実用新案登録請求の範囲】 デイーゼル機関を達成するn(n≧2)個のシ
リンダ中の一部のシリンダについて減筒運転を行
なうことのできるデイーゼル機関の燃料噴射装置
において、 n個のシリンダにおける噴射ノズルの燃料入口
ポートに高圧燃料を供給する噴射ポンプを接続
し、非減筒ノズルのリークオフポートは直接燃料
タンクに連通させ、減筒ノズルのリークオフポー
トは油圧ピストンを介して燃料タンクに連通さ
せ、該油圧ピストンに空圧ピストンを連結させ、
該空圧ピストンのエアシリンダに3方電磁弁を介
してエアタンクを連通させたことを特徴とするデ
イーゼル機関の燃料噴射装置。
[Claims for Utility Model Registration] In a fuel injection system for a diesel engine that can perform cylinder reduction operation for some of the n (n≧2) cylinders that achieve a diesel engine, An injection pump that supplies high-pressure fuel is connected to the fuel inlet port of the injection nozzle, and the leak-off port of the non-reduced cylinder nozzle is connected directly to the fuel tank, and the leak-off port of the reduced-cylinder nozzle is connected to the fuel tank via a hydraulic piston. a pneumatic piston connected to the hydraulic piston;
A fuel injection device for a diesel engine, characterized in that an air cylinder of the pneumatic piston is communicated with an air tank via a three-way solenoid valve.
JP11200282U 1982-07-23 1982-07-23 Diesel engine fuel injection system Granted JPS5917242U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11200282U JPS5917242U (en) 1982-07-23 1982-07-23 Diesel engine fuel injection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11200282U JPS5917242U (en) 1982-07-23 1982-07-23 Diesel engine fuel injection system

Publications (2)

Publication Number Publication Date
JPS5917242U JPS5917242U (en) 1984-02-02
JPS6320840Y2 true JPS6320840Y2 (en) 1988-06-09

Family

ID=30259813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11200282U Granted JPS5917242U (en) 1982-07-23 1982-07-23 Diesel engine fuel injection system

Country Status (1)

Country Link
JP (1) JPS5917242U (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5631656B2 (en) * 1975-08-05 1981-07-22

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5253227U (en) * 1975-10-14 1977-04-16
JPS52108425U (en) * 1976-02-14 1977-08-18
JPS5930215Y2 (en) * 1979-08-17 1984-08-29 株式会社小松製作所 diesel engine fuel injection system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5631656B2 (en) * 1975-08-05 1981-07-22

Also Published As

Publication number Publication date
JPS5917242U (en) 1984-02-02

Similar Documents

Publication Publication Date Title
US6325043B1 (en) Exhaust gas recirculation device
JP2001295701A (en) Internal combustion engine with turbo charger
JPH02233814A (en) Engine brake for service cars
JPS5914609B2 (en) Whirlpool chamber diesel engine
US20060196178A1 (en) Internal combustion engine having cylinder disablement
JPS5854245B2 (en) internal combustion engine
JPS6121537Y2 (en)
JP2874082B2 (en) Fuel supply device for internal combustion engine
JPS6320840Y2 (en)
JP7239883B2 (en) engine cooling system
US20070215078A1 (en) Methods and apparatus to use engine valves as both intake and exhaust valves
JP2795137B2 (en) Fuel supply device for internal combustion engine
JP3021259B2 (en) Fuel / water injection device
JPS58185954A (en) Internal-combustion engine
JP2713803B2 (en) Exhaust gas recirculation system using water-cooled EGR valve
CN219672744U (en) Anti-icing device, crankcase ventilation system, power assembly and vehicle
JP2795138B2 (en) Fuel supply device for internal combustion engine
JPS6032025B2 (en) cylinder number control engine
JPH0143475Y2 (en)
GB2304379A (en) I.c.engine with cylinder disablement
SE510835C2 (en) Combustion engine with compressor function
JPH0925853A (en) Exhaust reflux device
JPH0143476Y2 (en)
JPS6318777Y2 (en)
SU1173050A1 (en) Apparatus for regulation of multicylinder diesel