JPS63207891A - Liquefaction of coal - Google Patents

Liquefaction of coal

Info

Publication number
JPS63207891A
JPS63207891A JP3925087A JP3925087A JPS63207891A JP S63207891 A JPS63207891 A JP S63207891A JP 3925087 A JP3925087 A JP 3925087A JP 3925087 A JP3925087 A JP 3925087A JP S63207891 A JPS63207891 A JP S63207891A
Authority
JP
Japan
Prior art keywords
coal
preheater
hydrogen gas
slurry
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3925087A
Other languages
Japanese (ja)
Other versions
JPH0478678B2 (en
Inventor
Sanseki Moriguchi
森口 三昔
Tatsuo Fukuyama
福山 辰夫
Mamoru Yanagiuchi
柳内 衛
Hiroshi Yamaguchi
宏 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP3925087A priority Critical patent/JPS63207891A/en
Publication of JPS63207891A publication Critical patent/JPS63207891A/en
Publication of JPH0478678B2 publication Critical patent/JPH0478678B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:To remove a formed product attached to a preheater, etc., without stopping operation and to stably liquefy coal in high efficiency, by alternately using a sulfur-containing iron oxide catalyst and a pyrite catalyst at fixed time intervals. CONSTITUTION:Coal slurry consisting of (A) coal, (B) a solvent such as creosote oil, anthracene oil, etc., and (C) an iron oxide catalyst blended with sulfur as a promoter and a hydrogen gas are pressurized, sent to a preheater and the preheated slurry and the hydrogen gas are sent to a liquefying reactor. After a given time (e.g. 36hr) is passed, coal slurry consisting of the components A and B and (D) a synthetic or natural pyrite catalyst is sent instead of the above-mentioned slurry to the preheater for a given time (e.g. 36hr) and a formed product attached to the preheater, etc. is removed. Then again, the slurry of the former is made to flow and the two kinds of the slurries are alternately sent to the preheater at intervals of given time to liquefy coal.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は1石炭の液化方法に関するものである。[Detailed description of the invention] [Industrial application field] This invention relates to a method for liquefying coal.

〔従来の技術〕[Conventional technology]

石炭の液化は、一般に石炭、溶剤および触媒からなる石
炭スラリーを水素ガスとともに予熱器に加圧送入し、予
熱器において石炭スラリーと水素ガスとを反応温度また
はこれに近い温度にまで予熱し1次いで予熱された石炭
スラリーと水素ガスとを反応器に送り、反応器において
更に水素ガスを加えて液化することにより行われている
Coal liquefaction is generally carried out by feeding a coal slurry consisting of coal, a solvent, and a catalyst under pressure into a preheater together with hydrogen gas, and then preheating the coal slurry and hydrogen gas to a reaction temperature or a temperature close to it in the preheater. It is carried out by sending preheated coal slurry and hydrogen gas to a reactor, and further adding hydrogen gas in the reactor to liquefy it.

石炭の液化に使用する触媒は1石炭の液化効率を高め、
液化反応条件を緩和するために使用されるものである。
The catalyst used for coal liquefaction increases the liquefaction efficiency of 1 coal,
It is used to relax the liquefaction reaction conditions.

触媒としては、液化活性度が高く、安価で且つ多量に入
手できるものが好ましい。従って、一般に鉄鉱石、鉄酸
化物、鉄化合物等の酸化鉄系触媒に硫黄を助触媒として
添加した触媒が使用されている。
The catalyst is preferably one that has high liquefaction activity, is inexpensive, and can be obtained in large quantities. Therefore, catalysts in which sulfur is added as a promoter to iron oxide catalysts such as iron ore, iron oxides, and iron compounds are generally used.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、触媒として上述した酸化鉄系触媒(例え
ば、赤泥、ラテライト等)と助触媒としての硫黄とを使
用すると、次のような問題が生ずる。即ち、高温高圧下
(例えば100〜250 KW /(、m’G 。
However, when the above-mentioned iron oxide catalyst (for example, red mud, laterite, etc.) is used as a catalyst and sulfur as a co-catalyst, the following problems occur. That is, under high temperature and high pressure (for example, 100 to 250 KW/(, m'G).

300〜450℃)で、且つ、水素が存在する予熱器内
においては、ビロータイトおよびトロイライト等を主成
分とする固形物が生成し、この生成物が予熱器ばかりで
なく予熱器と反応器との接続する導管、および1反応器
の内壁に付着して成長する。
300 to 450°C) and in the presence of hydrogen, a solid substance mainly composed of billotite and troilite is generated, and this product is not only in the preheater but also in the preheater and reactor. It grows by adhering to the connecting conduit and the inner wall of one reactor.

この結果、予熱器内および反応器筒内における圧力損失
が増加し1石炭スラリーの流れの乱れ、および操業の不
安定化をまねく。さらに、付着した生成物の成長が著し
い場合には、生成物を核としてコーキングが発生するの
で、操業を一旦停止し。
As a result, the pressure loss within the preheater and within the reactor cylinder increases, leading to disturbances in the flow of the coal slurry and destabilization of the operation. Furthermore, if the adhered products grow significantly, coking will occur with the products as nuclei, so the operation should be temporarily stopped.

機械的方法や、化学的方法で予熱器および反応器−等の
内壁を洗浄する必要が生ずる。
It becomes necessary to clean the inner walls of the preheater, reactor, etc. by mechanical or chemical methods.

従って、この発明の目的は、予熱器内で生成し。Therefore, it is an object of the present invention to generate a preheater in a preheater.

予熱器1反応器、および、これらを接続する導管内に付
着した生成物を操業を停止することなく除去し、安定し
た操業によって、高効率で石炭の液化が行える1石炭の
液化方法を提供することにある。
To provide a coal liquefaction method capable of highly efficient coal liquefaction through stable operation by removing products adhering to a preheater reactor and conduits connecting these without stopping the operation. There is a particular thing.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は1石炭、溶剤および触媒からなる石炭スラリ
ーと、水素ガスとを加圧して予熱器へ送入する工程と、
前記予熱器において前記石炭スラリーと前記水素ガスと
を共に液化反応温度またはこれに近い温度まで予熱する
工程と、前記予熱器において予熱された前記石炭スラリ
ーおよび前記水素ガスを共に前記予熱器から反応器へ送
入する工程と、前記反応器において前記石炭スラリーを
液化する工程とから構成される石炭の液化方法において
、前記触媒としての硫黄が添加された酸化鉄系触媒と、
ツクイライト系触媒とを一定時間毎に交互に使用するこ
とに特徴を有するものである。
This invention includes the following steps: 1. Pressurizing a coal slurry consisting of coal, a solvent, and a catalyst, and hydrogen gas and sending it to a preheater;
a step of preheating both the coal slurry and the hydrogen gas in the preheater to a liquefaction reaction temperature or a temperature close to this; and transferring both the coal slurry and the hydrogen gas preheated in the preheater from the preheater to a reactor. In the method for liquefying coal, the coal slurry is liquefied in the reactor;
It is characterized by using the tsquirite catalyst alternately at regular intervals.

この発明において、パイライト系触媒を一定時間毎に酸
化鉄系触媒と交互に使用する理由は次の通シである。即
ち、パイライト系触媒は、予熱器内等に付着した生成物
を除去する特質を有しているので、酸化鉄系触媒を使用
することにより付着した生成物を、操業を中断すること
なく除去し。
In this invention, the reason why the pyrite catalyst is used alternately with the iron oxide catalyst at regular intervals is as follows. In other words, pyrite catalysts have the property of removing products that adhere to the inside of the preheater, etc., so by using iron oxide catalysts, it is possible to remove the products that adhere to the inside of the preheater without interrupting operation. .

これによって長時間にわたシ安定した操業を行ない得る
からである。
This is because stable operation can be carried out over a long period of time.

パイライト系触媒として、合成パイライトまたは天然パ
イライトを使用する。合成パイライトは高い液化特性を
得るだめに合成されたものである。
Synthetic pyrite or natural pyrite is used as the pyrite catalyst. Synthetic pyrite is synthesized to obtain high liquefaction properties.

合成7′!?イライトおよび天然パイライトの化学成分
組成の代表例を第1表に示す。
Synthesis 7′! ? Representative examples of the chemical compositions of illite and natural pyrite are shown in Table 1.

第1表 触媒の添加量は1石炭100重量部に対して2〜10重
量部の範囲内とすることが好ましい。けだし、触媒の添
加量が21景部未満では所望の効果が得られず、一方添
加量が10重量部を越えると、それμ上の効果の向上が
得られないからである。
The amount of the catalyst shown in Table 1 added is preferably within the range of 2 to 10 parts by weight per 100 parts by weight of coal. However, if the amount of the catalyst added is less than 21 parts by weight, the desired effect cannot be obtained, while if the amount added exceeds 10 parts by weight, no improvement in the effect in terms of μ can be obtained.

石炭スラリー中の石炭の濃度は、20〜45%。The concentration of coal in the coal slurry is 20-45%.

特に30〜40%の範囲内とすることが好ましい。In particular, it is preferably within the range of 30 to 40%.

けだし1石炭の濃度が20%未満では石炭スラリー中の
溶剤の量が多すぎて液化効率が低下し、45係を越える
と石炭スラリーの粘度が上昇し取扱い上好ましくないか
らである。
This is because if the concentration of Kakedashi 1 coal is less than 20%, the amount of solvent in the coal slurry is too large and the liquefaction efficiency decreases, and if it exceeds 45%, the viscosity of the coal slurry increases, making it unfavorable for handling.

石炭スラリーの予熱@度は300〜480℃、特に35
0〜450°Cの範囲内とすることが好ましい。けだし
、300°C未満では石炭スラリーが次に送られる反応
器内での温度との差が大きいので熱効率が悪<、480
℃を越えるとコーキングが発生するからである。
Preheating of coal slurry @ degree is 300~480℃, especially 35
It is preferably within the range of 0 to 450°C. However, if it is less than 300°C, there is a large difference in temperature between the coal slurry and the reactor to which it is sent next, resulting in poor thermal efficiency.
This is because coking will occur if the temperature exceeds ℃.

反応器内の石炭スラリ一温度は、350〜480℃。The temperature of the coal slurry in the reactor is 350-480°C.

特に410〜470℃の範囲内とすることが好ましい。In particular, it is preferably within the range of 410 to 470°C.

けだし、350°C未満では反応効率が悪<、480°
Cを越えるとコーキングが発生するからである。
However, the reaction efficiency is poor below 350°C.
This is because if it exceeds C, caulking will occur.

予熱器内および反応器内における石炭スラリーおよび水
素ガスとからなる流送物の圧力は、100〜350 K
g/JG  の範囲内とすることが好ましい。
The pressure of the stream consisting of coal slurry and hydrogen gas in the preheater and reactor is 100 to 350 K.
It is preferable to fall within the range of g/JG.

けだし、 100Kp/iG  未満では液化効率が悪
く。
However, if it is less than 100Kp/iG, the liquefaction efficiency is poor.

350 K9/caG  を超えるとポンプの能力およ
び取扱い上好ましくないからである。
This is because exceeding 350 K9/caG is unfavorable in terms of pump performance and handling.

溶剤としては、アントラセン油、クレオソート油1石炭
液化油、または、これらの混合油を使用することができ
る。
As the solvent, anthracene oil, creosote oil, coal liquefied oil, or a mixture thereof can be used.

水素ガスとしては、水素ガス単味または水素ガスを主と
するガスを使用することができる。
As the hydrogen gas, hydrogen gas alone or a gas mainly composed of hydrogen gas can be used.

第5図は石炭液化装置における石炭スラリー予熱装置の
概要を示す工程図である。
FIG. 5 is a process diagram showing an outline of a coal slurry preheating device in a coal liquefaction device.

第5図に示すように1石炭スラリー予熱装置(以下本装
置という)は、石炭スラリーを貯えるための貯槽1と、
貯槽1から排出された石炭スラリーを加圧して後述する
第1予熱器4に送るための、導管15の途中に設けられ
た高圧スラリーポンプ2と、水素ガスを加圧して石炭ス
ラリー中に送るだめの、水素ガスの導管16の途中に設
けられた水素ガス圧縮機3と、前記石炭スラリーと前記
水素ガスとを予熱するだめの第1予熱器4および第2予
熱器5と、第1予熱器4および第2予熱器5によって予
熱された石炭スラリーおよび水素ガスを冷却するだめの
熱交換器6と、熱交換器6によって冷却された石炭スラ
リーと水素ガスとを分離するための気液分離器7とから
なっている。分離された石炭スラリーと水素ガスとは、
次いで1図示しない反応器等の後処理装置へ送られ処理
される。このように構成された本装置は、高温高圧で石
炭スラリーの予熱を行うに必要な設備一式を具備してい
る。
As shown in FIG. 5, 1 coal slurry preheating device (hereinafter referred to as this device) includes a storage tank 1 for storing coal slurry,
A high-pressure slurry pump 2 provided in the middle of a conduit 15 for pressurizing the coal slurry discharged from the storage tank 1 and sending it to a first preheater 4 to be described later, and a tank for pressurizing hydrogen gas and sending it into the coal slurry. , a hydrogen gas compressor 3 provided in the middle of a hydrogen gas conduit 16, a first preheater 4 and a second preheater 5 for preheating the coal slurry and the hydrogen gas, and a first preheater. 4 and a heat exchanger 6 for cooling the coal slurry and hydrogen gas preheated by the second preheater 5, and a gas-liquid separator for separating the coal slurry cooled by the heat exchanger 6 from the hydrogen gas. It consists of 7. Separated coal slurry and hydrogen gas are
Then, it is sent to a post-processing device such as a reactor (not shown) and processed. This apparatus configured as described above is equipped with a set of equipment necessary for preheating coal slurry at high temperature and high pressure.

予熱器としては、通常の予熱器または熱交換器式予熱器
を使用することができる。
As the preheater, a normal preheater or a heat exchanger type preheater can be used.

次にこの発明を実施例により比較例と対比しながら説明
する。
Next, the present invention will be explained using examples and comparing with comparative examples.

〔比較例〕[Comparative example]

第5図に示す本装置を含む石炭液化装置を使用し以下に
述べる方法で石炭の液化を行った。
Coal was liquefied by the method described below using a coal liquefaction apparatus including the present apparatus shown in FIG.

第2表に示す化学成分組成の石炭(太平洋炭)100重
量部に、溶剤としてアントラセン油233重量部と、触
媒として第3表に示す化学成分組成および粒度の赤泥4
.2重量部、および、硫黄0.8重量部とを添加して、
濃度30%の石炭スラIJ +(全スラリー量としては
濃度31.1%)を調製した。
100 parts by weight of coal (Pacific coal) with the chemical composition shown in Table 2, 233 parts by weight of anthracene oil as a solvent, and 4 parts of red mud with the chemical composition and particle size shown in Table 3 as a catalyst.
.. 2 parts by weight and 0.8 parts by weight of sulfur,
Coal slurry IJ+ with a concentration of 30% (concentration of 31.1% as the total amount of slurry) was prepared.

前記石炭スラリーを第5図に示す貯槽1から高圧スラリ
ーポンプ2によシ導管15を通って301/時の流量で
、そして、水素ガスを圧縮機3により水素ガスの導管1
6および導管15を通ろて7.5Nrr?/時の流量で
、ともに第1予熱器4および第2予熱器5に加圧送入し
だ。石炭スラリーの温度は第1予熱器4の出口で300
℃、第2予熱器5の入口で300℃、第2予熱器5の出
口で480℃に調整し、そして、その圧力は、第2予熱
器5の出口で250Kg/mG  を保つように調整し
た。第2予熱器5の予熱コイルとしては、内径4鵡、長
さ10mのSUS 316ステンレス製パイプを使用し
た。
The coal slurry is transferred from the storage tank 1 shown in FIG.
6 and conduit 15 to 7.5Nrr? Both are fed under pressure to the first preheater 4 and the second preheater 5 at a flow rate of /hour. The temperature of the coal slurry is 300 at the outlet of the first preheater 4.
The temperature was adjusted to 300°C at the inlet of the second preheater 5 and 480°C at the outlet of the second preheater 5, and the pressure was adjusted to maintain 250 Kg/mG at the outlet of the second preheater 5. . As the preheating coil of the second preheater 5, a SUS 316 stainless steel pipe with an inner diameter of 4 m and a length of 10 m was used.

このような条件で、石炭スラリーを本装置に流し、36
時間操業した。
Under these conditions, the coal slurry was poured into this device and heated for 36 minutes.
Operated for hours.

本装置操業中の第2予熱器5の入口と出口とにおいて、
水素ガスとともに加圧送入された石炭スラリーの圧力を
計測し、入口と出口との圧力差。
At the inlet and outlet of the second preheater 5 during operation of this device,
The pressure of the coal slurry that is fed under pressure with hydrogen gas is measured, and the pressure difference between the inlet and outlet is measured.

即ち、圧力損失△Pと操業時間との関係を第6図に示す
That is, FIG. 6 shows the relationship between pressure loss ΔP and operating time.

第6図に示すように、操業時間が経過するとともに、第
2予熱器5の入口と出口との間の圧力損失が増加し、3
6時間経過後では8.OKf/!となった。このとき、
第7図に示す第2予熱器5の予熱コイル8を同図中に数
字(1)〜(9)で示す箇所で夫々切断して、予熱コイ
ル8の内面を観察した結果。
As shown in FIG. 6, as the operating time elapses, the pressure loss between the inlet and outlet of the second preheater 5 increases;
8 after 6 hours. OKf/! It became. At this time,
The results of observing the inner surface of the preheating coil 8 by cutting the preheating coil 8 of the second preheater 5 shown in FIG. 7 at the locations indicated by numbers (1) to (9) in the figure.

生成物が予熱コイル8の内壁に均一に付着していた。1
0は石炭スラリー出口、1)は石炭スラリー人口である
。特に石炭スラリー出口10付近の予熱コイル8の1段
目、即ちスラリ一温度が480℃迄に達する第7図の数
字(1)の位置においては。
The product was uniformly attached to the inner wall of the preheating coil 8. 1
0 is the coal slurry outlet, and 1) is the coal slurry population. Particularly at the first stage of the preheating coil 8 near the coal slurry outlet 10, that is, at the position indicated by number (1) in FIG. 7, where the temperature of the slurry reaches up to 480°C.

第8図の予熱コイル切断面の拡大図に示すように。As shown in the enlarged view of the cut section of the preheating coil in FIG.

0.7gの厚さの生成物9の付着が確認された。12は
外壁面、13は内壁面、14は埋込樹脂である。
Adhesion of product 9 with a thickness of 0.7 g was confirmed. 12 is an outer wall surface, 13 is an inner wall surface, and 14 is an embedded resin.

〔実施例1〕 第5図に示す本装置を含む石炭液化装置を使用し以下に
述べる方法で石炭の液化を行った。
[Example 1] Coal was liquefied by the method described below using a coal liquefaction apparatus including the present apparatus shown in FIG.

第2表に示す化学成分組成の石炭(太平洋炭)100重
量部に、溶剤としてアントラセン油233重量部と、触
媒として第3表に示す化学成分組成および粒度の赤泥4
.2重量部、および、硫黄0.8重量部とを添加して、
濃度30%の石炭スラリー(全スラリー量としては濃度
31.1 % )を調製した。
100 parts by weight of coal (Pacific coal) with the chemical composition shown in Table 2, 233 parts by weight of anthracene oil as a solvent, and 4 parts of red mud with the chemical composition and particle size shown in Table 3 as a catalyst.
.. 2 parts by weight and 0.8 parts by weight of sulfur,
Coal slurry with a concentration of 30% (concentration of the total amount of slurry was 31.1%) was prepared.

そして、前記石炭スラリーを比較例と同一の条件で本装
置に流し、36時間操業した。
Then, the coal slurry was passed through the apparatus under the same conditions as in the comparative example, and the apparatus was operated for 36 hours.

次いで、触媒としての赤泥および硫黄に代えて。Then, instead of red mud and sulfur as catalysts.

第3表に示す化学成分組成および粒度の合成パイライト
を5重量部添加して濃度30%に調製した石炭スラリー
を1本装置に更に36時間流し1合計72時間操業した
A coal slurry prepared at a concentration of 30% by adding 5 parts by weight of synthetic pyrite having the chemical composition and particle size shown in Table 3 was passed through the apparatus for an additional 36 hours, and the apparatus was operated for a total of 72 hours.

本装置操業中の第2予熱器5の入口と出口とにおいて、
水素ガスとともに加圧送入された石炭スラリーの圧力を
計測し、入口と出口との圧力差。
At the inlet and outlet of the second preheater 5 during operation of this device,
The pressure of the coal slurry that is fed under pressure with hydrogen gas is measured, and the pressure difference between the inlet and outlet is measured.

即ち、圧力損失△Pと操業時間との関係を第1図に示す
That is, FIG. 1 shows the relationship between pressure loss ΔP and operating time.

本装置による72時間の操業終了後、第2予熱器5の予
熱コイル8内に残存して付着している生成物を各位置か
ら削シとシ、各位置の付着量を測定し、その結果を第2
図中に実線Aで示す。第2図中において、破線は、触媒
として赤泥と硫黄とを使用した36時間操業終了後の予
熱コイル8の生成物の付着量を示し、実線Bは、予熱コ
イル8に水素ガスとともに加圧送入された石炭スラIJ
 +の温度の変化を予熱コイル8の各位置ごとに連続し
て示す。
After 72 hours of operation using this device, the product remaining and adhering to the preheating coil 8 of the second preheater 5 was scraped from each position, and the amount of adhesion at each position was measured. the second
It is indicated by a solid line A in the figure. In FIG. 2, the broken line shows the amount of product deposited on the preheating coil 8 after 36 hours of operation using red mud and sulfur as catalysts, and the solid line B shows the amount of product deposited on the preheating coil 8 together with hydrogen gas under pressure. Coal slurry IJ
+ temperature changes are shown continuously for each position of the preheating coil 8.

第1図から明らかなように、触媒として赤泥および硫黄
を使用しているときの圧力損失は8.OI’l/−まで
増加したが、触媒を赤泥および硫黄から合成パイライト
に代えた後の圧力損失は次第に減少し、操業終了時には
4 、81’l/iとなった。
As is clear from Figure 1, the pressure loss when using red mud and sulfur as catalysts is 8. However, after replacing the catalyst from red mud and sulfur with synthetic pyrite, the pressure drop gradually decreased to 4.81' l/i at the end of the run.

第2図から明らかなように、生成物の付着量は赤泥およ
び硫黄を触媒として使用して操業した36時間経過時に
比べて、大幅に減少した。
As is clear from FIG. 2, the amount of product deposited was significantly reduced compared to when 36 hours had passed using red mud and sulfur as catalysts.

〔実施例2〕 第5図に示す本装置を含む石炭液化装置を使用し以下に
述べる方法で石炭の液化を行った。
[Example 2] Coal was liquefied by the method described below using a coal liquefaction apparatus including the present apparatus shown in FIG.

第2衣に示す化学成分組成の石炭(太平洋炭)100重
量部に、溶剤としてアントラセン油233重量部と、触
媒として第3表に示す化学成分組成および粒度の赤泥4
.2重量部、および、硫黄0.8重量部とを添加して、
濃度30φの石炭スラリー(全スラリー量としては濃度
31.1%)を調製した。
100 parts by weight of coal (Pacific Coal) having the chemical composition shown in Table 2, 233 parts by weight of anthracene oil as a solvent, and 4 parts of red mud with the chemical composition and particle size shown in Table 3 as a catalyst.
.. 2 parts by weight and 0.8 parts by weight of sulfur,
Coal slurry with a concentration of 30φ (concentration of 31.1% as the total amount of slurry) was prepared.

そして、前記石炭スラリーを比較例と同一の条件で本装
置に流し、36時間操業した。
Then, the coal slurry was passed through the apparatus under the same conditions as in the comparative example, and the apparatus was operated for 36 hours.

次いで、触媒としての赤泥および硫黄に代えて第3表に
示す化学成分組成および粒度の天然ツクイライトを5重
量部添加して濃度30%に調製した石炭スラリーを1本
装置に更に36時間流し1合計72時間操業した。
Next, in place of the red mud and sulfur as a catalyst, 5 parts by weight of natural tsquirite having the chemical composition and particle size shown in Table 3 was added to make the coal slurry have a concentration of 30%, and one coal slurry was poured into the apparatus for an additional 36 hours. 1 It was operated for a total of 72 hours.

本装置操業中の第2予熱器5の入口と出口とにおいて、
水素ガスとともに加圧送入された石炭スラリーの圧力を
計測し、入口と出口との圧力差。
At the inlet and outlet of the second preheater 5 during operation of this device,
The pressure of the coal slurry that is fed under pressure with hydrogen gas is measured, and the pressure difference between the inlet and outlet is measured.

即ち、圧力損失△Pと操業時間との関係を第3図に示す
That is, FIG. 3 shows the relationship between pressure loss ΔP and operating time.

本装置による72時間の操業終了後、第2予熱器5の予
熱コイル8内に残存して付着している生成物を各位置か
ら削シとシ、各位置の付着量を測定し、その結果を第4
図中に実線Aで示す。第4図中において、破線は、触媒
として赤泥と硫黄とを使用した36時間操業終了後の予
熱コイル8の生成物の付着量を示し、実線Bは、予熱コ
イル8に水素ガスとともに加圧送入された石炭スラリー
の温度の変化を予熱コイル8の各位置ごとに連続して示
す。
After 72 hours of operation using this device, the product remaining and adhering to the preheating coil 8 of the second preheater 5 was scraped from each position, and the amount of adhesion at each position was measured. The fourth
It is indicated by a solid line A in the figure. In FIG. 4, the broken line shows the amount of product deposited on the preheating coil 8 after 36 hours of operation using red mud and sulfur as catalysts, and the solid line B shows the amount of product deposited on the preheating coil 8 together with hydrogen gas under pressure. Changes in the temperature of the coal slurry introduced are shown continuously for each position of the preheating coil 8.

第3図から明らかなように、触媒として赤泥および硫黄
を使用しているときの圧力損失は8.0Kg/Caまで
増加したが、触媒を赤泥および硫黄から天然パイライト
に代えた後の圧力損失は次第に減少し、操業終了時には
4.6Kg/−となった。
As is clear from Figure 3, the pressure loss increased to 8.0 Kg/Ca when red mud and sulfur were used as catalysts, but the pressure drop after replacing red mud and sulfur with natural pyrite as catalysts The loss gradually decreased to 4.6 kg/- at the end of the operation.

第4図から明らかなように、生成物の付着量は。As is clear from FIG. 4, the amount of product deposited is .

赤泥および硫黄を触媒として使用して操業した36時間
経過時に比べて、大幅に減少した。
This was significantly reduced compared to the 36 hour period when red mud and sulfur were used as catalysts.

〔発明の効果〕〔Effect of the invention〕

μ上述べたように、触媒として赤泥および硫黄を使用し
たことにより付着した生成物は、その後。
μ As mentioned above, the products deposited by using red mud and sulfur as catalysts then.

合成パイライトまたは天然パイライトを触媒として使用
したことにより大幅に除去され、この結果圧力損失も大
幅に減少した。
Significant removal was achieved by using synthetic or natural pyrite as a catalyst, which also resulted in a significant reduction in pressure drop.

合成パイライトおよび天然パイライトは、触媒として使
用されることによシ、いずれも高い付着生成物除去効果
を示し、これによ多安定した石炭液化操業をもたらした
Synthetic pyrite and natural pyrite both exhibited high adhesion product removal effects when used as catalysts, resulting in highly stable coal liquefaction operations.

パイライト系触媒は、赤泥およびラテライト等の酸化鉄
系触媒および硫黄等からなる従来の触媒と比して高価な
触媒ではあるが、これら従来の触媒と交互に使用するこ
とにより充分コストに見合う石炭液化操業が可能となる
Although pyrite catalysts are more expensive than conventional catalysts made of iron oxide catalysts such as red mud and laterite, and sulfur, they can be used alternately with these conventional catalysts to reduce the cost of coal. Liquefaction operation becomes possible.

このように、この発明の方法によれば1石炭液化の触媒
として安価な酸化鉄系触媒および硫黄を使用することが
でき、しかも、安定した石炭液化操業を連続して長時間
行うことができるので1石炭液化が高効率且つ低コスト
で行われる産業上有用な効果がもたらされる。
As described above, according to the method of the present invention, an inexpensive iron oxide catalyst and sulfur can be used as catalysts for coal liquefaction, and stable coal liquefaction operation can be performed continuously for a long time. 1. An industrially useful effect is brought about in which coal liquefaction is performed with high efficiency and low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1における第2予熱器の圧力損失を示す
図、第2図は同予熱コイルの生成物の付着量を示す図、
第3図は実施例2における第2予熱器の圧力損失を示す
図、第4図は同予熱コイルの生成物の付着量を示す図、
第5図は石炭スラリー予熱装置の概要を示す工程図、第
6図は比較例における第2予熱器の圧力損失を示す図、
第7図は第2予熱器の概略図、第8図は予熱コイル切断
面の拡大図である。図面において。 1・・・貯槽、        2・・・高圧スラリー
ポンプ。 3・・・水素ガス圧縮機、  4・・・第1予熱器。 5・・・第2予熱器、   6・・・熱交換器。 7・・・気液分離器、   8・・・予熱コイル。 9・・・生成物、      10・・・石炭スラリー
出口。 1)・・・石炭スラリー人口、12・・・外壁面。 13・・・内壁面、    14・・・埋込樹脂。 15.16・・・導管。
FIG. 1 is a diagram showing the pressure loss of the second preheater in Example 1, and FIG. 2 is a diagram showing the amount of product deposited on the preheating coil.
FIG. 3 is a diagram showing the pressure loss of the second preheater in Example 2, and FIG. 4 is a diagram showing the amount of product deposited on the preheating coil.
FIG. 5 is a process diagram showing an overview of the coal slurry preheating device, FIG. 6 is a diagram showing the pressure loss of the second preheater in a comparative example,
FIG. 7 is a schematic view of the second preheater, and FIG. 8 is an enlarged view of a cut section of the preheating coil. In the drawing. 1...Storage tank, 2...High pressure slurry pump. 3... Hydrogen gas compressor, 4... First preheater. 5...Second preheater, 6...Heat exchanger. 7... Gas-liquid separator, 8... Preheating coil. 9...Product, 10...Coal slurry outlet. 1) Coal slurry population, 12... External wall surface. 13...Inner wall surface, 14...Embedded resin. 15.16... Conduit.

Claims (9)

【特許請求の範囲】[Claims] (1)石炭、溶剤および触媒からなる石炭スラリーと、
水素ガスとを加圧して予熱器へ送入する工程と、前記予
熱器において前記石炭スラリーと前記水素ガスとを共に
液化反応温度またはこれに近い温度まで予熱する工程と
、前記予熱器において予熱された前記石炭スラリーおよ
び前記水素ガスを共に前記予熱器から反応器へ送入する
工程と、前記反応器において前記石炭スラリーを液化す
る工程とから構成される石炭の液化方法において、前記
触媒としての硫黄が添加された酸化鉄系触媒と、パイラ
イト系触媒とを一定時間毎に交互に使用することを特徴
とする、石炭の液化方法。
(1) Coal slurry consisting of coal, solvent, and catalyst;
a step of pressurizing hydrogen gas and sending it to a preheater; a step of preheating both the coal slurry and the hydrogen gas to a liquefaction reaction temperature or a temperature close to this in the preheater; A coal liquefaction method comprising the steps of feeding the coal slurry and hydrogen gas together from the preheater to a reactor, and liquefying the coal slurry in the reactor, wherein sulfur as the catalyst A method for liquefying coal, characterized in that an iron oxide-based catalyst to which is added and a pyrite-based catalyst are used alternately at regular intervals.
(2)パイライトは合成パイライトである特許請求の範
囲第(1)項記載の石炭の液化方法。
(2) The method for liquefying coal according to claim (1), wherein the pyrite is synthetic pyrite.
(3)パイライトは天然パイライトである特許請求の範
囲第(1)項記載の石炭の液化方法。
(3) The method for liquefying coal according to claim (1), wherein the pyrite is natural pyrite.
(4)石炭100重量部に対して触媒2〜10重量部を
添加する特許請求の範囲第(1)項記載の石炭の液化方
法。
(4) The method for liquefying coal according to claim (1), wherein 2 to 10 parts by weight of a catalyst is added to 100 parts by weight of coal.
(5)石炭スラリーの予熱温度を300〜480℃の範
囲、反応器における反応温度を350〜480℃の範囲
とする特許請求の範囲第(1)項記載の石炭の液化方法
(5) The coal liquefaction method according to claim (1), wherein the preheating temperature of the coal slurry is in the range of 300 to 480°C, and the reaction temperature in the reactor is in the range of 350 to 480°C.
(6)予熱器および反応器における圧力を100〜35
0Kg/cm^2Gの範囲とする特許請求の範囲第(1
)項記載の石炭の液化方法。
(6) Increase the pressure in the preheater and reactor to 100-35
Claim No. 1 (1) which is in the range of 0Kg/cm^2G
) The coal liquefaction method described in section 2.
(7)溶剤としてクレオソート油、アントラセン油、石
炭液化油、または、これらの混合油を使用する特許請求
の範囲第(1)項記載の石炭の液化方法。
(7) The method for liquefying coal according to claim (1), wherein creosote oil, anthracene oil, coal liquefied oil, or a mixed oil thereof is used as the solvent.
(8)水素ガスとしては、水素ガス単味または水素ガス
を主とするガスを使用する特許請求の範囲第(1)項記
載の石炭の液化方法。
(8) The method for liquefying coal according to claim (1), wherein the hydrogen gas is hydrogen gas alone or a gas mainly composed of hydrogen gas.
(9)予熱器として通常の予熱器または熱交換器式予熱
器を使用する特許請求の範囲第(1)項記載の石炭の液
化方法。
(9) The coal liquefaction method according to claim (1), wherein a normal preheater or a heat exchanger type preheater is used as the preheater.
JP3925087A 1987-02-24 1987-02-24 Liquefaction of coal Granted JPS63207891A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3925087A JPS63207891A (en) 1987-02-24 1987-02-24 Liquefaction of coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3925087A JPS63207891A (en) 1987-02-24 1987-02-24 Liquefaction of coal

Publications (2)

Publication Number Publication Date
JPS63207891A true JPS63207891A (en) 1988-08-29
JPH0478678B2 JPH0478678B2 (en) 1992-12-11

Family

ID=12547888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3925087A Granted JPS63207891A (en) 1987-02-24 1987-02-24 Liquefaction of coal

Country Status (1)

Country Link
JP (1) JPS63207891A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104888812A (en) * 2015-06-29 2015-09-09 新疆大学 Method for preparing quasi-homogeneous iron-based catalyst in coal hydrogenation direct liquefaction through emulsion method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58157892A (en) * 1982-02-25 1983-09-20 エア・プロダクツ・アンド・ケミカルズ・インコ−ポレイテツド Coal liquefaction

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58157892A (en) * 1982-02-25 1983-09-20 エア・プロダクツ・アンド・ケミカルズ・インコ−ポレイテツド Coal liquefaction

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104888812A (en) * 2015-06-29 2015-09-09 新疆大学 Method for preparing quasi-homogeneous iron-based catalyst in coal hydrogenation direct liquefaction through emulsion method

Also Published As

Publication number Publication date
JPH0478678B2 (en) 1992-12-11

Similar Documents

Publication Publication Date Title
EP3838930B1 (en) Polymerisation process
CN1064474A (en) The method of converting light hydrocarbons to olefins, gasoline and methyl alcohol
US8835576B2 (en) Ethylene expansion for low temperature refrigeration in polyethylene vent recovery
JPH09509881A (en) Copper catalyst
EP2130896A1 (en) Process for producing mixed gas hydrate
JP4147185B2 (en) Optimization of heat removal in gas phase fluidized bed process
JPS63207891A (en) Liquefaction of coal
US3184444A (en) Process for separation of the solvents from polyethylene formed in highpressure polymerization of ethylene in the presence of solvents and from low-pressure circulating gas
CN103119295B (en) For the method and apparatus of purge gas flow
US6018077A (en) Process for producing 2,6-naphthalenedicarboxylic acid
SG193308A1 (en) Conjugated diene production method
JP3180113B2 (en) Butyndiol synthesis method and apparatus
CN1038598C (en) Cooling of coarse gas produced with gasfication
JPS5843433B2 (en) coal liquefaction method
CN1042883A (en) The method for separating and processing of resultant of reaction in the carbon disulphide production process
JP3513778B2 (en) Improvements in the treatment of products derived from catalytic reforming
JPH06219968A (en) Contact dehydrogenation method and device for c2+ paraffin charge stock with automatic cooling system
CN215655082U (en) Fluidized bed reactor cyclone dipleg sweeps device
JPS59142284A (en) Equipment for coal liquefaction
JPS61118494A (en) Method for liquefying coal
EP2137221B1 (en) Method for separation of polymer from a slurry
EP0109989B1 (en) Linear alpha olefin production using a tank growth reactor
JPS62197489A (en) Method of liquefying coal
US4929768A (en) Process for preparing dialdehyde
WO2023196744A1 (en) Product purge bin mid-vent as primary purge gas vent control