JPS63207206A - Micro-strip patch antenna - Google Patents

Micro-strip patch antenna

Info

Publication number
JPS63207206A
JPS63207206A JP3976587A JP3976587A JPS63207206A JP S63207206 A JPS63207206 A JP S63207206A JP 3976587 A JP3976587 A JP 3976587A JP 3976587 A JP3976587 A JP 3976587A JP S63207206 A JPS63207206 A JP S63207206A
Authority
JP
Japan
Prior art keywords
radiator
annular
annular frame
conductor
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3976587A
Other languages
Japanese (ja)
Inventor
Akio Kuramoto
晶夫 倉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3976587A priority Critical patent/JPS63207206A/en
Publication of JPS63207206A publication Critical patent/JPS63207206A/en
Pending legal-status Critical Current

Links

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Waveguide Aerials (AREA)

Abstract

PURPOSE:To make a using frequency band width into a wide band by providing a conductor at the prescribed forward position of an annular radiator and widening the flat area of a return loss characteristic. CONSTITUTION:An annular frame part 7a is the one in which the outer circumference shape is the same as the outer circumference shape of a radiator 1 and the size of the outer shape is the same or a little smaller. A shorting shaft part 7b shorts and connects the prescribed inner circumferential position section as the annular frame part 7 is divided into two and the shaft width comes to be the approximately equal width as the frame width of the frame part 7a. An annular conductor 7 composed of such the annular frame part 7a and the shorting shaft part 7b causes the forming direction of the shorting shaft part 7b to be consistent with the electric field direction of the radiation electromagnetic field and is provided at the prescribed forward position of the said radiator, for example, the position of an about 0.6 wave length. As the result, since the annular conductor 7 works as a compensating circuit to suppress the quick change of the reactance of an input impedance, the flat area of the return loss characteristic is extended.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、UHF帯やSHF帯で使用されるマイクロス
トリップパッチアンテナに係り、特に使用周波数帯域幅
の改善技術に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a microstrip patch antenna used in the UHF band or SHF band, and particularly relates to a technique for improving the frequency bandwidth used.

(従来の技術) マイクロストリップパッチアンテナとしては、従来、例
えば第3図に示すものが知られている。
(Prior Art) As a microstrip patch antenna, the one shown in FIG. 3, for example, is conventionally known.

このマイクロストリップパッチアンテナ(以下、単に「
アンテナ」という)は、円形導体板からなる放射器1と
、この放射器1の外周形状よりも大きな円形導体板から
なり放射器1と同心円に配置されるグランド板2と、こ
れら両者を適宜距離離隔させるべく配置される誘電体4
、誘電体4内に厚さ方向に埋設さ・れる短絡棒5とを備
える。
This microstrip patch antenna (hereinafter simply "
Antenna) consists of a radiator 1 made of a circular conductor plate, a ground plate 2 made of a circular conductor plate larger than the outer circumferential shape of the radiator 1 and arranged concentrically with the radiator 1, and a ground plate 2 arranged concentrically with the radiator 1, with the two separated at an appropriate distance. Dielectric material 4 arranged to be spaced apart
, and a shorting rod 5 embedded in the dielectric 4 in the thickness direction.

誘電体4の厚さ、即ち放射器1とグランド板2間の離隔
距離は放射器1の半径よりも充分小さい所定値に設定さ
れる。誘電体4は、通常比誘電率ε、が20〜3.0程
度の誘電体材料が用いられるが、空気(εr絢1)を誘
電体材料とする場合もある。放射器1の半径は、この比
誘電率ε、に関係し、λ0を自由空間波長とすると、 0.293λo/67で与えられる。短絡棒5は高次モ
ードを抑制するためのもので、用途によっては省略され
る場合がある。
The thickness of the dielectric 4, that is, the separation distance between the radiator 1 and the ground plate 2, is set to a predetermined value that is sufficiently smaller than the radius of the radiator 1. As the dielectric material 4, a dielectric material having a relative dielectric constant ε of about 20 to 3.0 is usually used, but air (εr) may be used as the dielectric material. The radius of the radiator 1 is related to this dielectric constant ε, and is given by 0.293λo/67, where λ0 is the free space wavelength. The shorting rod 5 is for suppressing higher-order modes, and may be omitted depending on the application.

また、給電方式は、マイクロストリップラインによるも
のと(第3図(a))、同軸線路によるもの(第3図(
b))とがある、前者は、放射器1と同一平面に設けた
給電部となるマイクロストリップライン3aの一端を放
射器1の外周側端に接続し、マイクロストリップライン
3aの他端側から給電する方式である。このときには、
例えば1/4波長変成器を用いて整合をとることが行わ
れる。一方、後者は、グランド板2の裏面に給電部とな
る同軸コネクタ3bを取り付け、その同軸コネクタ3b
の中心導体先端を放射器1の裏面に当接させ電気的に接
続したものである。
In addition, the power feeding methods are one using a microstrip line (Fig. 3 (a)) and one using a coaxial line (Fig. 3 (a)).
b)) In the former method, one end of the microstrip line 3a, which is a power feeding section provided on the same plane as the radiator 1, is connected to the outer circumferential end of the radiator 1, and the other end of the microstrip line 3a is connected to the other end of the microstrip line 3a. This is a method of supplying power. At this time,
For example, matching is performed using a quarter wavelength transformer. On the other hand, in the latter case, a coaxial connector 3b serving as a power feeding section is attached to the back surface of the ground plate 2, and the coaxial connector 3b
The tip of the center conductor is brought into contact with the back surface of the radiator 1 and electrically connected.

このとき、同軸コネクタ3bの中心導体の接続位置は、
VSWR(電圧定在波比)が最低となる放射器1の半径
方向所定部位となっている。
At this time, the connection position of the center conductor of the coaxial connector 3b is
This is a predetermined position in the radial direction of the radiator 1 where the VSWR (voltage standing wave ratio) is the lowest.

そして、いずれの給電方式においても、放射器1の中心
点と給電点とを結ぶ直線に平行な方向が放射電磁界の電
界方向である。
In any of the feeding systems, the direction parallel to the straight line connecting the center point of the radiator 1 and the feeding point is the electric field direction of the radiated electromagnetic field.

なお、この種のアンテナでは、放射器1の外周形状は円
形の他に、方形や多角形等、種々の形状のものが提案さ
れていることは周知の通りである。
It is well known that in this type of antenna, the outer peripheral shape of the radiator 1 is not only circular but also various shapes such as rectangular and polygonal.

(発明が解決しようとする問題点) ところで、この種のアンテナの帯域幅は、−aには、使
用する誘電体材料によって異なるが、誘電体が空気の場
合に最大となり、例えば第2図(イ)に示す特性となる
。第2図(イ)に示すリターンロス特性は、次の条件で
取得したものである。中心周波数f。= 1670 M
Hz、自由空間波長λ、=179.6龍、比誘電率εr
崎1(空気)、放射器1の半径A = 0.262λ0
、グランド板2の半径R= 0.530λ0、放射器1
とグランド板2間の間隔H= 0.050λ。、放射器
1の中心点から給電点までの距離F = 0.150λ
0゜第2図(イ)から明らかなように、リターンロスが
一10dB以下(即ち、VSWRが2.0以下)となる
帯域幅は約140 MHzであり、中心周波数f、の1
0%以下である。これは入力インピーダンスのりアクタ
ンス分が周波数の変化に対し急激な変化を示すことによ
る。
(Problems to be Solved by the Invention) By the way, the bandwidth of this type of antenna varies depending on the dielectric material used, but it is maximum when the dielectric material is air. For example, as shown in FIG. The characteristics shown in b) are obtained. The return loss characteristics shown in FIG. 2(a) were obtained under the following conditions. Center frequency f. = 1670M
Hz, free space wavelength λ, = 179.6 times, relative dielectric constant εr
Saki 1 (air), radius A of radiator 1 = 0.262λ0
, radius R of ground plate 2 = 0.530λ0, radiator 1
The distance between the ground plate 2 and the ground plate 2 is H = 0.050λ. , distance F = 0.150λ from the center point of radiator 1 to the feeding point
0° As is clear from Figure 2 (A), the bandwidth where the return loss is 110 dB or less (that is, VSWR is 2.0 or less) is approximately 140 MHz, and the center frequency f, 1
It is 0% or less. This is because the input impedance plus actance shows a rapid change in response to a change in frequency.

このように、従来のアンテナは、使用周波数帯域幅が狭
いという問題点がある。
As described above, conventional antennas have a problem in that the usable frequency bandwidth is narrow.

本発明は、このような従来の問題点に鑑みなされたもの
で、その目的は、単純な構造体を追加することによって
使用周波数帯域幅の広帯域化を図ることができるマイク
ロストリップパッチアンテナを提供することにある。
The present invention was made in view of these conventional problems, and its purpose is to provide a microstrip patch antenna that can be used to widen the frequency bandwidth by adding a simple structure. There is a particular thing.

(問題点を解決するための手段) 前記目的を達成するために、本発明のマイクロストリッ
プパッチアンテナは次の如き構成を有する。即ち、本発
明のマイクロストリップパッチアンテナは、外周形状が
マイクロストリップパッチアンテナの放射器の外周形状
と同一で、かつ外形の大きさが同一または若干小さ目で
ある環状枠部と、この環状枠部を2等分割する如く該環
状枠部の内周所定部位間を短絡する短絡軸部とからなる
環状導体が、短絡軸部の形成方向を放射電磁界の電界方
向と一致させて当該放射器の前方所定位置に配設してあ
ることを特徴とするものである。
(Means for Solving the Problems) In order to achieve the above object, the microstrip patch antenna of the present invention has the following configuration. That is, the microstrip patch antenna of the present invention includes an annular frame portion whose outer circumferential shape is the same as the outer circumferential shape of the radiator of the microstrip patch antenna, and whose outer size is the same or slightly smaller, and this annular frame portion. An annular conductor consisting of a shorting shaft part that shorts between predetermined parts of the inner circumference of the annular frame part so as to be divided into two parts is arranged in front of the radiator with the formation direction of the shorting shaft part matching the electric field direction of the radiated electromagnetic field. It is characterized by being arranged at a predetermined position.

(作 用) 次に、前記の如く構成される本発明のマイクロストリッ
プパッチアンテナの作用を説明する。
(Function) Next, the function of the microstrip patch antenna of the present invention configured as described above will be explained.

環状枠部は、その外周形状がマイクロストリップパッチ
アンテナの放射器の外周形状と同一で、かつ外形の大き
さが同一または若干小さ目のものである。なお、環状枠
部の枠幅は放射器の中心から外周端に至る距離に比して
充分小さいものである。また、短絡軸部は、この環状枠
部を2等分割する如く該環状枠部の内周所定部位間を短
絡接続するもので、その軸部は前記枠幅と略等幅となっ
ている。このような環状枠部と短絡軸部とからなる環状
導体が、短絡軸部の形成方向を放射電磁界の電界方向と
一致させて当該放射器の前方所定位置、例えば当該放射
器前方的0.6波長程度離隔した位置に配設しである。
The annular frame has an outer circumferential shape that is the same as the outer circumferential shape of the radiator of the microstrip patch antenna, and an outer size that is the same or slightly smaller. Note that the frame width of the annular frame portion is sufficiently smaller than the distance from the center of the radiator to the outer peripheral end. Further, the short-circuiting shaft portion connects predetermined inner circumferential portions of the annular frame portion by short-circuiting so as to divide the annular frame portion into two equal parts, and the shaft portion has a width substantially equal to the width of the frame. The annular conductor including such an annular frame portion and a short-circuiting shaft portion aligns the formation direction of the short-circuiting shaft portion with the electric field direction of the radiated electromagnetic field, and is positioned at a predetermined position in front of the radiator, for example, at a predetermined position in front of the radiator. They are arranged at positions separated by about 6 wavelengths.

その結果、この環状導体は入力インピーダンスのりアク
タンス分の急激な変化を抑圧する補償回路として働くこ
ととなるのでリターンロス特性の平坦領域が拡張され、
使用周波数帯域幅が広帯域化する。
As a result, this annular conductor acts as a compensation circuit that suppresses sudden changes in input impedance and actance, so the flat region of return loss characteristics is expanded.
The frequency bandwidth used becomes wider.

このように、本発明のマイクロストリップパッチアンテ
ナによれば、環状導体を放射器の前方所定位置に配設す
るようにしたので、リターンロス特性の平坦領域を広げ
ることができ、使用周波数帯域幅を広帯域化することが
できる効果がある。
As described above, according to the microstrip patch antenna of the present invention, since the annular conductor is arranged at a predetermined position in front of the radiator, the flat region of the return loss characteristic can be expanded, and the usable frequency bandwidth can be increased. This has the effect of widening the band.

(実 施 例) 以下、本発明の実施例を図面を参照して説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例にアンテナを示す。FIG. 1 shows an antenna in one embodiment of the invention.

なお、本実施例では、第3図(b)に示すアンテナに適
用した場合を示しており、同図(b)と同一名称部分に
は同一符号を付してその説明を省略する。
Note that this embodiment shows a case in which the present invention is applied to the antenna shown in FIG. 3(b), and parts with the same names as those in FIG.

第1図において、符号7は本発明に係る環状導体であり
、この環状導体7は環状枠部7aと短絡軸部7bとから
なる。環状枠部7aは放射器1と同一の円形状であり、
かつその大きさは、この実施例では、放射器1よりも若
干小さ目になっている。なお、この環状枠部7aの枠幅
は放射器1の半径に比して充分小さいものである。また
、短絡軸部7bは環状枠部7aの直径方向両側の内周端
を短絡接続するもので、その細幅は前記枠幅と略等幅で
ある。この短絡軸部7bの中央部には支柱6の一端が固
定され、この支柱6の他端は放射器1の中心位置に固定
されている。なお、支柱6は導体・非導体いずれでもよ
い。
In FIG. 1, reference numeral 7 denotes an annular conductor according to the present invention, and this annular conductor 7 consists of an annular frame portion 7a and a short-circuit shaft portion 7b. The annular frame portion 7a has the same circular shape as the radiator 1,
Moreover, its size is slightly smaller than the radiator 1 in this embodiment. Note that the frame width of this annular frame portion 7a is sufficiently smaller than the radius of the radiator 1. Further, the short-circuiting shaft portion 7b short-circuits and connects the inner peripheral ends of the annular frame portion 7a on both sides in the diametrical direction, and its narrow width is approximately equal to the width of the frame. One end of a support 6 is fixed to the center of the short-circuit shaft portion 7b, and the other end of the support 6 is fixed to the center of the radiator 1. Note that the pillar 6 may be either a conductor or a non-conductor.

即ち、機状導体7は、支柱6によって放射器1の直前前
方の支柱6の長さで定まる所定位置に配設されるのであ
る。このとき、短絡軸部7bの向きは放射電磁界の電界
方向、つまり放射器1の中心点と給電部3bの接続点く
給電点)とを結ぶ直線の方向と一致させる。なお、支柱
6の長さは0.55波長から0.65波長間の適宜な長
さに調整する。
That is, the planar conductor 7 is disposed at a predetermined position determined by the length of the column 6 immediately in front of the radiator 1 by the column 6. At this time, the direction of the short-circuit shaft portion 7b is made to coincide with the electric field direction of the radiated electromagnetic field, that is, the direction of the straight line connecting the center point of the radiator 1 and the connection point of the power feeding section 3b. Note that the length of the support column 6 is adjusted to an appropriate length between 0.55 wavelength and 0.65 wavelength.

その結果、当該アンテナのリターンロス特性は、例えば
第2図(ロ)に示す如く、その平坦領域が従来のものに
比して大幅に拡張され、使用周波数帯域幅が大幅に広が
ることとなる。
As a result, the flat region of the return loss characteristic of the antenna is greatly expanded compared to the conventional antenna, as shown in FIG. 2 (b), and the usable frequency bandwidth is greatly expanded.

第2図(ロ)に示す特性曲線は第2図(イ)に示す特性
曲線を取得したのと同一の条件に、当該環状導体7の条
件を加えて得なものである。
The characteristic curve shown in FIG. 2(B) is obtained by adding the conditions for the annular conductor 7 to the same conditions as those used to obtain the characteristic curve shown in FIG. 2(A).

即ち、中心周波数fo =1670MHz 、自由空間
波長λo=179.6s+m、比誘電率εr≠1(空気
)、放射器1の半径A=0.262λ0、グランド板2
の半径R= 0.530λ0、放射器1とグランド板2
間の間隔H=0.050^0、放射器1の中心点から給
電点までの距離F=0.150λ0の諸条件ニ加エテ、
環状枠部7aの枠幅D=0.020λo、放射器1から
環状導体7までの距離(つまり、支柱6の長さ)L=0
.557λ。としである。
That is, center frequency fo = 1670 MHz, free space wavelength λo = 179.6 s + m, relative dielectric constant εr≠1 (air), radius A of radiator 1 = 0.262 λ0, ground plate 2
radius R = 0.530λ0, radiator 1 and ground plate 2
The conditions are that the distance between them is H=0.050^0, and the distance from the center point of the radiator 1 to the feeding point F=0.150λ0,
Frame width D of the annular frame portion 7a = 0.020λo, distance from the radiator 1 to the annular conductor 7 (that is, the length of the support column 6) L = 0
.. 557λ. It's Toshide.

第2図(ロ)から明らかなように、リターンロスが一1
0dB以下(即ち、VSWRが20以下)となる帯域幅
は約300 MHzであり、中心周波数f、の約18%
となっており、第2図(イ)と比較して順著な差違が認
められる。
As is clear from Figure 2 (b), the return loss is 11
The bandwidth at which the VSWR is 0 dB or less (that is, the VSWR is 20 or less) is approximately 300 MHz, which is approximately 18% of the center frequency f.
, and a significant difference is recognized compared to Figure 2 (a).

なお、本実施例では、第3図(b)に示す給電方式のも
のについて説明したが、本発明は第3図(a)に示す給
電方式であっても同様の作用効果を得ることができる。
In this embodiment, the power feeding method shown in FIG. 3(b) has been described, but the present invention can obtain similar effects even with the power feeding method shown in FIG. 3(a). .

また、放射器1の外周形状、つまり環状枠部7aの外周
形状は本実施例に示すものに限定されないことは勿論で
ある。
Further, it goes without saying that the outer peripheral shape of the radiator 1, that is, the outer peripheral shape of the annular frame portion 7a, is not limited to that shown in this embodiment.

(発明の効果) 以上説明したように、本発明のマイクロストリップバッ
チアンテナによれば、環状導体を放射器の前方所定位置
に配設するようにしたので、リターンロス特性の平坦領
域を広げることができ、使用周波数帯域幅を広帯域化す
ることができる効果がある。
(Effects of the Invention) As explained above, according to the microstrip batch antenna of the present invention, since the annular conductor is arranged at a predetermined position in front of the radiator, it is possible to widen the flat region of the return loss characteristic. This has the effect of widening the frequency bandwidth used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係るマイクロストリップバ
ッチアンテナの構成図、第2図はリターンロス特性図、
第3図は従来のマイクロストリップバッチアンテナの構
成図である。 1・・・・・・放射器、 2・・・・・・グランド板、
 3a。 3b・・・・・・給電部、 4・・・・・・誘電体、 
5・・・・・・短絡棒、 6・・・・・・支柱、 7・
・・・・・環状導体、 7a・・・・・・環状枠部、 
7b・・・・・・短絡軸部。 代理人 弁理士  八 幡  義 博 (a) 断面図 (b) 岑兜明0マイクυストソッフス〜すアンテナ/)J71
;、 (PI第  /  区 J!l濱数(MHz) (4)−−一扱来/lマイクUスドノッ7’A〜ナアン
テナ(ロ)−、本、充所のマイクロストリッツつ1−ソ
ケアンデナIノターンロス替杜 第 2 図
FIG. 1 is a configuration diagram of a microstrip batch antenna according to an embodiment of the present invention, FIG. 2 is a return loss characteristic diagram,
FIG. 3 is a configuration diagram of a conventional microstrip batch antenna. 1...Radiator, 2...Ground plate,
3a. 3b...Power supply part, 4...Dielectric material,
5... Shorting rod, 6... Support column, 7.
......Annular conductor, 7a...Annular frame part,
7b...Short-circuit shaft part. Agent: Yoshihiro Yahata, Patent Attorney (a) Cross-sectional view (b) Tsutomuaki 0 Microphone υ Stoffs Antenna/) J71
;, (PI No./Ward J!l Number (MHz) (4)--One Handling/l Microphone U Sudonot 7'A~Na Antenna (B)-, Book, Micro Streets in Full Place 1- Figure 2

Claims (1)

【特許請求の範囲】[Claims] 外周形状がマイクロストリップパッチアンテナの放射器
の外周形状と同一で、かつ外形の大きさが同一または若
干小さ目である環状枠部と、この環状枠部を2等分割す
る如く該環状枠部の内周所定部位間を短絡する短絡軸部
とからなる環状導体が、短絡軸部の形成方向を放射電磁
界の電界方向と一致させて当該放射器の前方所定位置に
配設してあることを特徴とするマイクロストリップパッ
チアンテナ。
An annular frame portion whose outer circumferential shape is the same as the outer circumferential shape of the radiator of the microstrip patch antenna and whose outer size is the same or slightly smaller, and an inner portion of the annular frame portion that divides the annular frame portion into two equal parts. An annular conductor consisting of a short-circuiting shaft portion that shorts between predetermined circumferential portions is arranged at a predetermined position in front of the radiator, with the formation direction of the short-circuiting shaft portion matching the electric field direction of the radiated electromagnetic field. microstrip patch antenna.
JP3976587A 1987-02-23 1987-02-23 Micro-strip patch antenna Pending JPS63207206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3976587A JPS63207206A (en) 1987-02-23 1987-02-23 Micro-strip patch antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3976587A JPS63207206A (en) 1987-02-23 1987-02-23 Micro-strip patch antenna

Publications (1)

Publication Number Publication Date
JPS63207206A true JPS63207206A (en) 1988-08-26

Family

ID=12562034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3976587A Pending JPS63207206A (en) 1987-02-23 1987-02-23 Micro-strip patch antenna

Country Status (1)

Country Link
JP (1) JPS63207206A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014519283A (en) * 2011-05-27 2014-08-07 サムスン エレクトロニクス カンパニー リミテッド Antenna structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014519283A (en) * 2011-05-27 2014-08-07 サムスン エレクトロニクス カンパニー リミテッド Antenna structure

Similar Documents

Publication Publication Date Title
US4847626A (en) Microstrip balun-antenna
EP0777295B1 (en) Antenna device having two resonance frequencies
US5124733A (en) Stacked microstrip antenna
US5400041A (en) Radiating element incorporating impedance transformation capabilities
US7148847B2 (en) Small-size, low-height antenna device capable of easily ensuring predetermined bandwidth
US6337667B1 (en) Multiband, single feed antenna
US4204212A (en) Conformal spiral antenna
JP3779430B2 (en) Broadband plate antenna
US4992800A (en) Windshield mounted antenna assembly
US5914695A (en) Omnidirectional dipole antenna
CA2213155A1 (en) Planar printed-circuit antenna with short-circuited superimposed elements
JP2001527309A (en) antenna
US3083364A (en) Bifilar wound quarter-wave helical antenna having broadside radiation
US4167010A (en) Terminated microstrip antenna
US5285210A (en) Double loop antenna with reactance elements
JPS6141205A (en) Antenna for wide-band transmission line
JP2002524953A (en) antenna
JP2525545Y2 (en) Broadband microstrip antenna
JPH06310930A (en) Antenna system
JPS63207206A (en) Micro-strip patch antenna
JP3185856B2 (en) Dual-frequency resonant antenna device
US6965348B2 (en) Broadband antenna structures
US6480171B1 (en) Impedance matching means between antenna and transmission cable
JPH02214304A (en) Loop antenna for circularly polarized wave
JP4044502B2 (en) Dual band antenna