JPS63206329A - Production of glass causing crystallite - Google Patents

Production of glass causing crystallite

Info

Publication number
JPS63206329A
JPS63206329A JP3837587A JP3837587A JPS63206329A JP S63206329 A JPS63206329 A JP S63206329A JP 3837587 A JP3837587 A JP 3837587A JP 3837587 A JP3837587 A JP 3837587A JP S63206329 A JPS63206329 A JP S63206329A
Authority
JP
Japan
Prior art keywords
glass
tensile strength
crystallite
scattering
visible light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3837587A
Other languages
Japanese (ja)
Inventor
Sunao Tsunetomi
常富 直
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP3837587A priority Critical patent/JPS63206329A/en
Publication of JPS63206329A publication Critical patent/JPS63206329A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain glass having extremely increased tensile strength, capable of preventing absorption and scattering of visible light rays, by adding lime nitrogen to a glass raw material to generate crystallite, linking structural molecules and tempering glass. CONSTITUTION:Lime nitrogen CaCN2 is added to a glass raw material so that crystallite is generated, conventional layer network structure of glass is sterically crosslinked into a three-dimensional network structure and tensile strength is extremely increased. The prepared glass can prevent absorption and scattering of visible light rays. Further, the glass is useful for conservation of energy source of entropy rule and for saving. This invention can prevent damages of human body by glass destruction and can develop new fields of glass use such as solar generation by high-strength glass tile by increase in tensile strength, heat-exchange air-conditioning, etc.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は従来のガラス破壊による人身損傷を防止し、抗
張力の増大による高強度ガラス瓦による太陽発電や熱交
換空調など各産業にガラス使用の新分野を拓く。
[Detailed Description of the Invention] [Industrial Application Field] The present invention prevents personal injury due to conventional glass breakage, and enables the use of glass in various industries such as solar power generation and heat exchange air conditioning using high-strength glass tiles due to increased tensile strength. Opening up new fields.

[従来の技術j 現在のガラスは古来よりの製造法で改良はただ急冷によ
る歪応力の強化、浸漬による収縮強化、貼り合せによる
飛散防止などで本質的改良はなされていない。
[Prior art j] Current glass is manufactured using an ancient manufacturing method, but no essential improvements have been made, such as strengthening strain stress through rapid cooling, strengthening shrinkage through immersion, and preventing scattering through bonding.

[発明が解決しようとする問題点] 従来のガラスは低応力ではほとんど伸びないのに、ある
応力以上では突然伸び始め瞬間的に壊れる。CaCN、
の投入で応力拡大係数の臨界値を上げ、抗張力を増大さ
せるので破壊が起りにくい。
[Problems to be solved by the invention] Conventional glass hardly elongates under low stress, but when stress exceeds a certain level, it suddenly begins to elongate and breaks instantly. CaCN,
By adding , the critical value of the stress intensity factor increases and the tensile strength increases, making it difficult for fracture to occur.

E問題点を解決するための手段] この製造法はセラミックの長距離秩序とアモルファスの
短距離周期との組み合せで、各々のすぐれた性質を引き
出す一種のハイブリットデバイスである。
Means for Solving Problem E] This manufacturing method is a kind of hybrid device that brings out the excellent properties of each by combining the long-range order of ceramic and the short-range period of amorphous.

固体アイオニクスの拡散係数の面から見ると可視光線と
は可視光域の光エネルギーがガラスの電子を励起させ得
なかったことで、光励起は光エネルギーを吸収して陰イ
オンの電子が離れて陽イオンにもどり、中性原子となる
電子遷移を起こす。
From the perspective of the diffusion coefficient of solid-state ionics, visible light means that the light energy in the visible light range cannot excite the electrons in the glass. It returns to an ion and undergoes an electronic transition to become a neutral atom.

分子の電子状態は原子核の平衡位置、とくに基底状態の
平衡位置に定まらず、平衡点付近で撮動し、その対称性
がくずれる振電相互作用となる。
The electronic state of a molecule is not determined by the equilibrium position of the atomic nucleus, especially the equilibrium position of the ground state, but moves near the equilibrium point, resulting in vibronic interactions that break the symmetry.

励起は原子価電子でなく核間の振動と回転が電気双極子
モーメントの変化となり、外からの電磁波を共鳴吸収す
る現象で、ガラスでは5i−0間の振動でSiは+、O
は−の電荷あり、双極子モーメントをつくっている。振
動の自由度は核の運動エネルギーの演算の要素となり、
電子と核間のボテンシアルエネルギーと相関関係にある
。励起状態は基底状態とは異なった電子構造をもち、電
子的異性体である。
Excitation is a phenomenon in which vibrations and rotations between nuclei, not valence electrons, change the electric dipole moment, and resonance absorbs external electromagnetic waves.In glass, the vibration between 5i-0 causes Si to +, O
has a - charge and creates a dipole moment. The degree of freedom of vibration is an element in calculating the kinetic energy of the nucleus,
It is correlated with the potential energy between the electron and the nucleus. The excited state has a different electronic structure than the ground state and is an electronic isomer.

一般にエネルギーはバンドギャップの中間にあり、酸化
物ではE9が大きいのでS、Pのバンドに混じる場合は
少なく、結晶内で局在化した準位ないしは狭いdバンド
を形成する。
Generally, the energy is in the middle of the band gap, and since E9 is large in oxides, it is rarely mixed with the S and P bands, and forms a localized level or a narrow d band within the crystal.

dバンドは原子番号の大きくなるほど、下の価電子帯に
対し相対的に安定され、その単位を下げる。したがって
同じ構造でもdN子の数やエネルギー帯の混り方により
色々な性質となる。
As the atomic number increases, the d-band becomes more stable relative to the lower valence band, lowering its unit. Therefore, even if the structure is the same, it will have various properties depending on the number of dN atoms and how the energy bands are mixed.

空間格子の形成による機械的、電気的歪みと結晶内d電
子エネルギーの利得が安定の要因となる。その点C,N
は価電子がP軌道を部分的にしか満して居らず、その結
果波動関数は各原子の周りで球対称をもっていない。
Mechanical and electrical strain caused by the formation of a space lattice and gain in intracrystalline d-electron energy are factors for stability. That point C,N
The valence electrons only partially fill the P orbitals, so the wave function does not have spherical symmetry around each atom.

結晶構造のエネルギーはとなり合う原子の配列の仕方に
敏感に依存し相互作用は中心的といえぬ。これに対し大
きい原子番号の元素の価電子は多くの異なった電子状態
が存在しく与るエネルギー領域にあり、複合状態となり
方向性が平均化され、失なわれている。
The energy of a crystal structure depends sensitively on the arrangement of adjacent atoms, and interactions cannot be said to be central. On the other hand, the valence electrons of elements with large atomic numbers are in an energy region where many different electronic states exist, and become a complex state where the directionality is averaged out and lost.

3iは硬くて安定でダイヤモンド構造をしており、又S
 p7結合バンドを完全に満して居り、反結合バンドが
形成されている。電子は正4面体配位の隣接原子の方向
に分布して1原子当り4ケの電子が結合バンドをみたし
て居り、エネルギーギャップは大きい。可逆的相転移を
利用し、バンドテールのエネルギ一単位を規定し、光拡
散を押える様々な光学的禁止帯幅、光学的物性定数を定
める。
3i is hard, stable and has a diamond structure, and S
It completely fills the p7 binding band and an anti-binding band is formed. Electrons are distributed in the direction of neighboring atoms in tetrahedral coordination, with 4 electrons per atom filling the bonding band, and the energy gap is large. Using reversible phase transition, we define one unit of bandtail energy, and define various optical band gaps and optical property constants that suppress light diffusion.

次に構造化学における結晶成長機構から見るとすべての
方位を固定して、これに配位する魚群との関係をしらぺ
、自然分極や旋光性など物性と構造を対応させて考える
。例えば空間格子の主軸に対する対称要素(対称軸・回
転軸・回反軸・並進・ラセン軸)を考慮し光学的等方体
に近づける。
Next, from the perspective of the crystal growth mechanism in structural chemistry, we fix all orientations and consider the relationship with the school of fish coordinating with them, and consider the correspondence between physical properties such as natural polarization and optical rotation, and the structure. For example, the symmetry elements (symmetry axis, rotation axis, rotation axis, translation axis, and helical axis) with respect to the principal axis of the spatial lattice are taken into account to approximate an optically isotropic body.

5族におけるNは特異な存在で他は3角錐形の結合角e
oLC−小さく歪みがかつて常温で不安定なるも、Nだ
けは2原子分子で正3角形の板を上下に平行に組み合わ
した6角板の網目構造に相当し、金属性も小さく亜鈴型
の分子が6方最密型に配列している。又4族におけるC
は3次元空間に6万晶系の対称をもつ色々の変態あり。
N in Group 5 is a unique entity, and the others have a triangular pyramidal bond angle e
oLC - Although small and distorted and once unstable at room temperature, only N is a diatomic molecule and corresponds to a network structure of hexagonal plates made of regular triangular plates arranged vertically and parallelly, and has small metallic properties and a dumbbell-shaped molecule. are arranged in a hexagonal close-packed pattern. Also, C in group 4
has various transformations with symmetry of 60,000 crystals in three-dimensional space.

この4面体はCaの面心立方格子(最密充填構造)との
組み合せにより4面体間隙の半分をみたし、完全像晶族
に近づき光の散乱も少ない。PBCベクトルのbI>a
>b2におけるaの成長による減殺、成長論やハルトマ
ンの放出、付着エネルギーの近似計算を行ひ、原子散乱
因子の網面間隔、回折強度など構造因子を決定し、対角
位結晶をなくし主要な対称軸が結晶軸と一致する正常位
結晶格子構造となす。
This tetrahedron, in combination with a face-centered cubic lattice (close-packed structure) of Ca, fills half of the tetrahedral gap, approaches a perfect image crystal group, and scatters less light. bI>a of PBC vector
> We performed approximate calculations of the growth theory, Hartmann's emission, and adhesion energy, and determined the structural factors such as the interplanar spacing and diffraction intensity of the atomic scattering factors, and eliminated the diagonal crystals and A normal crystal lattice structure is formed in which the symmetry axis coincides with the crystal axis.

遅延弾性効果における転移点付近の5iOzの輪が変形
する歪みやrIl擦は非可逆的な粘性緩和となるので加
工時の条件におり込む。
The strain and rIl friction caused by the deformation of the 5iOz ring near the transition point in the delayed elasticity effect result in irreversible viscosity relaxation, which is incorporated into the processing conditions.

融点はイオン半径より配位数増加による上昇が高く原子
配列による誘電率→散乱の図式も誘起、共鳴効果の利用
で解決する。
The increase in melting point due to increase in coordination number is higher than the ionic radius, and the diagram of dielectric constant → scattering due to atomic arrangement can be solved by using induction and resonance effects.

粒度は表面エネルギーの最大活用を図り、拡散転移時の
異常粒の成長、気泡、失透、抗張力の低下に最も影響す
るので細分、均質化を図る。
The particle size is aimed at maximizing the use of surface energy, and as this has the greatest effect on the growth of abnormal particles during diffusion transition, air bubbles, devitrification, and a decrease in tensile strength, the particle size is subdivided and homogenized.

粒子層と粒界層の屈折率を近づけ、化学組成と格子定数
の変動による異常粒の成長に注意し失透を防ぐ。
By bringing the refractive index of the grain layer and grain boundary layer closer together, and paying attention to the growth of abnormal grains due to fluctuations in chemical composition and lattice constant, we prevent devitrification.

[発明の効果] Ca CNよの添加投入により微結晶をおこし、従来の
ガラスの層状網目構造が3次元網状構造へ立体架橋し、
抗張力が飛躍的に増大し、可視光線の吸収、散乱も防止
出来る。
[Effect of the invention] By adding Ca CN, microcrystals are generated, and the layered network structure of conventional glass is sterically cross-linked to a three-dimensional network structure.
The tensile strength increases dramatically and absorption and scattering of visible light can also be prevented.

又エントロピーの法則にあるエネルギー資源のコンサー
ベーションとセービングになる。
It also means conservation and saving of energy resources according to the law of entropy.

Claims (1)

【特許請求の範囲】[Claims] 石灰窒素CaCN_2をガラス原料に添加投入し、微結
晶を起こさせ、構造分子を連結し、強化を図ることを特
徴とするガラス製造法。
A glass manufacturing method characterized by adding lime nitrogen CaCN_2 to glass raw materials to generate microcrystals, connect structural molecules, and strengthen the glass.
JP3837587A 1987-02-20 1987-02-20 Production of glass causing crystallite Pending JPS63206329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3837587A JPS63206329A (en) 1987-02-20 1987-02-20 Production of glass causing crystallite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3837587A JPS63206329A (en) 1987-02-20 1987-02-20 Production of glass causing crystallite

Publications (1)

Publication Number Publication Date
JPS63206329A true JPS63206329A (en) 1988-08-25

Family

ID=12523534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3837587A Pending JPS63206329A (en) 1987-02-20 1987-02-20 Production of glass causing crystallite

Country Status (1)

Country Link
JP (1) JPS63206329A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6503858B1 (en) 1995-06-16 2003-01-07 Hitachi, Ltd. Glass composition, structure, and apparatus using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3582307A (en) * 1965-12-24 1971-06-01 Max Planck Inst Fur Silikatfor Methd of removing water from melts of inorganic glass
JPS53142426A (en) * 1977-05-18 1978-12-12 Corning Glass Works Heattcrystallized glass containing nitrogen
JPS6042244A (en) * 1983-08-12 1985-03-06 Toshiba Ceramics Co Ltd Quartz glass having resistance to melting loss

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3582307A (en) * 1965-12-24 1971-06-01 Max Planck Inst Fur Silikatfor Methd of removing water from melts of inorganic glass
JPS53142426A (en) * 1977-05-18 1978-12-12 Corning Glass Works Heattcrystallized glass containing nitrogen
JPS6042244A (en) * 1983-08-12 1985-03-06 Toshiba Ceramics Co Ltd Quartz glass having resistance to melting loss

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6503858B1 (en) 1995-06-16 2003-01-07 Hitachi, Ltd. Glass composition, structure, and apparatus using the same
US6512655B1 (en) 1995-06-16 2003-01-28 Hitachi, Ltd. Magnetic head with sealing glass composition

Similar Documents

Publication Publication Date Title
Nolas et al. Structural properties and thermal conductivity of crystalline Ge clathrates
Walker et al. Phonon scattering by point defects
Hosoya et al. Linear and nonlinear optical properties of sol-gel-derived Au nanometer-particle-doped alumina
Cummins et al. Electrical and optical properties of ferroelectric Bi4Ti3O12 single crystals
US5104210A (en) Light control films and method of making
Fokin et al. Temperature evolution of sodium nitrite structure in a restricted geometry
Birchon et al. Mechanism of energy dissipation in high-damping-capacity manganese-copper alloys
EP2295137B1 (en) Process for producing colloidal crystal
Goel Crystallography
CN104020623B (en) Background-free wave beam direction controller based on split ring structure
Volkov et al. Concept of artificial magnetoelectric materials via geometrically controlling curvilinear helimagnets
Lou et al. Ba 1− x La x Fe 12 O 19 (x= 0.0, 0.2, 0.4, 0.6) hollow microspheres: material parameters, magnetic and microwave absorbing properties
Wang et al. Lattice vibration fundamentals in nanocrystalline anatase investigated with Raman scattering
Ohr et al. Crystallography of dislocation networks in annealed iron
Klemens Heat conduction in solids by phonons
JPS63206329A (en) Production of glass causing crystallite
Sannigrahi et al. Commensurate to incommensurate magnetic phase transition in honeycomb-lattice pyrovanadate Mn 2 V 2 O 7
GB2415703A (en) Liquid crystal display device
Hansson et al. Adhesion between fine gold particles
Gu et al. Atomistic origin and temperature dependence of Raman optical redshift in nanostructures: a broken bond rule
Viehland et al. Dependence of the glasslike characteristics of relaxor ferroelectrics on chemical ordering
Nord Jr Transformation-induced twin boundaries in minerals
Roy et al. Magnetic properties of iron nanoparticles grown in a glass matrix
US4906879A (en) Terbium-dysprosium magnetostrictive high power transducers
Abbass et al. Enhanced terbium emission due to plasmonic silver nanoparticles in bismuth silicate