JPS63206321A - Production of quartz glass - Google Patents

Production of quartz glass

Info

Publication number
JPS63206321A
JPS63206321A JP3873987A JP3873987A JPS63206321A JP S63206321 A JPS63206321 A JP S63206321A JP 3873987 A JP3873987 A JP 3873987A JP 3873987 A JP3873987 A JP 3873987A JP S63206321 A JPS63206321 A JP S63206321A
Authority
JP
Japan
Prior art keywords
hollow part
glass tube
gel
forming member
quartz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3873987A
Other languages
Japanese (ja)
Inventor
Takeshi Kitagawa
毅 北川
Shuichi Shibata
修一 柴田
Masaharu Horiguchi
堀口 正治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP3873987A priority Critical patent/JPS63206321A/en
Publication of JPS63206321A publication Critical patent/JPS63206321A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/12Other methods of shaping glass by liquid-phase reaction processes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/016Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by a liquid phase reaction process, e.g. through a gel phase

Abstract

PURPOSE:To make it possible to form quartz glass tubes free from flow on the inside surface in producing the quartz glass tubes by sol-gel method, by using a material to thermally deform or to change properties by heating as a material to form a hollow part. CONSTITUTION:Sol 3 of pure quartz glass fine particles or sol of quartz glass fine particles containing at least one dopant is cast into space in a cylindrical container 2 coaxially placed in the interior of a material 1 to form a hollow part, the sol 3 is gelatinized and the material 1 to form a hollow part is taken out from the cylindrical container 2 to give a gelatinous cylindrical material 4. Then the gelatinous cylindrical material 4 is dried to give a dried gelatinous cylindrical material 5, which is heated 9a heating furnace 7) at high temperature and made into glass to give a quartz glass tube 6. In the process like this, the material 1 for form a hollow part is made of a material to thermally deform or to change properties by heating, the material 1 to form a hollow part is heated and the material 1 to form a hollow part 1 is released from the gelatinous cylindrical material 4. A thermally shrinkable synthetic resin, a shape memorizing alloy, a thermally melting material, etc., may be used as the material to thermally deform or to change properties by heating.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はゾルゲル法を用いた石英系ガラス管の製造方法
に関する。さらに詳細には本発明は、ロッドインチコー
プ法等の光フアイバ製造用のクラッド材料として好適に
用いられる石英系ガラス管の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a quartz-based glass tube using a sol-gel method. More specifically, the present invention relates to a method for manufacturing a quartz-based glass tube that is suitably used as a cladding material for manufacturing optical fibers such as the rod inch cop method.

従来の技術 近年、光ファイバによる光通信が実用化の段階に入るに
従い、伝送損失の低減や波長帯域の拡大のための研究が
ますます盛んに行われている。光ファイバは、内付けお
よび外付けCVD法、VAD法等によりファイバ母材を
製造した後、線引きあるいはロッドインチコープ法によ
りファイバ状に線引きすることにより得られる。上記ロ
ッドインチューブ法により光ファイバを製造するには、
コア材であるガラス棒をジャケットする石英系ガラス管
を用いる。
BACKGROUND OF THE INVENTION In recent years, as optical communications using optical fibers have entered the stage of practical use, research has been increasingly conducted to reduce transmission loss and expand wavelength bands. Optical fibers are obtained by manufacturing a fiber base material by an internal/external CVD method, a VAD method, or the like, and then drawing it into a fiber shape by a wire drawing method or a rod inch cop method. To manufacture optical fiber using the above rod-in-tube method,
A quartz-based glass tube is used to jacket the glass rod that is the core material.

一般に石英系ガラスの製造方法としては、シリコンを含
む有機化合物を加水分解および縮重合することで310
2ガラス微粒子のゾルを得、このゾルをゲル化して乾燥
した後、ガラス化するゾルゲル法が知られている。この
方法は、収率が高くしかも量産性に優れるという特徴を
有する。上記石英系ガラス管を製造する場合にもゾルゲ
ル法が用いられ、第2図に示すような工程に沿って行わ
れる。
In general, quartz glass is manufactured by hydrolyzing and condensing an organic compound containing silicon.
A sol-gel method is known in which a sol of glass particles is obtained, the sol is gelled, dried, and then vitrified. This method is characterized by high yield and excellent mass productivity. The sol-gel method is also used to manufacture the above-mentioned quartz-based glass tube, and the process is carried out according to the steps shown in FIG.

以下、第2図を参照しながらゾルゲル法を説明すると、
先ず、第2図(a)に示すように、中空部形成用部材1
を円筒状容器2内に同軸に配置し、円筒状容器2内の空
所に石英系ガラス微粒子ゾル3を注入する。次いで、第
2図ら)に示すように、注入されたゾルをゲル化してゲ
ル状円筒体4を形成した後、第2図(C)に示すように
、中空部形成用部材1をゲル状円筒体4から取り外す。
The sol-gel method will be explained below with reference to Figure 2.
First, as shown in FIG. 2(a), the hollow part forming member 1 is
are arranged coaxially within a cylindrical container 2, and a silica-based glass fine particle sol 3 is injected into a space within the cylindrical container 2. Next, as shown in FIG. 2, et al., the injected sol is gelled to form a gel-like cylinder 4, and then, as shown in FIG. Remove from body 4.

さらに、こうして得られたゲル状円筒体4を乾燥して、
第2・図(d)に示すような乾燥ゲル状円筒体5を得る
。次に第2図(e)に示すように、乾燥ゲル状円筒体5
を円筒状容器2から取り出し、誘導加熱等の電気炉7内
で1000℃〜1400℃の範囲の温度に加熱してガラ
ス化しガラス管6を得る。
Furthermore, the gel-like cylinder 4 thus obtained is dried,
A dried gel-like cylinder 5 as shown in FIG. 2 (d) is obtained. Next, as shown in FIG. 2(e), the dried gel-like cylinder 5
is taken out from the cylindrical container 2 and heated in an electric furnace 7 such as induction heating to a temperature in the range of 1000° C. to 1400° C. to vitrify it to obtain a glass tube 6.

発明が解決しようとする問題点 上記方法においては、ゲルを円筒状に形成するために、
第2図(C)に示す工程では、円筒状容器2内に予め配
置されていた中空部形成用部材1をゲル状円筒体4と接
触させただまま強制的に引き抜く操作を行っていた。こ
のため上記中空部形成用部材lには、ゲル状円筒体4の
内側表面との摩擦による傷の発生を防止する目的で、ゲ
ルとの親和性の低いフッ素系合成樹脂等が用いられてい
た。
Problems to be Solved by the Invention In the above method, in order to form the gel into a cylindrical shape,
In the step shown in FIG. 2(C), an operation was performed in which the hollow part forming member 1, which had been placed in advance in the cylindrical container 2, was forcibly pulled out while being in contact with the gel-like cylinder 4. For this reason, for the purpose of preventing scratches caused by friction with the inner surface of the gel-like cylinder 4, a fluorine-based synthetic resin or the like, which has a low affinity with gel, is used for the hollow part forming member l. .

しかしながら、フッ素系合成樹脂の如き材料を用いても
ゲル状円筒体の内側表面において傷の発生は避けられな
いという問題があった。このゲル状円筒体の内側表面の
傷は乾燥及びガラス化工程を経たガラス管にも残存する
。このためそのようなガラス管でロッドインチューブ法
により光ファイバを作製した際、特に真空封止する際に
気泡等を生じ、それが光フアイバ内において光散乱体と
なり伝送損失を増大させていた。このため、ロッドイン
チューブ法等の材料となる石英系ガラス管は内側表面に
傷のない優れた品質のものが要望されていた。
However, even if a material such as a fluorine-based synthetic resin is used, there is a problem in that scratches cannot be avoided on the inner surface of the gel-like cylinder. This scratch on the inner surface of the gel-like cylinder remains on the glass tube after the drying and vitrification process. For this reason, when an optical fiber is manufactured using such a glass tube by the rod-in-tube method, bubbles and the like are generated, especially during vacuum sealing, and the bubbles become light scatterers within the optical fiber, increasing transmission loss. For this reason, there has been a demand for quartz-based glass tubes that are used as materials for the rod-in-tube method, etc., to be of excellent quality with no scratches on the inner surface.

そこで本発明の目的は、ゾルゲル法を用いて、内側表面
に傷のない石英系ガラス管を製造する方法を提供するこ
とにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a method for manufacturing a quartz-based glass tube without scratches on its inner surface using a sol-gel method.

問題点を解決するための手段 本発明者は上記問題点を解決するため鋭意検討・研究し
た結果、ゾルゲル法において使用する中空部形成用部材
に熱変形又は熱変性する材料を用い、中空部形成用部材
を容器から取り出す際に中空部形成用部材を加熱してゲ
ル状円筒体から離脱せしめ、内側表面に傷のない石英系
ガラス管を製造する方法を開発することに成功した。
Means for Solving the Problems As a result of intensive study and research to solve the above-mentioned problems, the inventor of the present invention has developed a method for forming hollow parts by using a thermally deformable or thermally denatured material for the hollow part forming member used in the sol-gel method. We succeeded in developing a method for producing a quartz-based glass tube with no scratches on the inner surface by heating the hollow part forming member to separate it from the gel-like cylinder when the member is taken out of the container.

すなわち本発明に従うと、純粋石英ガラス微粒子あるい
は屈折率を低下させる少なくとも一種のドーパントを含
む石英系ガラス微粒子のゾルを、中空部形成用部材を内
部に同軸に配置した円筒状容器内の空所に注入し、該ゾ
ルをゲル化させた後、該中空部形成用部材を該円筒状容
器から取り出してゲル状円筒体を得、該ゲル状円筒体を
乾燥した後、高温加熱してガラス化する工程を含む石英
系ガラス管の製造方法にふいて、 該中空部形成用部材を熱変形あるいは熱変性する材料で
形成し、該中空部形成用部材を加熱して該中空部形成用
部材を該ゲル状円筒体から離脱させることを特徴とする
石英系ガラス管の製造方法が提供される。
That is, according to the present invention, a sol of pure silica glass particles or silica-based glass particles containing at least one type of dopant that lowers the refractive index is placed in a cavity in a cylindrical container in which a hollow part forming member is coaxially disposed. After injecting and gelling the sol, the hollow part forming member is taken out from the cylindrical container to obtain a gel-like cylinder, and after drying the gel-like cylinder, it is heated at high temperature to vitrify. The method for manufacturing a quartz-based glass tube includes forming the hollow part forming member with a material that is thermally deformed or thermally denatured, and heating the hollow part forming member to transform the hollow part forming member into a material. A method for manufacturing a quartz-based glass tube is provided, which is characterized in that the tube is separated from a gel-like cylinder.

作用 本発明はゾルゲル法を用いて光ファイバの材料となるガ
ラス管を製造する方法において、中空部形成用部材を熱
変形または熱変性する材料で形成し、この中空部形成用
部材を加熱してゲル状円筒体から離脱させることに特徴
がある。
Function The present invention is a method for manufacturing a glass tube as a material for an optical fiber using a sol-gel method, in which a hollow part forming member is formed of a material that is thermally deformed or thermally denatured, and this hollow part forming member is heated. The feature is that it is separated from the gel-like cylindrical body.

このため、中空部形成用部材を円筒状容器から取り出し
てゲル状円筒体を得る工程において、中空部形成用部材
は変形してゲルから剥離したりあるいは液体状になるこ
とで容易にゲル状円筒体から離脱することができ、ゲル
状円筒体の内側表面に傷を発生させることなく中空部形
成用部材を収容していた容器から取り出すことができる
Therefore, in the step of taking out the hollow part forming member from the cylindrical container to obtain a gel-like cylinder, the hollow part forming member deforms and peels off from the gel, or becomes liquid and easily forms a gel-like cylinder. It can be removed from the body and removed from the container in which the hollow part forming member was housed without causing damage to the inner surface of the gel-like cylinder.

従って、本発明で得られたガラス管を用いてロッドイン
チューブ法により形成された光ファイバは、従来、問題
とされていたコア部の光散乱体の発生を解消するするこ
とができる。
Therefore, the optical fiber formed by the rod-in-tube method using the glass tube obtained according to the present invention can eliminate the generation of light scatterers in the core, which has been a problem in the past.

本発明の方法において、中空部形成用部材を円筒状容器
から取り出す際に中空部形成用部材を加熱する必要があ
り、この加熱温度はゾル溶媒の沸点以下の温度であり、
また使用する中空部形成用部材の材料により決定できる
。すなわち、中空部形成用部材が変形または変質するこ
とで中空部形成用部材がゲルから容易に抜脱できる温度
であれば十分である。
In the method of the present invention, it is necessary to heat the hollow part forming member when taking it out from the cylindrical container, and this heating temperature is a temperature below the boiling point of the sol solvent,
Moreover, it can be determined by the material of the hollow part forming member used. That is, it is sufficient that the temperature is such that the hollow part forming member can be easily pulled out of the gel by deforming or changing the quality of the hollow part forming member.

かかる中空部形成用部材の材料としては、熱変形または
熱変性してゲルからの離脱が容易になる特性が要求され
る。このような材料として、熱収縮性の合成樹脂、形状
記憶合金、加熱により融解する材料が挙げられる。熱収
縮性の合成樹脂としては、例えば、四フッ化エチレン−
六フッ化プロピレン共重合体熱収縮チューブ等が好適で
ある。
The material for such a hollow part forming member is required to have properties that allow it to be easily separated from the gel by being thermally deformed or thermally denatured. Examples of such materials include heat-shrinkable synthetic resins, shape memory alloys, and materials that melt when heated. Examples of heat-shrinkable synthetic resins include tetrafluoroethylene.
A hexafluoropropylene copolymer heat-shrinkable tube or the like is suitable.

中空部形成用部材に形状記憶合金を使用する場合には、
例えば、Ni −Ti系形状記憶合金等が好適である。
When using shape memory alloy for hollow part forming member,
For example, a Ni-Ti based shape memory alloy is suitable.

中空部形成用部材に加熱により融解する材料を使用する
場合には、例えば、パラフィン、ワックス等が好適であ
る。
When using a material that melts when heated for the hollow part forming member, paraffin, wax, etc. are suitable, for example.

しかしながら、本発明の方法で使用する中空部形成用部
材は、特に上記の材料に限定されず、加熱によりゲルか
らの離脱が容易になる性質を有する材料ならばいずれの
材料でもかまわない。
However, the hollow part forming member used in the method of the present invention is not particularly limited to the above-mentioned materials, and may be any material as long as it has the property of being easily separated from the gel by heating.

本発明により得られる石英系ガラス管は光ファイバの材
料に限らず、あらゆる用途に使用できる高品質な石英ガ
ラス管または他成分がドープされた石英系ガラス管であ
る。
The quartz-based glass tube obtained by the present invention is a high-quality quartz glass tube or a quartz-based glass tube doped with other components that can be used not only as a material for optical fibers but also for all kinds of purposes.

実施例 以下、実施例により本発明の詳細な説明するが本発明は
これらに何ら限定されない。
EXAMPLES Hereinafter, the present invention will be explained in detail with reference to Examples, but the present invention is not limited thereto.

本発明の石英系ガラス管の製造方法は、中空部形成用部
材を円筒状容器から取り出す際に中空部形成用部材を加
熱すること以外は、第2図に示した従来のゾルゲル法に
よる石英系ガラス管の製造工程と同様であり、以下、該
工程に従って説明する。
The method for producing a quartz-based glass tube of the present invention is based on the conventional sol-gel method shown in FIG. This process is similar to the manufacturing process of glass tubes, and will be explained below according to the process.

実施例1 中空部形成用部材として、四フッ化エチレン−六フッ化
プロピレン共重合体(以下、FEPと略す)熱収縮チュ
ーブを使用してゾルゲル法により光フアイバ用母材の製
造を行なった。
Example 1 An optical fiber base material was manufactured by a sol-gel method using a tetrafluoroethylene-hexafluoropropylene copolymer (hereinafter abbreviated as FEP) heat-shrinkable tube as a member for forming a hollow portion.

先ず、エタノールで希釈したアルコキシド原料St (
OCa Hs) 4を加水分解して石英系ガラス管の原
料用ゾルを調製し、該ゾルを、FEP熱収縮チューブ(
外径20mm、肉厚0.2mm、長さ2501+111
1.収縮開始温度45℃)を内部に同軸に配置した円筒
状容器(内径40mm、 長さ300mm )の空所内
に注入した。
First, alkoxide raw material St diluted with ethanol (
A sol for raw material for quartz-based glass tubes was prepared by hydrolyzing OCa Hs) 4, and the sol was poured into an FEP heat-shrinkable tube (
Outer diameter 20mm, wall thickness 0.2mm, length 2501+111
1. (shrinkage start temperature: 45° C.) was injected into the cavity of a cylindrical container (inner diameter: 40 mm, length: 300 mm) arranged coaxially inside.

次いで、容器内のゾルを室温でゲル化させ、50℃にて
1時間保持することでFEP熱収縮チューブを収縮させ
て該容器内から取り出した。この際、FEP熱収縮チュ
ーブは外径が約5%収縮しており、その表面はゲル状円
筒体の内側表面から完全に剥離していたため、ゲル状円
筒体から容易に抜脱することができた。
Next, the sol in the container was gelatinized at room temperature, and the FEP heat-shrinkable tube was shrunk by holding at 50° C. for 1 hour and taken out from the container. At this time, the outer diameter of the FEP heat-shrinkable tube had shrunk by about 5%, and its surface had completely peeled off from the inner surface of the gel-like cylinder, so it could not be easily removed from the gel-like cylinder. Ta.

得られたゲル状円筒体を容器内で乾燥させた後、ゲル状
円筒体を取り出し電気炉で加熱してガラス化し、外径2
3IIII111内径10 ll1m 、長さ108m
mの石英ガラス管を得た。このガラス管の内側表面はな
めらかで傷は全く観察されなかった。
After drying the obtained gel-like cylinder in a container, the gel-like cylinder was taken out and heated in an electric furnace to vitrify it and reduce the outer diameter to 2.
3III111 Inner diameter 10 ll1m, length 108m
A quartz glass tube of m was obtained. The inner surface of this glass tube was smooth and no scratches were observed.

次いで、この石英ガラス管をクラッドとし、Δ=0.6
%を有する6eをドープしたガラス棒をコアとして、ロ
ッドインチューブ法によりステップインデックス型光フ
ァイバを作製した。
Next, this quartz glass tube was used as a cladding, and Δ=0.6
A step-index optical fiber was fabricated using a rod-in-tube method using a glass rod doped with 6e having a concentration of 6e as a core.

得られた光ファイバの伝送損失(λ=1.3μm)は、
5 dB/kmであった。
The transmission loss (λ=1.3μm) of the obtained optical fiber is:
It was 5 dB/km.

比較例1 中空部形成用部材として、ゲルとの剥離性に優れるが加
熱収縮性を有しないFEPチューブを用いた以外は、実
施例1と同様にして石英ガラス管を得た。
Comparative Example 1 A quartz glass tube was obtained in the same manner as in Example 1, except that an FEP tube, which has excellent peelability from gel but does not have heat shrinkability, was used as the hollow part forming member.

ここで、FEPチューブを円筒状容器から除去してゲル
状円筒体を得る工程において、FEPチューブはゲル状
円筒体の内表面と接触しており、チューブをゲル状円筒
体から引き抜いた後のゲル状円筒体の内側表面には線状
の傷が発生しているのが確認された。この傷は、ガラス
化された石英ガラス管の内側表面にも残っていた。
Here, in the step of removing the FEP tube from the cylindrical container to obtain the gel-like cylinder, the FEP tube is in contact with the inner surface of the gel-like cylinder, and the gel after the tube is pulled out from the gel-like cylinder is It was confirmed that linear scratches were generated on the inner surface of the cylindrical body. These scratches also remained on the inner surface of the vitrified quartz glass tube.

さらにこのガラス管を、実施例1と同様にしてロッドイ
ンチューブ法によりステップインデックス型光ファイバ
を製造した。
Further, using this glass tube, a step index type optical fiber was manufactured using the rod-in-tube method in the same manner as in Example 1.

得られた光ファイバの伝送損失(λ=1.3μm)は9
0dB/kmであり、実施例1で得られたものよりかな
り高かった。
The transmission loss (λ=1.3μm) of the obtained optical fiber was 9
0 dB/km, which was considerably higher than that obtained in Example 1.

実施例2 中空部形成用部材として、第2図に示すような形状記憶
合金を有する部材10を用いた以外は実施例1と同様に
して石英ガラス管を製造した。
Example 2 A quartz glass tube was manufactured in the same manner as in Example 1, except that a member 10 having a shape memory alloy as shown in FIG. 2 was used as the hollow part forming member.

第2図中、中空部形成用部材lOは、内径20.Oms
+。
In FIG. 2, the hollow part forming member lO has an inner diameter of 20. Oms
+.

外径20.5mmのゴム管9内に、外径21.0III
IHの円筒状になるよう曲げ加工された形状記憶合金8
を強制的に挿入して構成されたものであり、その外径は
21.5mmである。この中空部形成用部材lO内の形
状記憶合金8は、転移点45℃にてマルテンサイト変態
を生じるNi−Ti系形状記憶合金であり、転移点以上
の温度で曲率半径が減少する特性を有する。
Inside the rubber tube 9 with an outer diameter of 20.5 mm, an outer diameter of 21.0 III
Shape memory alloy bent into IH cylindrical shape 8
is forcibly inserted, and its outer diameter is 21.5 mm. The shape memory alloy 8 in this hollow part forming member 1O is a Ni-Ti based shape memory alloy that undergoes martensitic transformation at a transition point of 45°C, and has the characteristic that the radius of curvature decreases at a temperature above the transition point. .

第2図に示すガラス管の製造工程において、ゲル化させ
た後の加熱処理の直後、該容器内を観察したところ、形
状記憶合金の曲率半径が減少し部材10の外径が20.
5uとなっており、ゲル状円筒体が部材10から剥離し
ていたため中空部形成用部材lOをゲル状円筒体の内表
面と接触させないで容易に除去することができた。該ゲ
ル状円筒体の内側表面はなめらかで、傷は全く観察され
なかった。
In the manufacturing process of the glass tube shown in FIG. 2, when the inside of the container was observed immediately after the heat treatment after gelation, it was found that the radius of curvature of the shape memory alloy decreased and the outer diameter of the member 10 decreased to 20.
5u, and since the gel-like cylinder had peeled off from the member 10, it was possible to easily remove the hollow-part forming member 10 without contacting the inner surface of the gel-like cylinder. The inner surface of the gel-like cylinder was smooth and no scratches were observed.

該ゲル状円筒体をガラス化して得られた石英ガラス管に
ついても内側表面には傷は全く観察されなかった。
No scratches were observed on the inner surface of the quartz glass tube obtained by vitrifying the gel-like cylinder.

こうして得られた石英ガラス管を、実施例1と同様にし
てロッドインチューブ法によりステップインデックス型
光ファイバを製造した。
Using the quartz glass tube thus obtained, a step-index optical fiber was manufactured using the rod-in-tube method in the same manner as in Example 1.

得られた光ファイバの伝送損失(λ=1.3μm)は7
 dB/kmであった。
The transmission loss (λ=1.3μm) of the obtained optical fiber was 7
It was dB/km.

実施例3 融点が45〜48℃のパラフィン棒を中空部形成用部材
として用いた以外は、実施例1と同様にして石英ガラス
管を製造した。
Example 3 A quartz glass tube was manufactured in the same manner as in Example 1, except that a paraffin rod with a melting point of 45 to 48° C. was used as the hollow part forming member.

上記製造工程において、ゲル化させた後の加熱処理の直
後、該容器内を観察したところ、パラフィン棒の表面が
融解しており、容易にパラフィン棒をゲル状円筒体内か
ら抜き出すことができた。
In the above manufacturing process, when the inside of the container was observed immediately after the heat treatment after gelation, the surface of the paraffin rod was melted, and the paraffin rod could be easily extracted from the gel-like cylinder.

また、得られた石英ガラス管の内側表面には傷は全く観
察されなかった。
Moreover, no scratches were observed on the inner surface of the obtained quartz glass tube.

さらに上記ガラス管を、実施例1と同様にしてロッドイ
ンチューブ法によりステップインデックス型光ファイバ
を製造した。
Furthermore, a step index type optical fiber was manufactured using the above glass tube using the rod-in-tube method in the same manner as in Example 1.

得られた光ファイバの伝送損失(λ=1.3μm)は3
dB/kmであった。
The transmission loss (λ=1.3μm) of the obtained optical fiber was 3
It was dB/km.

実施例4 ゾルを調製するために、アルコキシド原料Si (OC
2H3)4および屈折率を低下させるドーパントとして
Si (OC2H5)3Fを使用した以外は、実施例1
と同様にしてガラス管を製造した。
Example 4 To prepare a sol, alkoxide raw material Si (OC
Example 1 except that 2H3)4 and Si(OC2H5)3F were used as dopants to lower the refractive index.
A glass tube was manufactured in the same manner.

この際、Fの使用量はF/5i=0.1  (原子比)
とした。
At this time, the amount of F used is F/5i=0.1 (atomic ratio)
And so.

こうして得られたFドープト石英系ガラス管は、純粋石
英ガラスに対しΔ=−0,3%(Δ=(n−n s I
 o 2 ) / n s i。2)であり、内側表面
には傷は観察されなかった。
The thus obtained F-doped quartz glass tube has a ratio of Δ=−0.3% (Δ=(n−n s I
o2)/nsi. 2), and no scratches were observed on the inner surface.

さらにこのガラス管を、実施例1と同様にしてロッドイ
ンチューブ法によりステップインデックス型光ファイバ
を製造した。
Further, using this glass tube, a step index type optical fiber was manufactured using the rod-in-tube method in the same manner as in Example 1.

得られた光ファイバの伝送損失(λ=1.3μm)は4
 dB/kmであった。
The transmission loss (λ=1.3μm) of the obtained optical fiber was 4
It was dB/km.

実施例5 ゾルを調製するために、アルコキシド原料Si (OC
2Hs)*および屈折率を低下させるドーパントとして
B (n  0C489)3を使用した以外は、実施例
1と同様にしてガラス管を製造した。この際、Bの使用
量は10mol/ lとした。
Example 5 To prepare a sol, alkoxide raw material Si (OC
A glass tube was produced in the same manner as in Example 1, except that 2Hs)* and B (n 0 C489) 3 were used as a dopant to lower the refractive index. At this time, the amount of B used was 10 mol/l.

こうして得られたBドープト石英系ガラス管は、純粋石
英ガラスに対しΔ=−0,2%(Δ=(n−nsi。2
)/1st。2)であり、内側表面には傷は全く観察さ
れなかった。
The thus obtained B-doped quartz glass tube has a ratio of Δ=-0.2% (Δ=(n-nsi.2
)/1st. 2), and no scratches were observed on the inner surface.

さらにこのガラス管を、実施例1と同様にしてロッドイ
ンチューブ法によりステップインデックス型光ファイバ
を製造した。
Further, using this glass tube, a step index type optical fiber was manufactured using the rod-in-tube method in the same manner as in Example 1.

得られた光ファイバの伝送損失(λ=1.3μm)は9
 dB/kmであった。
The transmission loss (λ=1.3μm) of the obtained optical fiber was 9
It was dB/km.

なふ上記実施例では中空部形成用部材として、FEP熱
収縮チューブ、形状記憶合金を用いた管状部材及びパラ
フィン棒を用いたが、原理的に室温以上ゾル溶媒の沸点
以下の温度で変形または変性してゲル状円筒体から中空
部形成用部材を容易に離脱可能なものであれば、いかな
る材料でも中空部形成用部材として使用可能であり、本
発明は上記した実施例の材料の中空部形成用部材に限定
されるものではない。
In the above example, an FEP heat shrink tube, a tubular member using a shape memory alloy, and a paraffin rod were used as the members for forming the hollow part, but in principle, they cannot be deformed or denatured at a temperature above room temperature and below the boiling point of the sol solvent. Any material can be used as the hollow part forming member as long as the hollow part forming member can be easily removed from the gel-like cylindrical body by using the above-mentioned material. It is not limited to members for use.

発明の詳細 な説明したように、中空部形成用部材として熱変形ある
いは熱変性してゲルから容易に離脱できる材料を使用す
ることにより、内側表面に傷のない優れた品質の石英系
ガラス管を得ることができる。
As described in detail of the invention, by using a material that can be easily separated from the gel by heat deformation or heat denaturation as the hollow part forming member, a quartz glass tube of excellent quality with no scratches on the inner surface can be produced. Obtainable.

また、本発明で製造された石英系ガラス管をロッドイン
チューブ法に使用することにより、光ファイバの伝送損
失は従来のものより改善される。
Further, by using the silica-based glass tube manufactured according to the present invention in the rod-in-tube method, the transmission loss of the optical fiber is improved compared to the conventional one.

従って、本発明の当業界における価値は極めて高いもの
である。
Therefore, the value of the present invention in the art is extremely high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の方法に用いる中空部形成用部材の一
具体例である形状記憶合金を備えた中空部形成用部材の
概略図であり、 第2図は、ゾルゲル法による石英系ガラス管の製造工程
を示す図である。 (主な参照番号) 1・・中空部形成用部材、 2・・円筒状容器、 3・・ゾル、 4・・ゲル状円筒体、 5・・乾燥したゲル状円筒体、 6・・ガラス管、  7・・電気炉、 8・・形状記憶合金、   9・・ゴム管、10・・中
空部形成用部材、 特許出願人 日本電信電話株式会社 代理人 弁理士 新 居  正 彦 8・・・・・形状記J1慧合金 9・・・・・コ゛ム管
Fig. 1 is a schematic diagram of a hollow part forming member equipped with a shape memory alloy, which is a specific example of the hollow part forming member used in the method of the present invention, and Fig. 2 shows a quartz-based glass formed by the sol-gel method. It is a figure showing the manufacturing process of a pipe. (Main reference numbers) 1. Hollow part forming member, 2. Cylindrical container, 3. Sol, 4. Gel cylinder, 5. Dry gel cylinder, 6. Glass tube. , 7. Electric furnace, 8. Shape memory alloy, 9. Rubber tube, 10. Hollow part forming member, Patent applicant: Nippon Telegraph and Telephone Corporation Representative, Patent attorney Masahiko Arai 8.・Shape description J1 Kei Alloy 9...Column tube

Claims (7)

【特許請求の範囲】[Claims] (1)純粋石英ガラス微粒子あるいは屈折率を低下させ
る少なくとも一種のドーパントを含む石英系ガラス微粒
子のゾルを、中空部形成用部材を内部に同軸に配置した
円筒状容器内の空所に注入し、該ゾルをゲル化させた後
、該中空部形成用部材を該円筒状容器から取り出してゲ
ル状円筒体を得、該ゲル状円筒体を乾燥した後、高温加
熱してガラス化する工程を含む石英系ガラス管の製造方
法において、 該中空部形成用部材を熱変形あるいは熱変性する材料で
形成し、該中空部形成用部材を加熱して該中空部形成用
部材を該ゲル状円筒体から離脱させることを特徴とする
石英系ガラス管の製造方法。
(1) Injecting a sol of pure silica glass particles or silica-based glass particles containing at least one type of dopant that lowers the refractive index into a cavity in a cylindrical container in which a hollow part forming member is coaxially arranged, After gelling the sol, the hollow part forming member is taken out from the cylindrical container to obtain a gel-like cylinder, and the gel-like cylinder is dried and then heated to a high temperature to vitrify it. In the method for manufacturing a quartz-based glass tube, the hollow part forming member is formed of a material that is thermally deformed or thermally denatured, and the hollow part forming member is heated to separate the hollow part forming member from the gel-like cylindrical body. A method for manufacturing a quartz-based glass tube, characterized by separating the tube.
(2)上記熱変形する材料が熱収縮性の合成樹脂である
ことを特徴とする特許請求の範囲第1項記載の石英系ガ
ラス管の製造方法。
(2) The method for manufacturing a quartz-based glass tube according to claim 1, wherein the thermally deformable material is a heat-shrinkable synthetic resin.
(3)上記合成樹脂が四フッ化エチレン−六フッ化プロ
ピレン共重合体であることを特徴とする特許請求の範囲
第2項記載の石英系ガラス管の製造方法。
(3) The method for manufacturing a quartz-based glass tube according to claim 2, wherein the synthetic resin is a tetrafluoroethylene-hexafluoropropylene copolymer.
(4)上記中空部形成用部材が形状記憶合金を含むこと
を特徴とする特許請求の範囲第1項記載の石英系ガラス
管の製造方法。
(4) The method for manufacturing a silica-based glass tube according to claim 1, wherein the hollow portion forming member contains a shape memory alloy.
(5)上記形状記憶合金がNi−Ti系形状記憶合金で
あることを特徴とする特許請求の範囲第4項記載の石英
系ガラス管の製造方法。
(5) The method for manufacturing a quartz glass tube according to claim 4, wherein the shape memory alloy is a Ni-Ti shape memory alloy.
(6)上記熱変性する材料が加熱により融解する材料で
あることを特徴とする特許請求の範囲第1項記載の石英
系ガラス管の製造方法。
(6) The method for manufacturing a quartz-based glass tube according to claim 1, wherein the thermally denatured material is a material that melts when heated.
(7)上記加熱により融解する材料がパラフィンである
ことを特徴とする特許請求の範囲第6項記載の石英系ガ
ラス管の製造方法。
(7) The method for manufacturing a quartz-based glass tube according to claim 6, wherein the material melted by heating is paraffin.
JP3873987A 1987-02-21 1987-02-21 Production of quartz glass Pending JPS63206321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3873987A JPS63206321A (en) 1987-02-21 1987-02-21 Production of quartz glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3873987A JPS63206321A (en) 1987-02-21 1987-02-21 Production of quartz glass

Publications (1)

Publication Number Publication Date
JPS63206321A true JPS63206321A (en) 1988-08-25

Family

ID=12533691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3873987A Pending JPS63206321A (en) 1987-02-21 1987-02-21 Production of quartz glass

Country Status (1)

Country Link
JP (1) JPS63206321A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0652184A1 (en) * 1993-11-08 1995-05-10 Alcatel Cable Interface Process of making a preform for multi-ferrules of silica glass and preform so obtained

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0652184A1 (en) * 1993-11-08 1995-05-10 Alcatel Cable Interface Process of making a preform for multi-ferrules of silica glass and preform so obtained
FR2712278A1 (en) * 1993-11-08 1995-05-19 Alcatel Cable Interface Process for producing a blank for a multiférule made of silica glass, and blank thus obtained.

Similar Documents

Publication Publication Date Title
CN1030221A (en) The photoconductive fiber making method
JPS6086049A (en) Manufacture of glass products
US5090980A (en) Method of producing glass bodies with simultaneous doping and sintering
JPH044986B2 (en)
EP0391742A2 (en) Image fiber, image fiber preform, and manufacturing processes thereof
US6446468B1 (en) Process for fabricating optical fiber involving overcladding during sintering
US5776222A (en) Method of eliminating light scattering bubbles in optical fiber preforms
US20070022787A1 (en) Optical fiber with low attenuation at 1380 nm wavelength region and the method of producing the same
JPS61191543A (en) Quartz base optical fiber
JP2813752B2 (en) Manufacturing method of optical waveguide preform
JPS63206321A (en) Production of quartz glass
JPH09142863A (en) Production of optical fiber having glass core of low fusing temperature
JPS627130B2 (en)
JPS6228098B2 (en)
EP1783104A1 (en) Method of producing a preform for optical fibers
JPS63206326A (en) Production of preform for optical fiber
JP2001010837A (en) Production of optical fiber preform and aligning jig
JPH0820574B2 (en) Dispersion shift fiber and manufacturing method thereof
JP3903689B2 (en) Optical fiber manufacturing method
JPS62292647A (en) Production of decentralized-shift single-mode optical fiber
JPS6311534A (en) Production of jacket pipe for drawing optical fiber
JPH08188434A (en) Mold for producing preform for optical fiber and production of preform for optical fiber using the same mold
JPS6128612B2 (en)
JPS59137329A (en) Manufacture of preform for single-mode optical fluoride fiber
JPH046120A (en) Preform for image fiber