JPS63206313A - Separation of rare earth element - Google Patents

Separation of rare earth element

Info

Publication number
JPS63206313A
JPS63206313A JP62039553A JP3955387A JPS63206313A JP S63206313 A JPS63206313 A JP S63206313A JP 62039553 A JP62039553 A JP 62039553A JP 3955387 A JP3955387 A JP 3955387A JP S63206313 A JPS63206313 A JP S63206313A
Authority
JP
Japan
Prior art keywords
rare earth
sulfuric acid
sulfate
earth elements
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62039553A
Other languages
Japanese (ja)
Inventor
Tsugio Kaneko
金古 次雄
Fumiya Ishikawa
石川 文矢
Koichi Adachi
浩一 足立
Yoshinobu Nishiyama
西山 惠庸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP62039553A priority Critical patent/JPS63206313A/en
Publication of JPS63206313A publication Critical patent/JPS63206313A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PURPOSE:To readily deposit a rare earth element as a sulfuric acid double salt of monovalent ions having excellent crystallinity and separate the salt by filtration, by bringing a cation exchange solution containing a rare earth element ion into contact with an aqueous solution containing a sulfate of monovalent ions and sulfuric acid. CONSTITUTION:A cation exchange solution containing one or more rare earth elements selected from Y and elements having 57-71atom. number, e.g. consisting of acid phosphoric acid ester, such as di(2-ethylhexyl) phosphate, as necessary, is diluted with an organic solvent, such as kerosene, so as to provide 0.001-3mol/l concentration. The resultant (diluted) cation exchange solution is then brought into contact with an aqueous solution, obtained by adding a sulfate, such as Na2SO4 or (NH4)2SO4, to sulfuric acid in >=60wt.% concentration so as to provide 10-30wt.% concentration and containing a sulfate of monovalent ions and sulfuric acid for >=3min to deposit the rare earth elements as sulfuric acid double salt, which is separated by filtration. The aqueous solution containing the sulfate of the monovalent ions and sulfuric acid as a filtrate is subjected to adjustment of concentration and reused.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は1種以上の希土類元素を含む陽イオン交換液か
ら希土類元素を分離する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for separating rare earth elements from a cation exchange solution containing one or more rare earth elements.

なお1本発明において希土類元素とは、イツトリウム及
び原子番号1t〜tytの元素を示すものとする。
Note that in the present invention, rare earth elements refer to yttrium and elements having an atomic number of 1t to tyt.

〔従来の技術〕[Conventional technology]

近年、希土類元素間の分離、精製法として溶媒抽出法が
広く行なわれ、抽出溶媒として酸性有機リン酸エステル
が広く用いられている。酸性有機リン識エステルは陽イ
オン交換液のl′mであシ、各希土類元素間の分離係数
が高<、また各希土類元素間対して高い抽出能力を有し
てい゛るため希土類元素の分離、精製に対して優れた抽
出溶媒として知られている。
In recent years, solvent extraction has been widely used as a separation and purification method for rare earth elements, and acidic organic phosphate esters have been widely used as extraction solvents. Acidic organic phosphorus esters can be used in a cation exchange solution to separate rare earth elements because they have a high separation coefficient between each rare earth element and a high extraction ability for each rare earth element. , is known as an excellent extraction solvent for purification.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、酸性有機リン酸エステルによシ抽出され
た希土類元素を逆抽出するためKは。
However, in order to back-extract rare earth elements extracted by acidic organophosphate ester, K is used.

散性有機リン酸エステルの希土類元素に対する高い抽出
能力が障害とな#)%高濃度の酸を多量に使用しなけれ
ばならない。この九め1本発明者らは、希土類元素のイ
オンを含む陽イオン交換液を硫酸と接触させることによ
り、希土類元素を硫酸塩として析出させ、希土類元素と
ほぼ当量の硫酸を消費するだけで効率よく希土類元素を
分離・できることを見い出した(特公昭sr−!129
コロ号公報参照)。しかしながら、上記の硫酸を用いた
析出法においては析出した硫酸塩の溶解度が大きく、希
土類元素が溶液中に残存し、抽出分離した希土類元素の
全てを結晶として分取することはできない等の問題点か
ありた。
The high extraction capacity of the dispersive organophosphate esters for rare earth elements is a hindrance, requiring the use of large amounts of highly concentrated acids. Nineteenth point 1 The inventors have found that by bringing a cation exchange solution containing rare earth element ions into contact with sulfuric acid, the rare earth elements can be precipitated as sulfates, and the efficiency can be improved by simply consuming approximately the same amount of sulfuric acid as the rare earth elements. I discovered that it is possible to separate and separate rare earth elements (Tokuko Sho SR-!129
(See Coro issue). However, in the above precipitation method using sulfuric acid, there are problems such as the high solubility of the precipitated sulfate, the rare earth elements remaining in the solution, and the inability to separate all of the extracted rare earth elements as crystals. There was.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは従来技術のかかる問題点を解消すべく鋭意
検討した結果1本発明に到達したものである。
The inventors of the present invention have arrived at the present invention as a result of intensive studies aimed at solving the problems of the prior art.

本発明の目的は、工業上有利な希土類元素の抽出分離法
を提供することKあり、この目的は。
An object of the present invention is to provide an industrially advantageous extraction and separation method for rare earth elements.

1種以上の希土類元素のイオン管含む陽イオン交換液か
ら希土類元素會分離するKあ九シ、誼イオン交換液を一
価イオンの硫酸塩及び硫!!を含有する水溶液と接触さ
せて希土類元素を一価イオンとの硫酸複塩として析出さ
せることにより容易に達成し得る。
A rare earth element is separated from a cation exchange solution containing one or more rare earth element ion tubes, and monovalent ion sulfate and sulfur are separated from the ion exchange solution! ! This can be easily achieved by bringing the rare earth element into contact with an aqueous solution containing a monovalent ion to precipitate it as a sulfuric acid double salt with a monovalent ion.

以下1本発明の詳細な説明する。The present invention will be explained in detail below.

本発明は7種以上の希土類元素のイオンを抽出している
陽イオン交換液から希土類元素を分離取得する場合に適
用される。
The present invention is applied to the case where rare earth elements are separated and obtained from a cation exchange solution from which seven or more kinds of rare earth element ions are extracted.

この場合、陽イオン交換液としては、ジ(−一エチルヘ
キシル)リン酸、オクチルリン酸。
In this case, the cation exchange solution is di(-monoethylhexyl) phosphoric acid or octyl phosphoric acid.

ジ(オクチルフェニル)リン酸等の酸性リン酸エステル
、コーエチルへキシルホスホン醗モノーーエチルヘキシ
ルエステル等のホスホン酸エステル、ナフテン識等のカ
ルボン酸又はアミドオキシムなどが使用されるが、なか
でも抽出能力の高い酸性リン酸エステルが好んで使用さ
れる。これら陽イオン交換液は粘度が高いので。
Acidic phosphoric acid esters such as di(octylphenyl) phosphoric acid, phosphonic acid esters such as coethylhexylphosphonic acid mono-ethylhexyl ester, carboxylic acids such as naphthenic acids, or amidoximes are used, but among them, Highly acidic phosphoric esters are preferably used. These cation exchange solutions have high viscosity.

通常有能溶媒によシ希釈し、o、ooi〜3モル/1.
好ましくはo、o s〜八へモル/L程度の溶液として
用いるのがよい。有機溶媒としては。
Usually diluted with a competent solvent, o, ooi to 3 mol/1.
Preferably, it is used as a solution of about 0,0 s to 8 mol/L. As an organic solvent.

ケロセンのような石油留分、ヘキサン、オクタン、デカ
ン等の脂肪族炭化水素、ジプチルエーテル、ジイソプロ
ピルエーテル等のエーテル類。
Petroleum fractions such as kerosene, aliphatic hydrocarbons such as hexane, octane, and decane, and ethers such as diptyl ether and diisopropyl ether.

ペルゼン、トルエン等の芳香族炭化水素等が挙げられる
。これら陽イオン交換液中の希土−元素の濃度は特に限
定されないが、全希土類元素イオンの濃度として0.0
0 j〜−モル/l、好ましくは0.0s〜1.Sモル
/L程度がよい。
Examples include aromatic hydrocarbons such as perzene and toluene. The concentration of rare earth elements in these cation exchange solutions is not particularly limited, but the concentration of all rare earth element ions is 0.0
0 j~-mol/l, preferably 0.0s~1. Approximately S mol/L is preferable.

本発明方法においては、上記希土類元素のイオンを含む
陽イオン交換液を一価イオンの硫酸塩及び硫酸を含有す
る水溶液と接触させることによシ、希土類元累を一価イ
オンと希土類元素との硫酸複塩として析出させる。陽イ
オン交換液は、上記した如く通常有機溶媒に溶解させて
使用されるので、析出した一価イオンと希土類元素の硫
酸複塩と硫酸からなるスラリー液を陽イオン交換液を含
む有機相と分離し九のち、濾過などの操作により、スラ
リー中の複塩を分離するのが好ましい。
In the method of the present invention, the cation exchange solution containing rare earth element ions is brought into contact with an aqueous solution containing monovalent ion sulfate and sulfuric acid, thereby converting the rare earth element into a mixture of monovalent ions and rare earth elements. It is precipitated as a sulfuric acid double salt. As mentioned above, the cation exchange solution is usually used after being dissolved in an organic solvent, so the slurry consisting of the precipitated monovalent ions, the sulfuric acid double salt of a rare earth element, and sulfuric acid is separated from the organic phase containing the cation exchange solution. Afterwards, it is preferable to separate the double salt in the slurry by an operation such as filtration.

一価イオンの硫酸塩及び硫酸を含有する水溶液における
一価イオンの硫酸塩としては、硫酸ナトリウム、硫酸カ
リウム、硫酸リチウム、硫酸セシウム、硫酸アンモニウ
ム等があげられる。
Sulfates of monovalent ions and sulfates of monovalent ions in an aqueous solution containing sulfuric acid include sodium sulfate, potassium sulfate, lithium sulfate, cesium sulfate, ammonium sulfate, and the like.

該硫酸塩の溶液中の濃度は5重量係以上、飽和濃度まで
、好ましくはIQ〜30重量憾が望ましい。一価イオン
の硫酸塩の含有量があtb少ないと希土類元素の析出が
不完全であり、逆にあまシ多いと一価の硫酸塩が溶解せ
ず残存する傾向にある。また硫酸の含有量は広い範囲で
使用することができ1通常60重量憾以下であれば差し
支えなく、極めて微量でも実施が不可能ではないが、逆
抽出の効率を考慮すると70〜参〇重量係であることが
好ましい。なお、該水溶液は、通常陽イオン交換液と接
触させる前に調製するが、場合によっては、陽イオン交
換液と、上記硫酸塩の水溶液又は硫酸水溶液を接触させ
ながら、残余の硫酸水溶液又は硫酸塩水溶液管加える等
の手段によシ、接触時に該混合水溶液を形成させること
も可能である。
The concentration of the sulfate in the solution is preferably 5% by weight or more, up to saturation concentration, preferably IQ to 30% by weight. If the content of the monovalent ion sulfate is too low atb, the precipitation of the rare earth element will be incomplete, whereas if it is too large, the monovalent sulfate will not dissolve and will tend to remain. In addition, the content of sulfuric acid can be used in a wide range, and normally there is no problem as long as it is less than 60% by weight, and it is not impossible to carry out even in extremely small amounts. It is preferable that The aqueous solution is usually prepared before contacting with the cation exchange solution, but in some cases, while bringing the cation exchange solution into contact with the sulfate aqueous solution or sulfuric acid aqueous solution, the remaining sulfuric acid aqueous solution or sulfate may be prepared. It is also possible to form the mixed aqueous solution upon contact by means such as adding an aqueous solution tube.

該水溶液の使用量は特忙限定はないが1通常は陽イオン
交換液の容量の晃以上、好ましくは名ないし等量である
The amount of the aqueous solution to be used is not particularly limited, but it is usually at least the capacity of the cation exchange solution, preferably at least the same amount.

該水溶液と陽イオン交換液との接触は、接触時間があま
り短いと一価イオンと希土類元素との硫酸複塩の結晶が
十分に成長せず希土類元素の分離が不完全となるので3
分以上、好ましくは一〇分以上行なうのが良い。
The contact between the aqueous solution and the cation exchange solution should be carried out in such a way that if the contact time is too short, the crystals of the sulfuric acid double salt of monovalent ions and rare earth elements will not grow sufficiently, resulting in incomplete separation of the rare earth elements.
It is best to do this for at least 10 minutes, preferably for at least 10 minutes.

また、一価イオンと希土類元素との硫酸複塩は溶解度が
低いため1分am度は常温でさしつかえない。
Further, since the sulfuric acid double salt of a monovalent ion and a rare earth element has low solubility, 1 minute am degree is sufficient at room temperature.

本発明方法によシ析出し九一価イオンと希土類元素の硫
酸複塩は、結晶性が良好であり、容易に炉別することが
できる。ま711−p液として得られる一価イオンの硫
酸塩及び硫酸を含有する水溶液は一価イオンの硫酸塩、
硫酸の濃度調整を行ったのち再使用することができる。
The sulfuric acid double salt of a monovalent ion and a rare earth element precipitated by the method of the present invention has good crystallinity and can be easily separated in a furnace. The aqueous solution containing monovalent ion sulfate and sulfuric acid obtained as a 711-p solution contains monovalent ion sulfate,
It can be reused after adjusting the concentration of sulfuric acid.

〔実施例〕〔Example〕

以下1本発明を実施例により更に詳細に説明する。 The present invention will be explained in more detail below with reference to Examples.

実施例1 ランタンとしてo、t mob (/ 3.1!: 9
 f )を含有する/ mol / Lのジ(コーエチ
ルヘキシル)リン酸濃度/ mo1/ Lのケロセン溶
液100wtに、硫酸ナトリウムコ!重量多と硫酸30
重量%を含有する水溶液SO−と常温で20分混合しラ
ンタンとナトリウムの硫酸複塩の析出を行りた。
Example 1 o,t mob as a lantern (/3.1!: 9
f ) containing / mol / L of di(coethylhexyl) phosphoric acid concentration / mo1 / L of 100 wt of kerosene solution, sodium sulfate co! Heavy weight and sulfuric acid 30
The sulfuric acid double salt of lanthanum and sodium was precipitated by mixing with an aqueous solution SO- containing % by weight at room temperature for 20 minutes.

その結果を、水相に残存するランタン量及び結晶中のラ
ンタン量として第1表に示す。ま次比較のため、水溶液
として30重量%の硫酸溶液を用い九場合の結果を示す
The results are shown in Table 1 as the amount of lanthanum remaining in the aqueous phase and the amount of lanthanum in the crystals. For the sake of comparison, the results of nine cases using a 30% by weight sulfuric acid solution as the aqueous solution are shown.

実施例コ 実施例1と同じ方法でイツトリウムQ、/ m01/L
Ct、t 9 / P/1)t−含有するジ(コーエチ
ルヘキシル)リン酸濃度/ m(+l / Lのケロセ
ン溶液を用いる以外は実施例1と同様にイツトリウムの
分離を行った。
Example: Yttrium Q,/m01/L in the same manner as Example 1
Yttrium was separated in the same manner as in Example 1, except that a kerosene solution with a concentration of di(coethylhexyl)phosphate containing Ct, t9/P/1)/m(+l/L) was used.

結果を第−表に示す。また比較の九め30重重量値酸溶
液を用いた結果を示した。
The results are shown in Table 1. In addition, results using a comparative 9-30 weight value acid solution are shown.

第  1  表 〔発明の効果〕 本発明方法によるときは、陽イオン交換溶液より効率よ
く希土類元素を分離することができるので工業的に極め
て有利な方法である。
Table 1 [Effects of the Invention] The method of the present invention is an industrially extremely advantageous method because rare earth elements can be separated more efficiently than with a cation exchange solution.

出願人  三菱化成工業株式会社 代理人  弁理士 要否用  − (ほか1名)Applicant: Mitsubishi Chemical Industries, Ltd. Agent Patent attorney required - (1 other person)

Claims (2)

【特許請求の範囲】[Claims] (1)1種以上の希土類元素のイオンを含む陽イオン交
換液から希土類元素を分離するにあたり、該イオン交換
液を一価イオンの硫酸塩及び硫酸を含有する水溶液と接
触させて希土類元素を、一価イオンとの硫酸複塩として
析出させることを特徴とする希土類元素の分離方法。
(1) In separating rare earth elements from a cation exchange solution containing ions of one or more rare earth elements, the ion exchange solution is brought into contact with an aqueous solution containing sulfate of monovalent ions and sulfuric acid to remove rare earth elements. A method for separating rare earth elements, which is characterized by precipitating a sulfuric acid double salt with a monovalent ion.
(2)一価イオンの硫酸塩及び硫酸を含有する水溶液と
して、一価イオンの硫酸塩の含有量が10〜30重量%
である水溶液を用いることを特徴とする特許請求の範囲
第1項記載の希土類元素の分離方法。
(2) As an aqueous solution containing monovalent ion sulfate and sulfuric acid, the content of monovalent ion sulfate is 10 to 30% by weight.
A method for separating rare earth elements according to claim 1, characterized in that an aqueous solution is used.
JP62039553A 1987-02-23 1987-02-23 Separation of rare earth element Pending JPS63206313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62039553A JPS63206313A (en) 1987-02-23 1987-02-23 Separation of rare earth element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62039553A JPS63206313A (en) 1987-02-23 1987-02-23 Separation of rare earth element

Publications (1)

Publication Number Publication Date
JPS63206313A true JPS63206313A (en) 1988-08-25

Family

ID=12556258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62039553A Pending JPS63206313A (en) 1987-02-23 1987-02-23 Separation of rare earth element

Country Status (1)

Country Link
JP (1) JPS63206313A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014018421A1 (en) * 2012-07-21 2014-01-30 K-Technologies, Inc. Processes for the recovery of fluoride and silica products and phosphoric acid from wet-process phosphoric acid facilities and contaminated waste waters
JP2014218700A (en) * 2013-05-08 2014-11-20 住友金属鉱山株式会社 Recovery method of heavy rare earth

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014018421A1 (en) * 2012-07-21 2014-01-30 K-Technologies, Inc. Processes for the recovery of fluoride and silica products and phosphoric acid from wet-process phosphoric acid facilities and contaminated waste waters
US9869005B2 (en) 2012-07-21 2018-01-16 K-Technologies, Inc. Processes for rare earths recovery from wet-process phosphoric acid
JP2014218700A (en) * 2013-05-08 2014-11-20 住友金属鉱山株式会社 Recovery method of heavy rare earth

Similar Documents

Publication Publication Date Title
EP0161050B1 (en) Process for treating and recovering pickling waste liquids for stainless steel
CN105164055A (en) A method for purification of circulating leaching solutions from phosphates and fluorides
DE3514348A1 (en) METHOD FOR OBTAINING AQUEOUS SOLUTIONS OF ORGANIC ACIDS OR BASES FROM AQUEOUS SOLUTIONS OF THEIR SALTS
JPS63206313A (en) Separation of rare earth element
GB1309578A (en) Process for purifying phosphoric acid
US3112991A (en) Process for recovery of fluoride-free columbium and tantalum pentoxides from organic extracts
US4117092A (en) Process for separating a phosphoric acid-solvent solution
JPH0665608B2 (en) A method for separating thorium and rare earth elements from fluoride concentrates.
US4514365A (en) Process for recovering a uranium-containing concentrate and purified phosphoric acid from a wet process phosphoric acid containing uranium
US3297401A (en) Process for refining phosphoric acid preparations
JP2571830B2 (en) Separation method of metal sulfate from sulfuric acid
US3993735A (en) Cleanup of wet process phosphoric acid
KR890004520B1 (en) A process for the overall recovery of uranium yttrium thorium and rare earths contained in a phosphate-bearing ore
US4554144A (en) Removal of magnesium and/or aluminum values from impure aqueous phosphoric acid
CA1261115A (en) Process for dearsenifying phosphoric acid solutions
DE2229602B1 (en) Process for the purification of technical phosphoric acid
DE2053885A1 (en) Process for the purification of technical phosphoric acid
DE2047261B2 (en) Process for removing iron from phosphoric acid
US4540557A (en) Process for reducing the fluorine content in wet-processed phosphoric acid
CN103395838A (en) High-purity potassium metavanadate and preparation method thereof
EP0233523B1 (en) Process for the manufacture of raw phosphoric acid
JPS58742B2 (en) Separation method for rare earth element ions
SU692555A3 (en) Method of purifying phosphoric acid
US4390507A (en) Process for recovering yttrium and lanthanides from wet-process phosphoric acid
EP0164087B1 (en) Process for reducing the sulphuric acid and impurity content in wet-process phosphoric acid