JPS63206307A - Production of argon - Google Patents

Production of argon

Info

Publication number
JPS63206307A
JPS63206307A JP62037476A JP3747687A JPS63206307A JP S63206307 A JPS63206307 A JP S63206307A JP 62037476 A JP62037476 A JP 62037476A JP 3747687 A JP3747687 A JP 3747687A JP S63206307 A JPS63206307 A JP S63206307A
Authority
JP
Japan
Prior art keywords
argon
argon gas
oxygen
disoxidation
crude argon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62037476A
Other languages
Japanese (ja)
Other versions
JPH0832550B2 (en
Inventor
Yoshinobu Nakane
中根 義信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP62037476A priority Critical patent/JPH0832550B2/en
Publication of JPS63206307A publication Critical patent/JPS63206307A/en
Publication of JPH0832550B2 publication Critical patent/JPH0832550B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04721Producing pure argon, e.g. recovered from a crude argon column
    • F25J3/04733Producing pure argon, e.g. recovered from a crude argon column using a hybrid system, e.g. using adsorption, permeation or catalytic reaction
    • F25J3/04739Producing pure argon, e.g. recovered from a crude argon column using a hybrid system, e.g. using adsorption, permeation or catalytic reaction in combination with an auxiliary pure argon column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04793Rectification, e.g. columns; Reboiler-condenser
    • F25J3/048Argon recovery
    • F25J3/04806High purity argon purification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/82Processes or apparatus using other separation and/or other processing means using a reactor with combustion or catalytic reaction

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

PURPOSE:To suppress generation of methane in a disoxidation step and reduce a hydrocarbon concentration in products, by regulating the temperature of a disoxidation catalyst layer in a process for producing argon containing steps of adding hydrogen to crude argon gas and removing oxygen by catalytic reaction. CONSTITUTION:Air is successively introduced into main rectifying columns 2 and 3 to remove most of nitrogen and oxygen. The resultant air is then rectified in a crude argon column 4. The obtained crude argon gas containing a small quantity of oxygen and nitrogen is subsequently introduced into a disoxidation column 8 and hydrogen is added to initiate catalytic reaction. The contained oxygen is then converted into water and removed. Argon gas free of the oxygen is partially circulated through the crude argon gas before the disoxidation step to adjust the oxygen concentration in the crude argon gas. Thereby the temperature of the disoxidation catalyst layer in the disoxidation column 8 is kept at <=230 deg.C or adjusted to >=480 deg.C by a heater. The crude argon gas is then purified in a purified argon column 12 to afford the aimed product argon.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、アルゴンの製造方法に関し、更に詳しくは、
製品アルゴン中の炭素水素濃度を減少させることができ
るアルゴンの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing argon, and more specifically, to a method for producing argon.
The present invention relates to a method for producing argon that can reduce the carbon hydrogen concentration in product argon.

従来技術 従来のアルゴンの製造方法は、空気を液化分離して大部
分の窒素ガスと酸素とを除去し、次いで粗アルゴン塔に
て精留して少量の酸素と窒素とを含む粗アルゴンガスと
し、その粗アルゴンガスに水素を加え触媒反応にて酸素
を除去し、更に、窒素骨及び水素骨を精製アルゴン塔で
精留除去して、高純度のアルゴンを得るものである。
Prior art The conventional method for producing argon is to liquefy and separate air to remove most of the nitrogen gas and oxygen, and then rectify it in a crude argon column to produce crude argon gas containing small amounts of oxygen and nitrogen. Hydrogen is added to the crude argon gas, oxygen is removed through a catalytic reaction, and the nitrogen bones and hydrogen bones are removed by rectification in a purified argon column to obtain highly pure argon.

かかる従来のアルゴンの製造方法としては、例えば特開
昭59−145473号公報に開示がある。
Such a conventional method for producing argon is disclosed in, for example, Japanese Unexamined Patent Publication No. 145473/1983.

従来技術の問題点 粗アルゴンガスに水素を添加し、触媒反応にて酸素分を
除去する脱酸素工程における目的の反応は、 H2+ ’A 02−H20 である。
Problems with the Prior Art The target reaction in the deoxidation process in which hydrogen is added to crude argon gas and oxygen is removed by a catalytic reaction is H2+'A02-H20.

ところが、粗アルゴンガス中には微量の一酸化炭素が含
まれており、この−酸化炭素が例えば次の反応によりメ
タンに変わる。
However, the crude argon gas contains a trace amount of carbon monoxide, and this carbon oxide is converted into methane by the following reaction, for example.

CO+3H,−CH4+)(,0 このため、脱酸素工程でメタンが含まれてしまうことに
なるが、このメタンの沸点(−164℃)は、アルゴン
の沸点(−185℃)よりも高いため、後工程で分離で
きず、製品アルゴン中のメタン濃度が高くなる問題点が
ある。
CO+3H, -CH4+)(,0 For this reason, methane will be included in the deoxidation process, but since the boiling point of methane (-164°C) is higher than the boiling point of argon (-185°C), There is a problem that methane cannot be separated in the post-process and the methane concentration in the product argon increases.

メタン以外の炭素水素(例えばエタン)についても同様
の問題点がある。
Similar problems exist with carbon hydrogens other than methane (eg, ethane).

発明の目的 本発明の目的とするところは、製品アルゴン中に含まれ
るメタン等の炭化水素濃度を減少させることができるア
ルゴンの製造方法を提供することにある。
OBJECTS OF THE INVENTION An object of the present invention is to provide a method for producing argon that can reduce the concentration of hydrocarbons such as methane contained in the argon product.

発明の構成 本発明のアルゴンの製造方法は、粗アルゴンガスに水素
を添加し触媒反応にて粗アルゴンガス中の酸素を除去す
る脱酸素工程を含むアルゴンの製造方法において、脱酸
素用触媒層の温度を230℃以下もしくは480℃以上
とすることを構成上の特徴とするものである。
Structure of the Invention The method for producing argon of the present invention includes a deoxidizing step of adding hydrogen to crude argon gas and removing oxygen from the crude argon gas through a catalytic reaction. The structural feature is that the temperature is 230° C. or lower or 480° C. or higher.

作用 従来の脱酸素工程において、脱酸素用触媒層の温度は3
00℃〜400℃であったが、これを230℃以下若し
くは480℃以上とするように温度制御を行ったところ
、製品アルゴン中のメタン等の濃度が減少することが見
出された。
Function: In the conventional deoxidation process, the temperature of the deoxidation catalyst layer is 3
It was found that the concentration of methane, etc. in the product argon decreased when the temperature was controlled to be below 230°C or above 480°C.

これは、メタン等を発生する反応が温度制御により抑制
されたためと考えられる。
This is thought to be because reactions that generate methane and the like were suppressed by temperature control.

実力ft−(クリ 以下、図に示す実施例に基づいて本発明を更に詳しく説
明する。ここに第1図は本発明のアルゴンの製造方法を
実施するための製造装置の一例のフローシート、第2図
は同製造装置の他の一例のフローシート、第3図は第1
図に示す製造装置における脱酸素用触媒層温度とアルゴ
ン精製装五出日部における炭化水素濃度の関係を示すグ
ラフ、第4図も第3図と同様のグラフである。なお、図
に示す実施例により本発明が限定されるものではない。
The present invention will be explained in more detail below based on the examples shown in the figures. Herein, FIG. Figure 2 is a flow sheet of another example of the same manufacturing equipment, and Figure 3 is a flow sheet of another example of the same manufacturing equipment.
FIG. 4 is a graph similar to FIG. 3, which shows the relationship between the deoxidizing catalyst layer temperature and the hydrocarbon concentration in the argon refining section of the production apparatus shown in the figure. Note that the present invention is not limited to the embodiments shown in the figures.

第1図に示すアルゴンの製造装置1において、主精留塔
上塔2に導入された原料空気は主精留塔上塔3を経るこ
とによって大部分の窒素と酸素とを除去された後、粗ア
ルゴン塔4に導入される。
In the argon production apparatus 1 shown in FIG. 1, the raw air introduced into the main rectification column upper column 2 passes through the main rectification column upper column 3 to remove most of the nitrogen and oxygen, and then The crude argon is introduced into column 4.

そして粗アルゴン塔4において更に精留され、少量のr
I&素と窒素とを含む粗アルゴンガスとされ、アルゴン
精製装置5に導入される。
Then, it is further rectified in the crude argon column 4, and a small amount of r
The crude argon gas containing I& element and nitrogen is introduced into the argon purifier 5.

アルゴン精製装置5において、粗アルゴンガスは、熱交
換器6及び粗アルゴン圧縮器7を通り、脱r!!棄塔8
に導入される。
In the argon purification device 5, the crude argon gas passes through a heat exchanger 6 and a crude argon compressor 7, and is de-rized! ! abandoned tower 8
will be introduced in

説酸素塔8では、粗アルゴンガスに水素を添加し、触媒
反応により酸素分を除去する。即ちH2+ %02−H
20 上記反応により変性した変性アルゴンガスは、熱交換器
9を通り、脱湿装置10に送られると共に、循環プロア
11によって脱酸素塔8の入口に帰還させられる。
In the oxygen tower 8, hydrogen is added to the crude argon gas and oxygen is removed by a catalytic reaction. That is, H2+ %02-H
20 The modified argon gas modified by the above reaction passes through the heat exchanger 9 and is sent to the dehumidifier 10, and is also returned to the inlet of the deoxygenation tower 8 by the circulation blower 11.

従って、脱酸素塔8には、実際には変性アルゴンガスで
希釈された粗アルゴンガスが導入されることになる。す
ると、脱酸素塔8に導入されるガス中の酸素濃度が低下
するので、これによりWA酸素用触媒層の温度を低下さ
せることができる。すなわち、粗アルゴンガスをそのま
ま導入していた場合は脱酸素用触媒層温度は300℃〜
400℃になっていたが、これを230℃以下とするこ
とが出来るようになる。
Therefore, crude argon gas diluted with modified argon gas is actually introduced into the deoxidizing tower 8. Then, the oxygen concentration in the gas introduced into the deoxidizing tower 8 decreases, thereby making it possible to decrease the temperature of the WA oxygen catalyst layer. In other words, if crude argon gas was introduced as it was, the temperature of the deoxidizing catalyst layer would be 300℃~
The temperature used to be 400°C, but it will now be possible to reduce it to 230°C or lower.

変性アルゴンガスは、脱湿装置1oで水分を除去され、
再び熱交換器6を通り、精製アルゴン塔12に導入され
る。
Moisture is removed from the modified argon gas in a dehumidifier 1o,
It passes through the heat exchanger 6 again and is introduced into the purified argon column 12.

精製アルゴン塔12では、窒素分、水素分などが精留分
離され、高純度の液化アルゴンが取り出される。
In the purified argon column 12, nitrogen, hydrogen, and the like are separated by rectification, and high-purity liquefied argon is taken out.

次に、第2図に示すアルゴンの製造装置1′は、上記実
施例語r!1.1と脱酸素工程における変性アルゴンガ
スの帰還構成が異なるものである。
Next, the argon production apparatus 1' shown in FIG. 1.1 is different from that in the return configuration of modified argon gas in the deoxidation step.

部ち、説酸素塔8の後の熱交換器9を出た変性アルゴン
ガスの一部は、バルブ13を介して、粗アルゴン圧縮器
7の入口部に帰還されるようになっている。その他の構
成は、上記実施例装置1と同様であり、同じ参照番号を
付しである。
Part of the denatured argon gas exiting the heat exchanger 9 after the oxidation tower 8 is returned to the inlet of the crude argon compressor 7 via a valve 13. The other configurations are the same as those of the embodiment device 1 described above, and are given the same reference numerals.

第1図に示す装置1は循環ブロア11を用いるので変性
アルゴンガスの帰還量を大きくすることができる利点が
ある。一方、第2図に示す装置1′は構成が簡易になる
利点がある。
Since the apparatus 1 shown in FIG. 1 uses the circulation blower 11, it has the advantage that the amount of returned modified argon gas can be increased. On the other hand, the device 1' shown in FIG. 2 has the advantage of a simple configuration.

本発明を実施するための他の装置例としては、第1図の
装w、1において循環ブロア11を省き、代わりに脱酸
素基8の入口部に予熱ヒータを設けるか、脱酸素用触媒
層にヒータを設け、脱酸素用触媒層の温度を480℃以
上にするものが挙げられる。
As another example of an apparatus for carrying out the present invention, the circulation blower 11 may be omitted in the device w, 1 shown in FIG. An example is one in which a heater is provided to raise the temperature of the deoxidizing catalyst layer to 480° C. or higher.

さて、第3図及び第4図は、脱酸素用触媒層温度とアル
ゴン精製装置を経たアルゴン中の炭化水素濃度を測定し
たグラフである。
Now, FIGS. 3 and 4 are graphs showing measurements of the deoxidizing catalyst layer temperature and the hydrocarbon concentration in argon that has passed through the argon purification device.

第3図から理解されるように、脱酸素用触媒層温度が4
80℃以上となるように温度制御すると、炭化水素濃度
は0.5PP−以下となっているので、製品アルゴン中
の炭化水素濃度は十分に低減されている。
As can be understood from Fig. 3, the temperature of the deoxidizing catalyst layer is 4
When the temperature is controlled to be 80° C. or more, the hydrocarbon concentration is 0.5 PP− or less, so the hydrocarbon concentration in the product argon is sufficiently reduced.

一方、第4図から理解されるように、脱酸素用触媒層温
度を230℃以下とすれば、炭化水素濃度は0.5 p
pm以下となり、製品アルゴン中の炭化水素濃度は十分
小さな値となっている。
On the other hand, as understood from Fig. 4, if the temperature of the deoxidizing catalyst layer is 230°C or less, the hydrocarbon concentration is 0.5 p
pm or less, and the hydrocarbon concentration in the product argon is a sufficiently small value.

発明の効果 本発明によれば、粗アルゴンガスに水素を添加し一触媒
反応にて粗アルゴンガス中の酸素を除去する脱酸素工程
を含むアルゴンの製造方法において、脱酸素用触媒層の
温度を230℃以下もしくは480℃以上とすることを
特徴とするアルゴンの製造方法が提供され、これにより
脱酸素工程におけるメタン等の発生が抑制され、製品ア
ルゴン中の炭化水素濃度を減少することができる。
Effects of the Invention According to the present invention, in an argon production method including a deoxidation step of adding hydrogen to crude argon gas and removing oxygen from the crude argon gas by a catalytic reaction, the temperature of the deoxidation catalyst layer can be controlled. A method for producing argon is provided which is characterized in that the temperature is 230° C. or lower or 480° C. or higher, thereby suppressing the generation of methane, etc. in the deoxidizing step and reducing the hydrocarbon concentration in the product argon.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のアルゴンの製造方法を実施するための
製造装置の一例のフローシート、第2図は同製造装置の
他の一例のフローシート、第3図は第1図に示す製造装
置における脱酸素用触媒層温度とアルゴン精製装置出口
部における炭化水素濃度の関係を示すグラフ、第4図も
第3図と同様のグラフである。 (符号の説明) 1.1′・・・アルゴンの製造装置 4・・・粗アルゴン塔 5.5′・・・アルゴン精製装置 6・・・熱交換器    7・・・粗アルゴン圧縮器8
・・・脱酸素基    9・・・熱交換器10・・・脱
湿装置i!    11・・・循環ブロア12・・・精
製アルゴン塔 13・・・パルプ。
FIG. 1 is a flow sheet of an example of a manufacturing apparatus for implementing the argon manufacturing method of the present invention, FIG. 2 is a flow sheet of another example of the same manufacturing apparatus, and FIG. 3 is a flow sheet of the manufacturing apparatus shown in FIG. 1. A graph showing the relationship between the deoxidizing catalyst layer temperature and the hydrocarbon concentration at the outlet of the argon purifier in FIG. 4 is also a graph similar to FIG. 3. (Explanation of symbols) 1.1'... Argon production device 4... Crude argon column 5.5'... Argon purification device 6... Heat exchanger 7... Crude argon compressor 8
...Oxygen removing group 9...Heat exchanger 10...Dehumidifier i! 11... Circulation blower 12... Purification argon column 13... Pulp.

Claims (1)

【特許請求の範囲】 1、粗アルゴンガスに水素を添加し触媒反応にて粗アル
ゴンガス中の酸素を除去する脱酸素工程を含むアルゴン
の製造方法において、脱酸素用触媒層の温度を230℃
以下もしくは480℃以上とすることを特徴とするアル
ゴンの製造方法。 2、脱酸素工程を経たアルゴンガスの一部を脱酸素工程
前の粗アルゴンガス中に帰還させて粗アルゴンガスの酸
素濃度を調整し、その調整によって温度制御を行う特許
請求の範囲第1項記載のアルゴンの製造方法。
[Claims] 1. A method for producing argon including a deoxidation step of adding hydrogen to crude argon gas and removing oxygen from the crude argon gas through a catalytic reaction, in which the temperature of the deoxidation catalyst layer is set at 230°C.
A method for producing argon, characterized in that the temperature is below or above 480°C. 2. Part of the argon gas that has undergone the deoxidation process is returned to the crude argon gas before the deoxidation process to adjust the oxygen concentration of the crude argon gas, and the temperature is controlled by the adjustment, as claimed in claim 1. The method for producing argon as described.
JP62037476A 1987-02-19 1987-02-19 Argon production method Expired - Lifetime JPH0832550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62037476A JPH0832550B2 (en) 1987-02-19 1987-02-19 Argon production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62037476A JPH0832550B2 (en) 1987-02-19 1987-02-19 Argon production method

Publications (2)

Publication Number Publication Date
JPS63206307A true JPS63206307A (en) 1988-08-25
JPH0832550B2 JPH0832550B2 (en) 1996-03-29

Family

ID=12498573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62037476A Expired - Lifetime JPH0832550B2 (en) 1987-02-19 1987-02-19 Argon production method

Country Status (1)

Country Link
JP (1) JPH0832550B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61163106A (en) * 1985-01-11 1986-07-23 Hitachi Ltd Process and device for recovering inert gas

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61163106A (en) * 1985-01-11 1986-07-23 Hitachi Ltd Process and device for recovering inert gas

Also Published As

Publication number Publication date
JPH0832550B2 (en) 1996-03-29

Similar Documents

Publication Publication Date Title
US5175061A (en) High-temperature fuel cells with oxygen-enriched gas
KR930001207B1 (en) Production of high purity argon
Brown et al. Purifying hydrogen by selective oxidation of carbon monoxide
US4426369A (en) Low temperature Claus process with water removal
US4280990A (en) High pressure process for recovery of sulphur from gases
EP0516441A1 (en) Improved gas conversion process
JP2003525832A (en) Method for producing carbon monoxide by reverse conversion using a catalyst
EA026825B1 (en) Method for producing synthesis gas for methanol production
US3467492A (en) Elimination of nitrogen oxides from gas streams
US4318711A (en) Converting low BTU gas to high BTU gas
RU2561077C2 (en) Method of obtaining hydrogen from hydrocarbon raw material
US4123508A (en) Apparatus and method for manufacturing deuterium enriched water
JPH01257109A (en) Production of hydrogen sulfide
US4212817A (en) Control of highly exothermic chemical reactions
JPS63206307A (en) Production of argon
JP3322923B2 (en) Method for producing carbon monoxide and hydrogen
US3584998A (en) Process for making ammonia
JP2006513128A (en) Improved shift conversion arrangement and method.
KR20010014504A (en) Use of cryogenic rectification for the production of ammonia
RU2203214C1 (en) Methanol production process
JPH03242302A (en) Production of hydrogen and carbon monoxide
US2142646A (en) Production of nitric acid
US3116116A (en) Gas production
GB2033882A (en) Production of ammonia
NO20006678L (en) Steam reforming of methane